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The beta-induced Alfv�en eigenmode (BAE) excited by energetic particles in toroidal plasmas is

studied in the global gyrokinetic simulations. It is found that the nonlinear BAE dynamics depends

on the deviation from the marginality. In the strongly driven case, the mode exhibits a bursting

state with fast and repetitive chirping. The nonlinear saturation is determined by the thermal ion

nonlinearity and has no clear dependence on the linear growth rate. In the weakly driven case, the

mode reaches a nearly steady state with small frequency chirping. The nonlinear dynamics is

dominated by the energetic particle nonlinearity. In both cases, the nonlinear intensity oscillation

and frequency chirping are correlated with the evolution of the coherent structures in the energetic

particle phase space. Due to the radial variation of the mode amplitude and the radially asymmetric

guiding center dynamics, the wave-particle interaction in the toroidal geometry is much more

complex than the conventional one-dimensional wave-particle interaction paradigm. VC 2013
American Institute of Physics. [http://dx.doi.org/10.1063/1.4776698]

I. INTRODUCTION

The b-induced Alfv�en eigenmode (BAE)1–4 observed in

tokamak experiments can be destabilized by energetic par-

ticles and, in return, cause the loss of the energetic particles.

The BAE oscillates with the geodesic acoustic mode (GAM)

frequency,5–7 which is on the order of the thermal ion transit

frequency. Therefore, BAE has strong resonant interactions

with both thermal ions and energetic particles. The BAE

excitation by ion cyclotron resonance heating (ICRH) is

observed in Tore-Supra8,9 and ASDEX Upgrade.10,11 The

BAE excitation by ECRH and magnetic island are also

observed in HL-2A.12,13 In these experiments, the BAE fre-

quency sweeping phenomenon is found before the sawtooth

crash, which is mainly due to the change of the equilibrium.

Meanwhile, fast frequency chirping of various Alfv�en waves

is widely observed in tokamak experiments. The frequency

chirping of the toroidal induced Alfv�en eigen mode (TAE)

and energetic particle mode (EPM) are found in D-IIID,14

NSTX,15,16 JT-60U,17 JET,18 START, and MAST.19 The

low frequency waves, such as fishbone and BAE, also exhibit

fast frequency chirping.20,21 Particularly, the transition from

the downward chirping bursting state to the nearly steady

state of the nonlinear BAE is observed in recent experiment

in ASDEX.21,22 The enhancement of the energetic particle

transport is also observed during the fast chirping events,15,16

which suggest that the fast chirping of the Alfv�en eigenmo-

des is more relevant to the energetic particle transport than

the steady state of the Alfv�en eigenmodes.

The BAE dispersion relation and excitation have also

been studied theoretically. Kinetic theory shows that the

BAE continuum accumulation point has a slight downshift

and is related to diamagnetic effects, elongation, and the

trapped particles.23 The BAE damping effect is investigated

through numerical solution.24 The relation between BAE and

GAM has also been discussed.6,25,26 The BAE excitation

threshold is calculated theoretically, which is in agreement

with the experiments.27 Regarding the nonlinear physics, it

is also shown that the purely nonlinear BAE steady-state

regimes are possible for Tore-Supra parameters.28 The one-

dimensional bump-on-tail model or Berk-Breizman model

with source and sink has been applied to explain many kinds

of Alfv�en wave frequency chirping.29,30 By perturbatively

treating the energetic particles, the model reproduces the

nonlinear up-and-down frequency chirping phenomenon and

the spontaneous formation of the hole-and-clump pair in the

phase space.30–32 The improved model with a nonperturba-

tive treatment of the beam exhibits a strong asymmetry

frequency chirping, and the chirping is linearly dependent on

time.33 The extended model with dynamical friction and

velocity space diffusion has been developed to study the

evolution of frequency chirping and hole-and-clump

formation.34

The fully self-consistent three-dimensional simulations

have also been applied to study the Alfv�en waves and the

frequency chirping in tokamaks. The HAGIS code recovers

the self-consistent up-and-down frequency chirping of

marginally unstable TAEs.35 The M3D simulation shows

that the nonlinear fishbone saturates along with downward

frequency chirping.36 Both of the simulations are carried out

without sources and sinks. The M3D simulation with source

and sink also shows that the nonlinear TAE exhibits oscilla-

tory behavior with up-and-down frequency chirping.37 These

simulations successfully reproduce a single burst of the

chirping. The repetitive chirping and bursting state observed
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in experiments has not been well explained. Furthermore, the

flattening of the particle distribution function near the reso-

nance region is often observed after the nonlinear saturation.

This flattening is believed to be very important to the nonlin-

ear mode saturation and can be induced through nonlinear

wave-particle trapping or the radial transport of resonant

particles. The later one is often associated with the radial

convection of the mode amplitude, which can also result in

the frequency chirping such as the EPMs.38 Therefore, it is

essential to identify whether the frequency chirping is due to

the nonlinear particle dynamics itself or the profile flattening.

On the other hand, few works have been reported on BAE

simulations.39,40

Gyrokinetic toroidal code (GTC)41 has been success-

fully applied to the gyrokinetic simulation of TAE,42,43

RSAE,44–46 and GAM.47,48 The GTC simulation of the

BAE linear excitation has been reported.49 Recently, the

fast and repetitive frequency chirping of the BAE is

observed by the massively parallel GTC simulation without

sources and sinks in a realistic toroidal geometry.50 In this

work, we mainly focus on the nonlinear BAE dynamics and

its dependence on the deviation from the marginality. The

current simulations find that the BAE saturation amplitude

is linearly dependent on the square of the linear growth rate

near marginality, which is consistent with the picture of

nonlinear saturation via phase space trapping.29 When the

BAE is well deviated from the marginality, the saturation

amplitude has no clear dependence on the linear growth

rate because the phase space island size is comparable to

the radial mode width. We further find that in the strongly

driven case, the BAE exhibits a bursting state with fast,

repetitive, and mostly downward chirping. The chirping has

a period of sub-millisecond and a 90� phase shift from the

amplitude oscillation. The nonlinear saturation is mainly

determined by the thermal ion nonlinearity. The fast and

repetitive chirping is correlated with the evolution of the

energetic particle phase space structures. In the weakly

driven case, the BAE exhibits a nearly steady state with

small frequency chirping. The saturation amplitude and the

nonlinear evolution are dominated by the energetic particle

nonlinearity.

The comparison of the phase space structures between

the nonlinear BAE and the one-dimensional nonlinear Lan-

dau damping shows that the wave-particle interaction in the

toroidal geometry is much more complex than the conven-

tional one-dimensional wave-particle interaction paradigm.

