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Global gyrokinetic particle simulation finds that the collisionless damping rate of the geodesic
acoustic mode �GAM� in tokamak is greatly enhanced by trapped electrons in the high-q region of
tokamak �q is the safety factor�. The electron damping has been identified to arise from the
resonance of the GAM oscillation with the trapped electron bounce motion. The contribution of
passing electrons to the GAM collisionless damping is much smaller than the trapped electrons. The
residual level of the zonal flow is not sensitive to the trapped electron resonance. © 2010 American
Institute of Physics. �doi:10.1063/1.3447879�

I. INTRODUCTION

Geodesic acoustic mode1 �GAM� and zonal flow2 have
been widely observed in tokamak experiments.3–8 Both of
them are electrostatic modes that can be spontaneously gen-
erated by turbulence and, in return, regulate turbulence.9,10

Different from the zonal flow, which is zero frequency and
can only be damped by collisions, GAM has a finite fre-
quency of the order of ion transit frequency and can be
damped through collisionless wave-particle resonance, i.e.,
ion Landau damping, in the small-q region.11,12 As the safety
factor q increases, the ion transit frequency �t=vi / �qR0� �vi

is the ion thermal speed and R0 is the tokamak major radius�
becomes much smaller than the GAM frequency, and the
damping rate through the primary resonance is reduced. On
the other hand, the finite orbit width effect can lead to higher
order resonance for short wavelength GAM in the high-q
region.13–15 Moreover, the GAM with short radial wave-
length can convert to kinetic GAM and propagate in the
radial direction.16 In addition to turbulence excitation,10,17

GAM can also be excited by the velocity anisotropy of en-
ergetic particles �EGAM�.18 Regarding the nonlinear physics,
the GAM second harmonic is recently observed in tokamak
experiments.19,20 The generation of the second harmonic rep-
resents an energy sink for the primary GAM oscillation.21

The GAM nonlinear self-interaction has been studied using
fluid theory, but with conflicting results.22–24 Meanwhile, the
gyrokinetic theory and simulation find that the nonlinear
self-interaction of the GAM cannot efficiently generate the
second harmonic due to a cancellation between the perpen-
dicular convective nonlinearity and the parallel
nonlinearity.25

Linear GAM properties have been intensively studied
through simulations and theory.13–15,26–28 Because the elec-
tron transit frequency is much larger than the GAM fre-
quency, electrons were conjectured to play little roles in the
GAM collisionless damping. Therefore, previous works on
the GAM collisionless damping usually assume that the elec-

tron response is adiabatic. However, the frequency of the
trapped electron bounce motion and low energy passing elec-
tron transit motion could be close to the GAM frequency in
the high-q region where the ion damping effect is weak.
Thus the kinetic electron effect should also be considered in
the GAM collisionless damping.

In this work, we use the gyrokinetic toroidal code9,29

�GTC� to study the collisionless GAM properties with ki-
netic electrons. In our simulation, an initial zonal flow un-
dergoes a damped GAM oscillation and eventually reaches a
residual level in the long time collisionless process.30,31 The
residual level of the zonal flow in the simulation agrees well
with the theory.30,32 The frequency and damping rate of the
GAM oscillation also correspond to the analytic results in the
adiabatic electron response. We calculate in detail the GAM
collisionless damping rate in the inverse aspect ratio � and
kr�i scan �kr is the radial wavevector of GAM and �i is the
ion Larmor radius�. Finally, we investigate the kinetic elec-
tron response in the GAM collisionless damping process. We
find that the residual level of the zonal flow changes little but
the GAM damping rate is greatly enhanced by the trapped
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FIG. 1. �Color online� Time evolution of the radial electric field from the
simulation with �=0.05 and q=1.2 �black� and from the numerical fitting
�gray or red online�.
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electrons through a resonance of the bounce motion with the
GAM oscillation. The passing electron contribution is much
smaller than the trapped electrons on the GAM collisionless
damping. The electron resonance is clearly verified by the
structure of the perturbed electron distribution function in the
phase space.

