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A nonlinear oscillation of frequency and amplitude is found bymassively parallel gyrokinetic simulations

of Alfvén eigenmodes excited by energetic particles in toroidal plasmas. The fast and repetitive frequency

chirping is induced by the evolution of coherent structures in the phase space. The dynamics of the coherent

structures is controlled by the competition between the phase-space island formation due to the nonlinear

particle trapping and the island destruction due to the free streaming. The chirping dynamics provides a

conceptual framework for understanding nonlinear wave-particle interactions underlying the transport

process in collisionless plasmas.
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Energetic particles produced by fusion reactions and
auxiliary heating can excite various Alfvén eigenmodes
in fusion experiments such as ITER [1]. Associated non-
linear wave-particle interactions can generate significantly
enhanced levels of energetic particle transport that would
degrade overall plasma confinement and damage fusion
devices. Increased energetic particle transport by Alfvén
eigenmodes has been correlated [2] with a fast frequency
oscillation (chirping) with a submillisecond period that has
been observed in many experiments [2–6]. In previous
studies, an analytic model for the chirping [7,8] based on
the one-dimensional (1D) nonlinear wave-particle interac-
tion near marginal stability has been constructed, and a
single burst of chirping has been observed in hybrid mag-
netohydrodynamic simulations with sources and sinks [9].
Here we report the first dynamic observation of fast and
repetitive frequency chirping by massively parallel, first-
principles kinetic simulations without sources and sinks in
a realistic toroidal geometry. The chirping dynamics pro-
vides a conceptual framework for understanding the non-
linear wave-particle interaction underlying transport
processes in collisionless plasmas. The interaction of en-
ergetic particles such as cosmic rays with Alfvén turbu-
lence is also an important issue in space and astrophysical
plasmas [10].

The current simulations using the gyrokinetic toroidal
code (GTC) [11] find that the unstable beta-induced Alfvén
eigenmodes (BAE) [12] saturate due to nonlinear wave-
particle interactions with both thermal and energetic par-
ticles. The wave frequency exhibits a fast, repetitive and
mostly downward chirping with a submillisecond period
and a 90� phase shift from the amplitude oscillation. These
features have recently been observed in fusion experiments
[2], possibly suggesting a universal dynamics. Analysis of
wave-particle interactions shows that the frequency chirp-
ing is induced by the evolution of coherent structures in the
energetic particle phase space. The dynamics of the coher-
ent structures is controlled by the competition between the

phase space island formation due to the nonlinear particle
trapping and the island destruction due to the free stream-
ing process. The nonlinear dynamics and chirping mecha-
nism in the present studies could be applicable to other
Alfvén eigenmodes in toroidal geometry with radial varia-
tions of mode amplitude and radially asymmetric particle
dynamics.
GTC simulation of BAE.—BAE exists inside a frequency

gap of the toroidal Alfvén continuum induced by the
plasma beta (ratio of the plasma kinetic pressure to the
magnetic pressure). BAE has been routinely observed
[3,13–15] in fusion experiments with a significant ener-
getic particle (EP) population. It has strong interactions
with both thermal and energetic particles [16–18]. Linear
GTC simulations of BAE [19] as well as toroidal and
reversed shear Alfvén eigenmodes [20–22] have been veri-
fied by theory-simulation comparisons and by benchmarks
with hybrid and kinetic simulations. In the current non-
linear GTC simulations, BAE is excited in a tokamak by
the EP density gradients near the safety factor q ¼ 2
rational surface located at a minor radius r0 ¼ 0:164R0.
Here R0 is the major radius, the electron density n0 is
uniform, and the EP density at r0 is nh ¼ 0:01n0. Both
thermal and energetic ions are protons with a Maxwellian
distribution, and the temperature is taken to be uniform
for all species with Te ¼ 0 and Th ¼ 25Ti. Typically
Th � 105 ev for the fast ions from the neutral beam
injection (NBI) [2,3]. The thermal plasma beta at r0 is
� ¼ 8�n0Ti=B

2
0 ¼ 0:0072 with B0 being the on-axis

magnetic field. A filter is applied to keep only a single
toroidal mode number n ¼ 3 and the poloidal harmonics
m 2 ½nq� 2; nqþ 2�. Both thermal and energetic ions
are governed by nonlinear gyrokinetic equations [23],
and electrons are collectively treated as a linear massless
fluid [24]. Coulomb collisions are ignored, and the parallel
electric field is set to zero. Numerical convergences with
respect to number of particles, spatial grids, and time steps
have been verified.
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Nonlinear saturation and fast chirping.—The nonlinear
simulation starts with the small amplitude noise. The
BAE mode structure forms around the mode rational sur-
face r0, and the amplitude grows with a real frequency
!BAE ¼ 0:96!0 and a growth rate � ¼ 0:09!0. Here,