When the radial width of the energetic particle phase space

islands is as large as the radial mode width in the strongly

driven case, the nonlinear BAE dynamics can be strongly

affected by the radial variations of mode amplitude and the

radially asymmetric guiding center dynamics in the toroidal

geometry.

The paper is organized as follows: The deviation from

the BAE marginality is discussed in Sec. II. The nonlinear

evolution of the strongly driven and weakly driven BAE is

presented in Secs. III and IV, respectively. In Sec. V, com-

parisons of the phase space between the BAE simulations

and one-dimensional nonlinear Landau damping are dis-

cussed. Section IV is the conclusion.

II. DEPENDENCE OF BAE NONLINEAR DYNAMICS ON
THE DEVIATION FROM MARGINALITY

The BAE linear excitation properties and GTC bench-

marks with XHMGC were reported in our previous work.49

In the current study, we focus on the BAE nonlinear dynam-

ics. The BAE is excited in a tokamak with concentric flux-

surfaces. In our simulation, the radius profile of safety factor

q is q ¼ 1:797þ 0:8ðw=wwÞ � 0:2ðw=wwÞ
2
, where w is the

poloidal flux function with wðr ¼ 0Þ ¼ 0;wðr ¼ aÞ ¼ ww,

and a ¼ 0:328R0 is the minor radius at the wall. The q¼ 2

rational surface is located at a minor radius r0 ¼ 0:164R0

(Fig. 1(a)), where R0 is the major radius. The electron density

n0 is uniform and the energetic particle (EP) density profile

is nh ¼ 0:01n0 � ð1:0þ 0:35 � ðtanhðð0:26� w=wwÞ=0:06Þ
�1:0ÞÞ, so that the EP density gradient has a maximum value

of R0=Ln near q¼ 2 surface, where Ln is the EP density gradi-

ent scale length (Fig. 1(b)). Both thermal and energetic ions

are protons with a Maxwellian velocity distribution and are

treated using the nonlinear gyrokinetic equations,51 while

electrons are treated as a massless fluid.52 The temperature is

uniform for all species with Te ¼ 0 and Th ¼ 25Ti. The ther-

mal plasma beta at r0 is b ¼ 8pn0Ti=B2
0 ¼ 0:0072 with B0

being the on-axis magnetic field. Without losing generality,

the simulation treats a single toroidal mode number n¼ 3,

which has khqi ¼ 0:044 for R0 ¼ 838qi. Here, kh is the poloi-

dal wavevector and qi the thermal ion gyroradius. In our

gyrokinetic simulation, both EP and thermal ion nonlinear-

ities are retained, while the coupling between different n
modes is ignored due to lack of resonance condition between

different n modes. The generation of the zonal fields will be

studied in future work. Since kk � 0 for BAE, a filter is

applied to keep only the m 2 ½nq� 2; nqþ 2� poloidal har-

monics to avoid the high kk noise. A slow sound approxima-

tion is used to suppress the ion acoustic wave (i.e., Ek ¼ 0).

All perturbed quantities are set to be zero at the radial boun-

daries ðr=R0 ¼ 0:048; 0:24Þ. Numerical convergence with

FIG. 1. q profile (a) and R=Lnf profile (b) in radial direction.
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respect to number of particles, spatial grid size, and time step

has been achieved.

By changing the EP density gradient, the linear growth

rate of BAE is adjusted and a series of GTC simulations

have been performed to scan the deviation from marginality.

Figure 2 shows that the BAE saturation amplitude is propor-

tional to the square of the linear growth rate when ðc=x0Þ
< 0:05, which is located in the marginal region. However,

there is no strong dependence of the amplitude on the growth

rate when ðc=x0Þ > 0:07, which is well deviated from the

marginality and is more relevant for transport. Therefore,

the nonlinear BAE simulation can be divided into the

weakly driven (ðc=x0Þ < 0:05) and strongly driven cases

(ðc=x0Þ > 0:07). We further find that the BAE saturation

mechanism and nonlinear behavior are quite different

between the strongly driven and weakly driven cases, which

we will discuss in Secs. III and IV, respectively. Further-

more, the linear dependence of ed/=Ti on ðc=x0Þ2 suggests

that the nonlinear saturation may be due to the nonlinear

wave-particle trapping paradigm like the one-dimensional

nonlinear Landau damping problem.53 But due to the toroi-

dal geometry and non-uniform radial mode amplitude, the

saturation mechanism is much more complex than the 1D

problem, which we will discuss in Sec. V.

III. STRONGLY DRIVEN BAE

In the strongly driven BAE simulation, we set the maxi-

mum EP gradient to be R0=Ln ¼ 31 (Fig. 1(b)) and drive the

BAE with a small initial amplitude noise. The BAE mode

structure forms around the mode rational surface r0, and the

amplitude grows with a real frequency xBAE ¼ 0:96x0 and a

growth rate c ¼ 0:09x0, which suggests that it is well deviated

from the marginality. Here, x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð7Ti=2þ 2TeÞ=ðmiR2

0Þ
p

is

the geodesic acoustic mode frequency5 with mi being the pro-

ton mass. The mode amplitude exhibits a nonlinear oscillation

bursting state with a period of about ten wave periods (red

curve in Fig. 1(a) of Ref. 50), i.e., less than one millisecond

for typical experimental parameters. We further analyze the

BAE frequency spectrum by applying the wavelet transform

to the real part of d/ (Fig. 1(b) of Ref. 50) and the time evolu-

tion of the wavelet power spectrum exhibits a regular oscilla-

tion of wave frequency x, dominated by mostly downward

chirping. The frequency with the highest power intensity

(black curve in Fig. 1(a) of Ref. 50) shows that the amplitude

oscillation has roughly a 90� phase lag behind the frequency

oscillation. Since the mode amplitude is relatively low during

the upward chirping, experimental measurements will mostly

see the downward chirping. All of these features from our sim-

ulations have recently being observed in the TAE mode in

NSTX experiment15,16 and BAE mode in ASDEX experi-

ment,21,22 suggesting a universal mechanism underlying the

chirping dynamics. More detailed information can be found in

the Ref. 50.

The fast oscillations of wave frequency and amplitude

persist without external sources and sinks to replenish the EP

distribution function, and the EP density gradient changes

little after the mode saturation, suggesting the important

roles of nonlinear wave and particle dynamics. In our simu-

lations, both the thermal ions and EPs are governed by the

nonlinear gyrokinetic equations. To delineate the nonlinear-

ity of thermal and energetic ions, two controlled simulations

are performed. One simulation is performed with nonlinear

thermal ions and linear EPs (red lines in Fig. 3), the other is

carried out with linear thermal ions and nonlinear EPs (black

lines in Fig. 3). The simulation with nonlinear thermal ions

and linear EPs has similar saturation amplitude to the simula-

tion with both nonlinearities (green lines in Fig. 3), but no

oscillations of frequency and amplitude are observed, while

the simulation with linear thermal ions and nonlinear EPs

saturates at the amplitude three times higher and some oscil-

lations of frequency and amplitude are observed. Therefore,

the thermal ion nonlinearity is responsible for the BAE satu-

ration and the initial frequency downshift, while the ener-

getic ion nonlinearity is responsible for the frequency

oscillation for current simulation parameters. The investiga-

tion of the nonlinear BAE mode structure (Fig. 2 of Ref. 50)

further indicates that the thermal ions cannot be simply

represented as a linear damping rate when describing the

nonlinear BAE dynamics. The frequency downshift and the

suppression of the saturation amplitude are also observed in

recent nonlinear TAE simulation with nonlinear MHD

effect.54 The effect of thermal ion nonlinearity needs more

investigation.

We now examine linear and nonlinear interactions

between EP and BAE to elucidate the frequency oscillation

mechanism. The resonance condition56 for a low-frequency

FIG. 2. The saturation amplitude ed/=Ti vs square of the linear growth rate c.

FIG. 3. Controlled simulations for strongly driven cases. Black line is the

simulation with linear thermal ions and nonlinear EPs. Red line is the simula-

tions with nonlinear thermal ions and linear EPs. Green line is the simulations

with both nonlinearity.
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wave in a general axisymmetric system is x� kkvk � pxt

¼ 0 for passing particles, and x� nxpre � pxb ¼ 0 for

trapped particles. Here, p is an integer number, xt;xb;xpre

are guiding center transit, bounce, and precessional frequen-

cies,57 respectively. The resonances induce locally large fluc-

tuations of the perturbed distribution function dfh in the

phase space. The relative strength of resonances can be

inferred from the intensity of the EP entropy df 2
h .48 Figure 4

shows the linear and nonlinear EP entropy df 2
h as a function

of the equilibrium constants of motion (E; k). Here, E is the

guiding center kinetic energy and k ¼ lB0=E is a pitch angle

parameter with l the magnetic moment. The trapped-passing

boundary at r0 is k ¼ 1� r0=R0. Four resonances can be

identified in both linear and nonlinear stages (Figs. 4(a) and

4(b)). The most prominent resonance is the precessional res-

onance (x ¼ xd � nxpre) of deeply trapped particles. The

others include the drift-bounce resonance (x ¼ xd þ pxb)

and the second harmonic resonance (x ¼ 2xd) of trapped

particles, and the transit resonance (x ¼ xt) of passing par-

ticles. From linear to nonlinear stage, all resonance regions

move to the lower E while the change in k is much smaller.

Variations of the resonance energy and radial excursions

of resonant particles can modify xd and induce the wave

frequency chirping. The dominant radial excursions are asso-

ciated with the nonlinear particle trapping as indicated by

island-like structures of dfh at the nonlinear stage with pairs

of positive and negative density perturbations (Fig. 4(c)).

Since the precessional resonance is the dominant reso-

nance for the excitation of BAE, we will mainly focus on the

interaction between EP and BAE by precessional resonance in

the following investigation. The dynamics of the precessional

resonance can be simply described by a radially local 1D

model using canonical variables ðf;xdÞ with f the toroidal

angle. The evolution of dfh=fh0 in the ðf;xdÞ phase space for

the strongly driven simulation is shown in Fig. 3 of Ref. 50,

which shows that the frequency chirping is consistent with the

evolution of coherent structures in the ðf;xdÞ phase space for

precessional resonance, which propagate at the local xd. The

contribution of other sideband resonances to the evolution

of the coherent structures, and the frequency chirping is sub-

dominant. The xdðE; rÞ variations come from the changes in

the kinetic energy E and the radial r excursions of resonant

particles. The phase space coherent structures and the oscilla-

tions of the mode amplitude both indicate the onset of the non-

linear trapping of resonant particles.58 However, the trapped

particle dynamics in the current simulations is much more

complex due to radial variations of mode amplitude and radi-

ally asymmetric particle dynamics in the toroidal geometry.

For the precessional resonance that preserves the mag-

netic moment and the longitudinal invariant in an axisymmet-

ric toroidal system, the nonlinear dynamics of guiding centers

can be completely described by a pair of action-angle varia-

bles (f;Pf) with Pf ¼ gqk � w the canonical angular momen-

tum, 2pg the poloidal current, qk ¼ vk=B the normalized

parallel velocity, and w the poloidal flux function labeling the

radial position r.57 By tracking the nonlinear orbits of deeply

trapped particles, the structure of the EP distribution function

in the (f;Pf) space are examined in Fig. 4 of Ref. 50. We

found that the nonlinear wave-particle trapping structures are

formed at the beginning of the saturation. The Pf variations

of the coherent structures can easily induce the wave fre-

quency chirping range of �15%. However, due to the asym-

metry of xd in radial direction, the evolution of the mode

structure and the onset of the nonlinear wave-particle trap-

ping are not radially symmetric. Meanwhile, the width of the

phase space islands is found to be comparable to the radial

mode width. Therefore, the radial variations of the mode am-

plitude are important to the nonlinear dynamics of resonant

particles. The resonant particles away from the mode rational

surface experience weaker E	 B radial convection and are

dominated by free streaming with their local velocity xd. The

islands are stretched and destroyed through the free streaming

process when the nonlinear BAE amplitude decreases. The

associated linear phase-mixing effect is further enhanced by

the dependence of the xd variation rate (dxd=dw) on the

magnetic moment and the longitudinal invariant. The destruc-

tion of the islands allows BAE to grow again. The cycle of

the formation and destruction of coherent structures in the

phase space thus persists without sources and sinks. The time

it takes for an island to stretch in the f direction over a dis-

tance of the wavelength is the linear phase-mixing time,

which defines the life time of the coherent structures and the

FIG. 4. Phase space (E; k) structures of df 2
h at linear (panel a) and nonlinear

(panel b) stages, and dfh at nonlinear stages (panel c). Panel (a) is taken at

time “A” in Fig. 1 of Ref. 50. Panels (b) and (c) are taken at time “C” in

Fig. 1 of Ref. 50. Dotted line is the trapped-passing boundary. Solid and

dashed lines are resonances for trapped and passing particles, respectively.