!0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð7Ti=2þ 2TeÞ=ðmiR
2
0Þ

q

is the geodesic acoustic

mode frequency [16] with mi being the proton mass. The
linear frequency !BAE is slightly below !0 due to kinetic
effects of thermal and energetic ions [19]. The mode

amplitude saturates at j e��Ti
j � 10�1 and j �Br

B0
j � 10�4,

where �’ is the perturbed electrostatic potential and �Br

is the perturbed radial magnetic field. The mode amplitude
exhibits a nonlinear oscillation (red curve in Fig. 1(a) for
the n ¼ 3, m ¼ 6 harmonic at r0) with a period of about
ten wave periods, i.e., less than 1 ms for typical experi-
mental parameters. The time evolution of the wavelet
power spectrum of the real part of �’ in Fig. 1(b) exhibits
a regular oscillation of wave frequency !, dominated by
mostly downward chirping. For each time step in Fig. 1(b),
the frequency with the highest power intensity is selected
and plotted in Fig. 1(a) as the black curve. The frequency
starts with the linear value of !BAE and chirps downward
when the amplitude reaches a high level (t � 60). Note that
the steepest frequency descent occurs when the mode
amplitude reaches the maximum, i.e., the amplitude oscil-
lation has roughly a 90� phase lag behind the frequency
oscillation. Then the amplitude decreases, and when it
reaches a flattened region (t � 93), the frequency starts
to chirp upward. Since the mode amplitude is relatively
low during the upward chirping, experimental measure-
ments will mostly see the downward chirping. Overall,
there is a small downshift of the wave frequency. All of
these features from our simulations have recently being
observed in the NSTX tokamak experiment [2].

The fast oscillations of wave frequency and amplitude
persist without external sources and sinks to replenish the

EP distribution function, and the EP density gradients
change little after the mode saturation, suggesting the
important roles of nonlinear wave and particle dynamics.
To delineate the nonlinearity of thermal and energetic ions,
two controlled simulations are performed. In one simula-
tion with nonlinear thermal ions and linear energetic ions,
the saturation amplitude is similar to Fig. 1, but no oscil-
lations of frequency and amplitude are observed after an
initial frequency downshift at the mode saturation. In
another simulation with linear thermal ions and nonlinear
energetic ions, the mode saturates at the amplitude 3 times
of Fig. 1 and some oscillations of frequency and amplitude
are observed. Therefore, the thermal ion nonlinearity is
responsible for the BAE saturation and the initial fre-
quency downshift, while the energetic ion nonlinearity is
responsible for the frequency chirping.
We examine the mode structures in Fig. 2, which evolve

from the linear stage before saturation (panel a), to the
nonlinear stage after saturation [panels (b) and (c)], and
back to the linearlike structure (panel d) when the mode
amplitude starts to grow again. A prominent nonlinear
feature is the appearance of fine scale structures in the
radial direction, which may suggest an important role of
mode coupling due to thermal ion nonlinearity in the
saturation process [25]. The current simulations ignore
coupling between different n modes, which is expected
to be weaker (due to the lack of resonance condition) than

FIG. 1 (color). Time evolution of (a) BAE amplitude je�’=Tij
(red) and dominant frequency ! (black), and (b) frequency
power spectrum. The y axis on the left is !=!0. The unit of
the power intensity in panel (b) is arbitrary.

FIG. 2 (color). Poloidal contour plots of electrostatic potential
(e�’=Ti). The dotted circle is the r0 surface. The x axis is the
major radius R=R0 and the y axis is the vertical distance from the
midplane. Time steps (a)–(d) are labeled by (A)–(D) in Fig. 1.
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self-coupling of a single n mode. Furthermore, the modes
move slightly outward and the mode width decreases from
a linear width of 0:047R0 (defined as full width at half
maximum) to a nonlinear width of 0:031R0. The downward
frequency chirping enhances the Landau damping by the
thermal ions, especially at the radial edge of the mode
amplitude envelope. Therefore, thermal ions cannot be
simply represented as a linear damping rate when describ-
ing the nonlinear BAE dynamics.

Dynamics of phase-space structures.—We now examine
linear and nonlinear interactions between EP and BAE
to elucidate the chirping mechanism. The resonance
condition [26] for a low-frequency wave in a general ax-
isymmetric system is !� kjjvjj � p!t ¼ 0 for passing

particles, and !� n!pre � p!b ¼ 0 for trapped particles.