The bounce frequency and precessional frequency are calculated according

to Ref. 55.
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nonlinear oscillation period of the wave frequency and ampli-

tude. This linear phase-mixing time is typically shorter than

the Coulomb collision or turbulence scattering time, which

increases with the particle kinetic energy.59 The destruction

of the nonlinear islands by the linear free streaming is

intrinsically a 2D process, which is beyond the 1D paradigm

of Landau damping.53

Since Pf is related to the particle’s radial position r and

energy E, we further investigate the dynamics of the resonant

particles in ðr; fÞ and ðE; fÞ phase space to delineate the con-

tributions of the real space and velocity space in determining

nonlinear BAE chirping dynamics (Fig. 5). We can see that

the resonant islands width in real space is almost the same as

the BAE mode width. The variation of r can easily induce

15% of the frequency chirping since xd / E=r, while the

energy variation of the resonant particle is about 4%. There-

fore, we conclude that the frequency chirping of the BAE is

mainly induced by the motion of the resonant particles in

real space. Meanwhile, we can also see that the phase space

structure in Fig. 5(a) is almost like the inverse structure of

Fig. 5(b). This further confirms that the particle’s radial posi-

tion r is correlated with its kinetic energy E due to the con-

straint of the longitudinal invariant,60 i.e., the outward

(inward) moving particles in radial position r would decrease

(increase) their kinetic energy E at the same time.

IV. WEAKLY DRIVEN BAE

After showing the saturation amplitude as a function of

deviation from marginality and investigating the strongly

driven BAE simulation, we now reduce the EP density gradi-

ent to be R0=Ln ¼ 20 and excite the BAE again to investigate

the nonlinear BAE behavior close to the marginality. The

linear BAE frequency and damping rate are xBAE ¼ 1:02x0

and c ¼ 0:031x0, respectively. The small linear growth rate

suggests that this is a weakly driven case. The linear BAE

frequency is slightly higher than the strongly driven case due

to the change of EP density gradient.49 Figure 6(a) shows the

time evolution of the (n¼ 3 and m¼ 6) mode at the mode

rational surface. This mode reaches an oscillatory state after

it saturates. The saturation amplitude ed/=T � 0:022 is

much lower and the nonlinear oscillation period is shorter

than the strongly driven case. The oscillation in one period is

symmetry compared with the nonlinear oscillation in

Fig.1(a) of Ref. 50. The frequency spectrum in Fig. 6(b)

shows that the frequency chirping is much weaker. The time

evolution of the dominant BAE frequency in Fig. 6(a) shows

that there is no phase difference between the frequency and

amplitude oscillation, which is different from the strongly

driven results. The small frequency and amplitude oscillation

range suggests that the weakly driven BAE is quite close to

the steady state. The transition from the repetitive downward

chirping state to the nearly steady state is also observed in

recent BAE experiment in ASDEX,21 which demonstrates

qualitative agreement between the experiment and our non-

linear gyrokinetic simulation. Moreover, the different nonlin-

ear BAE behaviors suggest that the nonlinear saturation

mechanism is different between the strongly driven and

weakly driven cases.

We further examine the poloidal mode structure of the

weakly driven simulation. The linear mode structures are

almost the same as the strongly driven case. However, the

nonlinear mode structures are different when BAE amplitude

decreases to the minimum. In the strongly driven simulation,

the mode structure splits when the amplitude drops to the

minimum (Fig. 7(a)). This is correlated with the frequency

splitting in Fig. 1(b) of Ref. 50. There is no mode structure

splitting in the weakly driven simulation when the BAE

FIG. 5. The structure of the distribution function in ðr; fÞ (a) and ðE; fÞ (b)

phase space at t ¼ 142=x0. The “Y” axis is r/a in panel (a) and E=Ti in panel

(b). These particles are uniformly initialized in ðw; fÞ plane with h
¼ 0; vk ¼ 0:01

ffiffiffiffiffiffiffiffiffiffiffi
Ti=mi

p
and l ¼ 49Ti=Bðr0Þ. The color represents the par-

ticles’ initial Pf, which in the range of ½0:05; 0:59�ww. We can see from Fig. 4

that these particles are well located in the precessional resonance region.

FIG. 6. Time evolution of (a) BAE amplitude e/=Ti (red) and dominant

frequency x (black), and (b) frequency power spectrum. The y-axis on the

left is x=x0. The unit of the power intensity in panel (b) is arbitrary.
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amplitude drops to the minimum. Some fine scale structures

also appear in the radial direction.

In the weakly driven case, simulation with nonlinear

thermal ions and linear EPs saturates at a high level, while

simulation with linear thermal ions and nonlinear EPs has

very similar nonlinear evolution compared with simulation

with both nonlinearities (Fig. 8). Therefore, the EP nonli-

nearity dominates the nonlinear saturation, and the thermal

ion nonlinearity plays little role for current simulation

parameters. This result is quite different from the BAE simu-

lation result in Sec. III, where the thermal ion nonlinearity

plays an important role in determining the saturation level.

The EP nonlinearity dominates the nonlinear BAE evolution

for the weakly driven BAE, while thermal ion nonlinearity

determines the saturation level in strongly driven BAE simu-

lation. Therefore, nonlinear steady state in the weakly driven

case and bursting state in the strongly driven case are deter-

mined by different nonlinear physics. Similar results are also

found in recent nonlinear TAE simulation,54 where no signif-

icant difference was found between the results of the linear

MHD and the nonlinear MHD simulations when saturation

level is low, while the saturation level in the nonlinear MHD

simulation is reduced to half compared to the linear MHD

simulation when saturation level is high.

The linear EP entropy df 2
h of the weakly driven simula-

tion is presented in Fig. 9. This structure is quite similar to

the strongly driven results in Fig. 4. However, the resonant

structures are narrower than that in the strongly driven case

and the p¼ 1 drift-precessional resonance is well separated

from the second harmonic resonance (x ¼ 2xd). The nonlin-

ear df 2
h is almost the same as the linear structure in Fig. 4,

and there is no downward shift of the resonance region

because the nonlinear BAE has a much smaller frequency

chirping range.

The evolution of dfh=fh0 in the ðf;xdÞ phase space for

the weakly driven simulation is shown in Fig. 10 in the linear

wave frame. The linear phase space structures in Fig. 10(a)

are quite similar to the linear structures of the strongly driven

FIG. 7. The nonlinear poloidal mode structures when BAE amplitude decreases to the minimum for the strongly driven (a) and weakly driven (b) cases,

respectively.

FIG. 8. Controlled simulations for weakly driven cases. Black line is the

simulation with linear thermal ions and nonlinear EPs. Red line is the simu-

lations with nonlinear thermal ions and linear EPs. Green line is the simula-

tions with both nonlinearity.

FIG. 9. Linear phase space (E; k) structures of df 2
h for weakly driven

simulation.
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case in Fig. 3(a) of Ref. 50, and the second harmonic reso-

nance 2xd ¼ xBAE is more significant for the weakly driven

case. When the mode saturates and the amplitude decreases,

the dominant coherent structures (around the black line) are

distorted into two layers in the xd direction. Each layer

moves with its own local velocity, i.e., the upper layer moves

to the negative f-direction due to its higher velocity and the

lower layer moves to the positive f-direction. Therefore, the

phase-mixing like structures are formed (Fig. 10(b)). When

the BAE amplitude drops to the minimum (Fig. 10(c)), the

upper layer is further phase-mixed and the related strength

becomes weaker compared to the lower layer. This is corre-

lated with the fact that the mode frequency also chirps to the

minimum. When the upper layer shifts to the top of the

nearby structures of the lower layer, the coherent structures

evolve to the linear like structures and the BAE amplitude

grows up again (Fig. 10(d)). Similar evolution of the coher-

ent structures is also observed from the second harmonic

resonance. These results clearly show that the nonlinear fre-

quency and amplitude oscillation is due to the free streaming

process of the coherent structures in phase space and this

process repeats at the later nonlinear stage. The time it takes

for the upper and lower layers move across one BAE wave-

length is the linear phase-mixing time and is correlated with

the period of the nonlinear BAE oscillation.

The (f;Pf) phase space structures of the weakly driven

simulation are shown in Fig. 11. The linear phase space struc-

ture in Fig. 11(a) is quite similar to the linear structure in Fig.

4(a) of Ref. 50 except that the perturbation is dominantly

located at the inner side of the q¼ 2 surface (lower side of

Pf). The rotational structures are formed in Fig. 11(b) due to

the wave-particle trapping and the BAE amplitude saturates.

The resonant island width is smaller than the BAE mode

width and is about half of the island width in Fig. 4(b) of

Ref. 50 due to the small saturation amplitude in the weakly

driven case. Therefore, the bounce period of the nonlinearly

trapped particles in the weakly driven case is much longer

than the bounce period in the strongly driven case. We further

find that the saturation amplitude in the weakly driven simula-

tion is about 20% of that in the strongly driven simulation,

which is not proportional to the ratio of the island width

between the weakly driven and strongly driven simulations.

This result agrees with the scaling in Fig. 2, where the satura-

tion amplitude is not proportional to the square of the linear

growth rate for strongly driven simulation. When the linear

drive is strong enough, the width of the resonant island is

restricted by the BAE radial mode width due to the radial

coordinate dependency of Pf. As the BAE amplitude

decreases to the minimum, the red region and the blue region

move across each other. Due to the variation of the radial

BAE amplitude and the radial coordinate dependency of the

precessional frequency, the resonance detuning occurs when

the resonant particles move away from the resonant region,

which is centered at the mode rational surface. The red region,

which is around the rational surface, is completely convected

back while the blue region, which is away from the rational

surface, is dominated by the free streaming process, especially

when the amplitude drops to the minimum. Therefore, the res-

onant particles around the rational surface (mostly the red

region) are dominant by the wave-particle trapping while the

particles away from the rational surface (the lower blue

region) are dominant by free streaming. When the lower blue

region moves to the bottom of the left island, the BAE grows

up again (Fig. 11(d)). Since Pf approximately represents the

radial position and the precessional frequency xd / E=r,

the free streaming of the lower Pf region is correlated with

the free streaming of the higher xd layer in Fig. 10. We fur-

ther find that the particle dynamics repeats in each nonlinear

amplitude oscillation. These results clearly show that the non-

linear saturation and oscillation are due to the wave-particle

trapping but the wave-particle trapping is much more com-

plex than the conventional wave-particle trapping in 1D case.

FIG. 10. Evolution of perturbed distribution function dfh=fh0 in ðf;xdÞ phase

space for the weakly driven simulation. The y-axis is xd=x0. Time steps

(a)-(d) are t ¼ 168; 187; 206; 225, which are labeled by A0 � D0 in Fig. 6.

The trapped particles in the space of r 2 ½0:14; 0:19� and h 2
½�0:25p; 0:25p� are taken into account.

FIG. 11. Evolution of distribution function in ðf;PfÞ space. Particle color

represents initial Pf (normalized by �ww). Dashed line represents the mode

rational surface. The evolution of an island is tracked by “X.” Time steps

(a)-(d) are t¼ 168, 187, 206, 225, which are labeled by A0 �D0 in Fig. 6.

These particles are initialized the same as those in Fig. 5 but with

l ¼ 52Ti=Bðr0Þ.
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Based on the conventional 1D paradigm, the wave-particle

trapping period in the weakly driven case should be much lon-

ger than that in the strongly driven case. However, the nonlin-

ear oscillation period in the weakly driven BAE is shorter

than that in the strongly driven BAE. And there is a slow rota-

tional motion around the rational surface (the red resonant

region), which further indicates the nonlinear oscillation in

the weakly driven BAE is not due to the conventional wave-

particle trapping in the 1D case. The nonlinear BAE oscilla-

tion period is not correlated to the wave-particle trapping pe-

riod, but correlated with the phase-mixing time, defined as the

time it takes for the lower and upper resonant particles in Pf

to move across each other in Fig. 11 or for the upper layer

moves across one wave length in Fig. 10. These results

emphasize the importance of the radial variation of the mode

amplitude and the radial dependency of the “action” in the

“action-angle” system for determining the nonlinear wave dy-

namics. The radial variation of the mode amplitude can allow

free streaming and further modifies the wave-particle interac-

tion especially when the mode amplitude drops to a low level.

V. PHASE SPACE STRUCTURE COMPARISON WITH
THE 1D LANDAU DAMPING PROBLEM

In order to show the difference of the wave-particle

interaction in the tokamaks from the conventional 1D nonlin-

ear Landau damping problem,53 we further carry out the 1D

Landau damping simulation and investigate the resonant

particle dynamics in (x, v) phase space. The conventional

nonlinear theory shows that when wave amplitude is large

enough, the resonant particles can be trapped and bounce

inside the wave. The bounce period is correlated with the

nonlinear amplitude oscillation period. The simplest case is

the 1D electrostatic electron plasma oscillation (Fig. 12). In

Fig. 12(a), the theoretical frequency is xr ¼ 1:28xpe for

kkD ¼ 0:4. Here, xpe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nee2=me

p
and kD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te=nee2

p
are

the Langmuir plasma frequency and Debye length, respec-

tively. Thus, the resonant velocity is v ¼ 63:2ve, with

ve ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Te=me

p
. The wave frequency in our simulation agrees

with the theory within 4%. Test particles are uniformly ini-

tialized in the (x, v) phase space with v 2 ½�4; 36;�1:85�ve

so that only the v < 0 resonance is shown in the phase space.