Here,p is an integer number,!t,!b,!pre are guiding center

transit, bounce, and precessional frequencies [27], respec-
tively. The resonances induce locally large fluctuations of
the perturbed distribution function �fh in the phase space.
The relative strength of resonances can be inferred [28]
from the intensity of the EP entropy �f2h as a function of

the equilibrium constants of motion (E, �). Here, E is the
guiding center kinetic energy and � ¼ �B0=E is a pitch
angle parameter with� themagneticmoment. The trapped-
passing boundary at r0 is � ¼ 1� r0=R0. Four resonances
can be identified in both linear and nonlinear stages. The
most prominent resonance is the precessional resonance
(! ¼ !d � n!pre) of deeply trapped particles. The others

include the drift-bounce resonance (! ¼ !d þ p!b) and
the second harmonic resonance (! ¼ 2!d) of trapped par-
ticles, and the transit resonance (! ¼ !t) of passing parti-
cles. From linear to nonlinear stage, all resonance regions
move to the lower E while the change in � is much smaller.
Variations of the resonance energy and radial excursions of
resonant particles can modify!d and may induce the wave
frequency chirping through mode locking. The dominant
radial excursions are associated with the nonlinear particle
trapping as indicated by islandlike structures of �fh at the
nonlinear stage with pairs of positive and negative density
perturbations.

The dynamics of the dominant precessional resonance
can be simply described by a radially local model using
canonical variables (� , !d) with � the toroidal angle. The
evolution of �fh=fh0 in the (� ,!d) phase space is shown in
Fig. 3, which is plotted in the linear wave frame moving
with an angular velocity of !BAE=n in the EP diamagnetic
direction (negative � direction). At the linear stage (panel a),
wave structures periodic in � but extended in !d are
formed. The primary precessional resonance appears as
the dominant structure at !d ¼ !BAE. A weaker structure
at 2!d ¼ !BAE indicates the second harmonic resonance.
After the saturation (panel b), phase-space structures
move downward in !d, and consistently, to the positive �
direction. Meanwhile, the regions of positive density per-
turbations (tracked by an ‘‘X’’) become isotropic and

coherent. The regions of negative density perturbations
are stretched. In panel (b), the positive regions reach the
minimum in !d ( � 15% below !BAE), consistent with
the wave frequency ! chirping downward to the minimum
( � 15% below !BAE). The negative regions then move
upward in !d, i.e., to the negative � direction with respect
to the positive regions, and the wave frequency thus starts
to chirp upward. The positive regions continue to move to
the positive � direction and fall below the negative regions
(panel c). The mode amplitude now decreases due to a
partial cancellation between positive and negative regions
when integrating over the velocity space (i.e., phase-
mixing). The positive regions shrink in size and continue
to move to the positive �—direction. The mode amplitude
then starts to increase as the positive regions pass the
negative regions (panel d). When phase-space structures
become similar to the linear stage, the mode amplitude
reaches the maximum and the wave frequency chirps
downward again. The repetitive bursts of mode amplitude
and wave frequency chirping persist without external
sources and sinks.
The reduced description in Fig. 3 shows that the fre-

quency chirping is induced by the evolution of coherent
structures in the precessional resonance region of the
(� , !d) phase space, which propagate at the local !d.
The contribution of other sideband resonances to the evo-
lution of the coherent structures and the frequency chirping
is subdominant. The !d variations come from the changes
in the kinetic energy E and the radial excursions of reso-
nant particles. The phase-space coherent structures and
the oscillations of the mode amplitude both indicate the
onset of the nonlinear trapping of resonant particles [29].

FIG. 3 (color). Evolution of perturbed distribution function
�fh=fh0 in (� , !d) phase space. The y axis is !d=!0. The
time evolution is tracked by X. Time steps (a)–(d) are labeled by
(A)–(D) in Fig. 1.
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However, the trapped particle dynamics in the current
simulations is much more complex due to radial variations
of mode amplitude and radially asymmetric particle
dynamics in the toroidal geometry.