Figure 12(b) shows the nonlinear phase space structure at

txpe ¼ 160. The nonlinear resonant islands are well formed

around the v ¼ �3:2ve. The resonant particles are trapped

by the wave and bounce inside the resonant islands, which

induces the nonlinear amplitude oscillation, while the non-

resonant particles are dominated by the free streaming pro-

cess outside the resonant island. Since the mode amplitude

variation only exists in x direction in the 1D simulation, the

wave-particle trapping structure is well formed and the free

streaming only occurs out of the resonant islands. It should

be noted that the frequency oscillation is also observed in the

nonlinear 1D O’Neil problem.61 However, the wave growth

rate is larger than the real frequency in Ref. 61. And the non-

linear amplitude oscillation frequency is comparable to the

real frequency. Therefore, the dynamics of the frequency and

amplitude in Ref. 61 is quite different from the 1D Landau

damping simulation with a damping rate 5% of the real fre-

quency, which is more comparable and relevant to the BAE

case.

We also compare the resonant particle dynamics between

the 1D Landau damping simulation, weakly driven and the

strongly driven BAE simulations. The resonant particles are

loaded in a single wave length with the color representing the

initial “action” value (Fig. 13(a)). In the 1D Landau damping

simulation (Fig. 13(b)), the nonlinear dynamics is mainly

determined by the wave-particle trapping. The resonant par-

ticles are well trapped inside the single island, a small number

of the resonant particles around the boundary of the island

moves to the nearby islands due the variation of the maximum

mode amplitude in each nonlinear oscillation. The non-

resonant particles are slightly perturbed and are free stream-

ing outside of the islands. In the weakly driven simulation

(Fig. 13(c)), the wave-particle trapping period is much longer

than the nonlinear oscillation period. Due to the radial varia-

tions of mode amplitude and radially asymmetric particle

dynamics, the resonant particles of the upper Pf side (corre-

spond to the lower velocity resonant particles) are well

trapped and slowly rotate in the single wave length, while the

resonant particles of the lower Pf side (correspond to the

higher velocity resonant particles) are dominated by the free

streaming process and part of them move to the nearby

islands. The nonlinear oscillation period is correlated with the

phase-mixing time. Therefore, the resonant particles cannot

finish one bounce motion in a nonlinear oscillation period. In

the strongly driven simulation (Fig. 13(d)), the width of the

resonant islands is comparable to the BAE mode width. The

bounce period, which is determined by the BAE mode width,

is much faster than the weakly driven case and comparable to

the phase-mixing time. All the resonant particles in the

islands have some chance to free stream to the nearby islands

due to the fast bounce motion. Meanwhile, the islands can be

stretched into fragment structures through the free streaming

process when the nonlinear BAE amplitude decreases to a

FIG. 12. Time evolution of the mode amplitude in the 1D Landau damping

problem (a) and phase space structure in x – v phase space (b). The resonant

point in velocity space is v¼�3.2.
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small level (Fig. 4(d) of Ref. 50), which will further be dis-

torted by the new islands and result in more complex struc-

tures. We can see that the resonant particles are almost

equally distributed in the whole resonance region after a few

nonlinear oscillations. Overall, the wave-particle interaction

in the tokamak geometry is much more complex than the con-

ventional 1D Landau damping case.

VI. CONCLUSION

In this work, the gyrokinetic particle simulations are

carried out to study the nonlinear BAE in toroidal plasmas.

We find that the BAE saturation amplitude depends linearly

on the square of the linear growth rate near marginality,

while has no clear dependence on the linear growth rate

when the BAE is well deviated from the marginality. In the

strongly driven case, the nonlinear BAE exhibits a bursting

state with fast and repetitive downward chirping. The chirp-

ing has a period of sub-millisecond and has a 90o phase

ahead of the amplitude oscillation. The thermal ion nonli-

nearity plays a dominant role in determine the nonlinear

saturation. In the weakly driven case, the nonlinear BAE

exhibits a nearly steady state. The frequency chirping is

small and has no phase difference compared to the ampli-

tude oscillation. The nonlinear dynamics is determined by

the energetic particle nonlinearity. We further find that the

nonlinear BAE oscillation and frequency chirping are corre-

lated with the evolution of the energetic particles in phase

space for both the strongly and weakly driven cases. By

comparison of the phase space structures between the

nonlinear BAE and the one-dimensional nonlinear Landau

damping, it is found that the wave-particle interaction in the

toroidal geometry is much more complex than the conven-

tional one-dimensional wave-particle interaction paradigm

due to the radial variation of mode amplitude and the radi-

ally asymmetric guiding center dynamics.

ACKNOWLEDGMENTS

One of the authors (H. S. Zhang) acknowledges fruitful

discussions with L. Chen, F. Zonca, and X. Wang. This work

was supported by the U. S. Department of Energy (DOE)

SciDAC GSEP center, the China Scholarship Council (Grant

No. 2009601135), and National Basic Research Program of

China. Simulations were performed using supercomputers at

ORNL1, NERSC, and NSCC-TJ.

1W. W. Heidbrink, E. J. Strait, M. S. Chu, and A. D. Turnbull, Phys. Rev.

Lett. 71, 855 (1993).
2W. W. Heidbrink, E. Ruskov, E. M. Carolipio, J. Fang, M. A. Van Zee-

land, and R. A. James, Phys. Plasmas 6, 1147 (1999).
3A. D. Turnbull, E. J. Strait, W. W. Heidbrink, M. S. Chu, H. H. Duong,

J. M. Greene, L. L. Lao, T. S. Taylor, and S. J. Thompson, Phys. Fluids B

5, 2546 (1993).
4M. S. Chu, J. M. Greene, L. L. Lao, A. D. Turnbull, and M. S. Chance,

Phys. Fluids B 4, 3713 (1992).
5N. Winsor, J. L. Johnson, and J. M. Dawson, Phys. Fluids 11, 2448 (1968).
6F. Zonca, L. Chen, and R. Santoro, Plasma Phys. Controlled Fusion 38,

2011 (1996).
7B. N. Breizman, M. S. Pekker, S. E. Sharapov, and JET-EFDA Contribu-

tors, Phys. Plasmas 12, 112506 (2005).
8R. Sabot, A. Macor, C. Nguyen, J. Decker, D. Elbeze, L.-G. Eriksson,

X. Garbet, M. Goniche, G. Huysmans, Y. Ladroit, P. Maget, and J. L.

Segui, Nucl. Fusion 49, 085033 (2009).
9Z. O. Guimaraes-Filho et al., Plasma Phys. Controlled Fusion 53, 074012

(2011).
10M. Garcia-Munoz et al., Phys. Rev. Lett. 100, 055005 (2008).
11A. G. Elfimov et al., Plasma Phys. Controlled Fusion 53, 025006 (2011).
12W. Chen et al., Nucl. Fusion 51, 063010 (2011).
13W. Chen et al., Phys. Rev. Lett. 105, 185004 (2010).
14W. W. Heidbrink, Plasma Phys. Controlled Fusion 37, 937 (1995).
15M. Podesta, R. E. Bell, N. A. Crocker, E. D. Fredrickson, N. N. Gorelen-

kov, W. W. Heidbrink, S. Kubota, B. P. LeBlanc, and H. Yuh, Nucl.