Nonlinear particle dynamics.—For the precessional
resonance that preserves the magnetic moment and the
longitudinal invariant in an axisymmetric toroidal system,
the nonlinear dynamics of guiding centers can be com-
pletely described by a pair of action-angle variables (� , P� )

with P� ¼ gvjj � c the normalized canonical angular

momentum, 2�g the poloidal current [27], c the poloidal
flux function labeling the radial position r. We examine the
structure of the EP distribution function in the (� ,P� ) space

by tracking nonlinear orbits of deeply trapped particles.
The particle positions are plotted in the (� , P� ) space with

the color representing the initial P� values, which are

approximately the radial position since P� � �c for

deeply trapped particles.
In the linear phase, when BAE amplitude grows to an

appreciable level, resonant particles are strongly perturbed
around the mode rational surface (dashed line in Fig. 4).
The EP distribution function thus develops a wavelike
structure in � [panel (a)]. As particles move outward
(inward) in the radial position r, the kinetic energy E
decreases (increases) due to the constraint of the longitu-
dinal invariant [30], and the precessional drift!d decreases
(increases) since !d � E=r. Therefore, the upper (lower)
P� regions of the structures move to the right (left) and the

structures steepen. When the upper P� regions move to the

opposite phase of the wave, resonant particles originally
moving outward are now convected inward and turn
around to the left due to the increased !d [panel (b)].
However, the resonant particles originally moving inward
are not all convected outward. Most of them continue to
move to the left with the local !d (i.e., free-streaming) to
form phase-mixing structures in the lower P� region.

Therefore, the evolution of the mode structure and the

onset of nonlinear particle trapping are not radially sym-
metric. Particles moving outward (red region in Fig. 4)
create positive density perturbation, which form coherent
structures (red region in Fig. 3) in the phase space since!d

decreases together with the wave frequency ! (i.e., phase
locking). On the other hand, particles moving inward (blue
region in Fig. 4) create negative density perturbation struc-
tures (blue region in Fig. 3), which are distorted quickly
since !d increases (i.e., detuning). This radially asymmet-
ric particle dynamics explains the different evolution of the
structures for positive and negative density perturbations in
Fig. 3. As the wave frequency chirps downward, the domi-
nant resonance regions in Fig. 4 and the mode structures in
Fig. 2 moves outward.
The phase-space islands are then formed and the tail of

an island [blue region in panel (c) of Fig. 4] moves below
another island to the negative � direction. The mode am-
plitude thus decreases and the !d increases, i.e., up chirp-
ing of the wave frequency. The width of the islands is
within the radial domain of r=R0 � ½0:1; 0:2�, which is
comparable to the radial mode width in Fig. 2. Therefore
the radial variations of the mode amplitude are important to
the nonlinear dynamics of resonant particles. The P� var-

iations of the coherent structures gives rise to large spreads
in !d that can easily induce the wave frequency chirping
range of �15%. Finally, the phase-space islands [29] in
panel (c) quickly become anisotropic structures in panel
(d) before trapped particles execute a full rotation. The
parts of the islands far away from the mode rational surface
are formed by resonant particles moving to the edge of the
radial envelope of the mode amplitude. These particles
now experience weaker ExB radial convection and thus
propagate at the local !d. The spreads of !d at each �
location then stretches the islands into fragmented struc-
tures [panel (d)] due to the free streaming process. The
associated linear phase-mixing effect is further enhanced
by the dependence of the !d variation rate (d!d=dc ) on
the magnetic moment and the longitudinal invariant. These
radially nonlocal and multidimensional effects lead to the
fragmented structures in panel (d), which are drastically
different from the picture of the 1D nonlinear Landau
damping paradigm [29]. When the positive (negative) re-
gion of one structure reaches the positive (negative) region
of another structure, the wave amplitude starts to increase
to form new islands, which stretch and destroy the struc-
tures in panel (d). The cycle of the formation and destruc-
tion of coherent structures in the phase space (Fig. 3) thus
persists without sources and sinks. The time it takes for an
island to stretch in the � direction over a distance of the
wavelength is the linear phase-mixing time, which defines
the life time of the coherent structures and the nonlinear
oscillation period of the wave frequency and amplitude.
This linear phase-mixing time is typically shorter than the
Coulomb collision or turbulence scattering time, which
increases with the particle kinetic energy [31].

FIG. 4 (color). Evolution of distribution function in (� , P� )
space. Particle color represents initial P� (normalized by �c w).

Dashed line represents the mode rational surface. The evolution
of an island is tracked by X. Time steps (a)–(d) are labeled by
(A)–(D) in Fig. 1.
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Finally, several GTC simulations have been performed
to scan the deviation from the marginality. The saturation
amplitude is proportional to the square of the growth rate
for �=!BAE < 0:05 when the phase-space island size is
smaller than the radial mode width. However, the ampli-
tude is roughly independent of the growth rate for
�=!BAE > 0:08 when the phase-space island size is lim-
ited by the radial mode width, as recently observed in
NSTX tokamak experiments [32].
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