Fusion 51, 063035 (2011).
16M. Podesta, R. E. Bell, A. Bortolon, N. A. Crocker, D. S. Darrow, A.

Diallo, E. D. Fredrickson, G.-Y. Fu, N. N. Gorelenkov, W. W. Heidbrink,

G. J. Kramer, S. Kubota, B. P. LeBlanc, S. S. Medley, and H. Yuh, Nucl.

Fusion 52, 094001 (2012).
17G. J. Kramer et al., Phys. Rev. Lett. 83, 2961 (1999).
18R. F. Heeter, A. F. Fasoli, and S. E. Sharapov, Phys. Rev. Lett. 85, 3177

(2000).
19M. P. Gryaznevich and S. E. Sharapov, Nucl. Fusion 46, S942 (2006).
20W. Chen, J. Xiaoquan, Y. Qingwei, D. Xuantong, L. Yi, F. Beibin,

H. Yuang, L. Wei, Z. Yan, Z. Jun, S. Xianming, L. Liancai, D. Xuru, and

HL-2A Team, J. Phys. Soc. Jpn. 79, 044501 (2010).
21I. G. J. Classen et al., Plasma Phys. Controlled Fusion 53, 124018 (2011).
22Ph. Lauber, I. G. J. Classen, D. Curran, V. Igochine, B. Geiger, S. da

Graca, M. Garcia-Munoz, M. Maraschek, P. McCarthy, and ASDEX

Upgrade Team, Nucl. Fusion 52, 094007 (2012).
23P. Lauber, M. Brudgam, D. Curran, V. Igochine, K. Sassenberg, S. Gunter,

M. Maraschek, M. Garcia-Munoz, N. Hicks, and ASDEX Upgrade Team,

Plasma Phys. Controlled Fusion 51, 124009 (2009).
24A. Bondeson and M. S. Chu, Phys. Plasmas 3, 3013 (1996).

FIG. 13. Phase space structure comparison

between the 1D Landau damping (b), the

weakly driven BAE (c) and the strongly driven

BAE (d) simulation. Panel (a) shows the particle

are uniformly initialized in a single wave length

with color represents the initial “action.” Panels

(a), (c), and (d) are plotted in ðf;PfÞ phase

space, panel (b) is plotted in the (x, v) phase

space. The particles in panels (b), (c), and (d)

are initialized the same as Figs. 5, 11, and 12

respectively.

012510-9 Zhang et al. Phys. Plasmas 20, 012510 (2013)

http://dx.doi.org/10.1103/PhysRevLett.71.855
http://dx.doi.org/10.1103/PhysRevLett.71.855
http://dx.doi.org/10.1063/1.873359
http://dx.doi.org/10.1063/1.860742
http://dx.doi.org/10.1063/1.860327
http://dx.doi.org/10.1063/1.1691835
http://dx.doi.org/10.1088/0741-3335/38/11/011
http://dx.doi.org/10.1063/1.2130692
http://dx.doi.org/10.1088/0029-5515/49/8/085033
http://dx.doi.org/10.1088/0741-3335/53/7/074012
http://dx.doi.org/10.1103/PhysRevLett.100.055005
http://dx.doi.org/10.1088/0741-3335/53/2/025006
http://dx.doi.org/10.1088/0029-5515/51/6/063010
http://dx.doi.org/10.1103/PhysRevLett.105.185004
http://dx.doi.org/10.1088/0741-3335/37/9/002
http://dx.doi.org/10.1088/0029-5515/51/6/063035
http://dx.doi.org/10.1088/0029-5515/51/6/063035
http://dx.doi.org/10.1088/0029-5515/52/9/094001
http://dx.doi.org/10.1088/0029-5515/52/9/094001
http://dx.doi.org/10.1103/PhysRevLett.83.2961
http://dx.doi.org/10.1103/PhysRevLett.85.3177
http://dx.doi.org/10.1088/0029-5515/46/10/S11
http://dx.doi.org/10.1143/JPSJ.79.044501
http://dx.doi.org/10.1088/0741-3335/53/12/124018
http://dx.doi.org/10.1088/0029-5515/52/9/094007
http://dx.doi.org/10.1088/0741-3335/51/12/124009
http://dx.doi.org/10.1063/1.871637


25C. Nguyen, X. Garbet, and A. I. Smolyakov, Phys. Plasmas 15, 112502

(2008).
26A. I. Smolyakov, C. Nguyen, and X. Garbet, Nucl. Fusion 50, 054002

(2010).
27C. Nguyen, X. Garbet, R. Sabot, L.-G. Eriksson, M. Goniche, P. Maget,

V. Basiuk, J. Decker, D. Elbeze, G. T. A. Huysmans, A. Macor, J.-L.

Segui, and M. Schneider, Plasma Phys. Controlled Fusion 51, 095002

(2009).
28C. Nguyen, X. Garbet, V. Grandgirard, J. Decker, Z. Guimaraes-Filho,

M. Lesur, H. Lutjens, A. Merle, and R. Sabot, Plasma Phys. Controlled

Fusion 52, 124034 (2010).
29H. L. Berk and B. N. Breizman, Phys. Fluids B 2, 2226 (1990).
30H. L. Berk, B. N. Breizman, and N. V. Petviashvili, Phys. Lett. A 238, 408

(1998).
31H. L. Berk, B. N. Breizman, and N. V. Petviashvili, Phys. Lett. A 234, 213

(1997).
32H. L. Berk, B. N. Breizman, J. Candy, M. Pekker, and N. V. Petviashvili,

Phys. Plasmas 6, 3102 (1999).
33R. G. L. Vann, H. L. Berk, and A. R. Soto-Chavez, Phys. Rev. Lett. 99,

025003 (2007).
34M. K. Lilley, B. N. Breizman, and S. E. Sharapov, Phys. Plasmas 17,

092305 (2010).
35S. D. Pinches, H. L. Berk, M. P. Gryaznevich, S. E. Sharapov, and JET-

EFDA Contributors, Plasma Phys. Controlled Fusion 46, S47 (2004).
36G. Y. Fu et al., Phys. Plasmas 13, 052517 (2006).
37J. Y. Lang, G. Y. Fu, and Y. Chen, Phys. Plasmas 17, 042309 (2010).
38F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, and G. Vlad, Nucl. Fusion

45, 477 (2005).
39X. Wang, F. Zonca, and L. Chen, Plasma Phys. Controlled Fusion 52,

115005 (2010).
40X. Wang, F. Zonca, and L. Chen, “Nonlinear dynamics of beta induced

Alfv�en eigenmode driven by energetic particles,” Phys. Rev. E 86, 045401

(2012).

41Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, and R. B. White, Science

281, 1835 (1998).
42Y. Nishimura, Phys. Plasmas 16, 030702 (2009).
43W. L. Zhang, I. Holod, Z. Lin, and Y. Xiao, Phys. Plasmas 19, 022507

(2012).
44W. J. Deng, Z. Lin, I. Holod, X. Wang, Y. Xiao, and W. L. Zhang, Phys.

Plasmas 17, 112504 (2010).
45W. J. Deng, Z. Lin, I. Holod, X. Wang, Y. Xiao, and H. S. Zhang, Nucl.

Fusion 52, 043006 (2012).
46D. A. Spong, E. M. Bass, W. Deng, W. W. Heidbrink, Z. Lin, B. Tobias,

M. A. Van Zeeland, M. E. Austin, C. W. Domier, and N. C. Luhmann, Jr.,

Phys. Plasmas 19, 082511 (2012).
47H. S. Zhang, Z. Qiu, L. Chen, and Z. Lin, Nucl. Fusion 49, 125009 (2009).
48H. S. Zhang and Z. Lin, Phys. Plasmas 17, 072502 (2010).
49H. S. Zhang, Z. Lin, I. Holod, X. Wang, Y. Xiao, and W. L. Zhang, Phys.

Plasmas 17, 112505 (2010).
50H. S. Zhang, Z. Lin, and I. Holod, Phys. Rev. Lett. 109, 025001 (2012).
51A. J. Brizard and T. S. Hahm, Rev. Mod. Phys. 79, 421 (2007).
52I. Holod, W. L. Zhang, Y. Xiao, and Z. Lin, Phys. Plasmas 16, 122307

(2009).
53T. M. O’Neil, Phys. Fluids 8, 2255 (1965).
54Y. Todo, H. L. Berk, and B. N. Breizman, Nucl. Fusion 52, 033003 (2012).
55Y. Q. Liu, M. S. Chu, C. G. Gimblett, and R. J. Hastie, Phys. Plasmas 15,

092505 (2008).
56L. Chen, J. Geophys. Res. 104, 2421, doi:10.1029/1998JA900051 (1999).
57R. B. White, The Theory of Toroidally Confined Plasmas (Imperial

College Press, London, 2006).
58B. N. Breizman and S. E. Sharapov, Plasma Phys. Controlled Fusion 53,

054001 (2011).
59W. L. Zhang, Z. Lin, and L. Chen, Phys. Rev. Lett. 101, 095001 (2008).
60Y. Xiao and Z. Lin, Phys. Plasmas 18, 110703 (2011).
61T. M. O’Neil, J. H. Winfrey, and J. H. Malmberg, Phys. Fluids 14, 1204

(1971).

012510-10 Zhang et al. Phys. Plasmas 20, 012510 (2013)

http://dx.doi.org/10.1063/1.3008048
http://dx.doi.org/10.1088/0029-5515/50/5/054002
http://dx.doi.org/10.1088/0741-3335/51/9/095002
http://dx.doi.org/10.1088/0741-3335/52/12/124034
http://dx.doi.org/10.1088/0741-3335/52/12/124034
http://dx.doi.org/10.1063/1.859404
http://dx.doi.org/10.1016/S0375-9601(97)00523-9
http://dx.doi.org/10.1063/1.873550
http://dx.doi.org/10.1103/PhysRevLett.99.025003
http://dx.doi.org/10.1063/1.3486535
http://dx.doi.org/10.1088/0741-3335/46/7/S04
http://dx.doi.org/10.1063/1.2203604
http://dx.doi.org/10.1063/1.3394702
http://dx.doi.org/10.1088/0029-5515/45/6/009
http://dx.doi.org/10.1088/0741-3335/52/11/115005
http://dx.doi.org/10.1103/PhysRevE.86.045401
http://dx.doi.org/10.1126/science.281.5384.1835
http://dx.doi.org/10.1063/1.3088028
http://dx.doi.org/10.1063/1.3685703
http://dx.doi.org/10.1063/1.3496057
http://dx.doi.org/10.1063/1.3496057
http://dx.doi.org/10.1088/0029-5515/52/4/043006
http://dx.doi.org/10.1088/0029-5515/52/4/043006
http://dx.doi.org/10.1063/1.4747505
http://dx.doi.org/10.1088/0029-5515/49/12/125009
http://dx.doi.org/10.1063/1.3447879
http://dx.doi.org/10.1063/1.3498761
http://dx.doi.org/10.1063/1.3498761
http://dx.doi.org/10.1103/PhysRevLett.109.025001
http://dx.doi.org/10.1103/RevModPhys.79.421
http://dx.doi.org/10.1063/1.3273070
http://dx.doi.org/10.1063/1.1761193
http://dx.doi.org/10.1088/0029-5515/52/3/033003
http://dx.doi.org/10.1063/1.2978091
http://dx.doi.org/10.1029/1998JA900051
http://dx.doi.org/10.1088/0741-3335/53/5/054001
http://dx.doi.org/10.1103/PhysRevLett.101.095001
http://dx.doi.org/10.1063/1.3661677
http://dx.doi.org/10.1063/1.1693587

	s1
	n1
	s2
	f1a
	f1b
	f1
	s3
	f2
	f3
	f4a
	f4b
	f4c
	f4
	s4
	f5a
	f5b
	f5
	f6a
	f6b
	f6
	f7a
	f7
	f8
	f9
	f10a
	f10b
	f10c
	f10d
	f10
	f11a
	f11b
	f11d
	f11
	s5
	f12a
	f12b
	f12
	s6
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	f13a
	f13b
	f13c
	f13d
	f13
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48
	c49
	c50
	c51
	c52
	c53
	c54
	c55
	c56
	c57
	c58
	c59
	c60
	c61