The paper is organized as follows. The effect of kinetic
electrons in the zonal flow residual level is discussed in Sec.
II. In Sec. III, the effect of kinetic electrons in the GAM
collisionless damping is investigated. Section IV is the con-
clusion and discussion.

II. EFFECT OF KINETIC ELECTRONS IN ZONAL
FLOW RESIDUAL LEVEL

In our GTC particle simulations, a flux-surface-averaged
ion guiding center density perturbation is initiated to gener-
ate the zonal flow. The radial profile of the zonal flow is set
to be a sin function with the wavevector to be kr�i=0.11.
Also the density perturbation at the inner and outer bound-
aries is initiated to be zero. We use a small simulation do-
main �r= �0.45a ,0.55a� �a is the minor radius�, Ti=Te, and a

constant q profile as the magnetic shear has little effect on
the GAM damping and zonal flow residual. We use the par-
ticle velocity pitch P=v� /v at �=0 poloidal midplane to
define the simulation boundary of kinetic electrons, i.e., elec-
trons with P���1−�� / �1+�� are treated as kinetic elec-
trons, while other electrons are treated as adiabatic electrons.
An electrostatic version of the fluid-kinetic hybrid electron
model33,34 is used to treat the kinetic electron response in our
simulations. Figure 1 is the time evolution of the radial elec-
tric field �Er� of the zonal flow in GTC simulation with adia-
batic electron. The following equation is used to fit the simu-
lation result:12

Er�t� = A1e−�t cos��GAMt + 	� + A2. �1�

Here �GAM is the real frequency and � is the damping
rate of the GAM. 	 is the initial phase and A2 is the residual
level of the zonal flow. The numerical fitting result matches
the simulation result very well when appropriate values of
�GAM, �, A1, and A2 are chosen. From Fig. 1 we can see that
the radial electric field evolves with a finite frequency �GAM

and quickly damped, i.e., the GAM oscillation, and then
reaches a steady state A2, i.e., the residual flow. This residual
level is very important to determine the turbulence level in
the nonlinear process.
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FIG. 2. �Color online� Residual level of the zonal flow with adiabatic
and kinetic electrons. �a� is a q scan at �=0.05, while �b� is an � scan at
q=1.6 �gray or red online� and q=3.0 �black�.
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FIG. 3. Results of simulations with adiabatic electrons for the GAM fre-
quency �a� and collisionless damping rate �b� and comparison with S-W
theory.
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The residual level of the zonal flow was calculated by
Rosenbluth and Hinton30 �Rosenblunth–Hinton theory �R-H
theory��, by assuming an adiabatic electron response and a
small inverse aspect ratio �=r /R0, with r as the minor radius
and R0 as the major radius,

Er�t = 
�
Er�t = 0�

=
1

1 + 1.6q2/��
, �2�

where q is the safety factor. An improved calculation
was later given by Xiao and Catto32 �Xiao–Catto theory
�X-C theory�� by considering the plasma shaping effects such
as elongation and triangularity and finite aspect ratio. For
present simulations with circular cross section, the higher
order � corrections is given by

Er�t = 
�
Er�t = 0�

=
1

1 + Sq2/��
, �3�

where S = �3.27 + �� + 0.722� −
0.03

q2 ��	 2. �4�

The zonal flow residual level from GTC simulation and
the two theories are compared in Fig. 2. For the circular
cross section and a small �=0.05, the differences between
the two theoretical residual levels are very small. We can see

in Fig. 2�a� that the simulation results of the adiabatic and
kinetic electron response are almost the same and agree very
well with the theories.

For a larger �, the residual level from the X-C theory is
lower than the R-H theory due to the higher order � correc-
tion �Fig. 2�b��. Our simulations reproduce the X-C analyti-
cal results. The kinetic electron has very little effects on the
residual level of the zonal flow.

III. EFFECT OF KINETIC ELECTRONS
IN COLLISIONLESS DAMPING OF GAM

Assuming large aspect ratio ���1� and adiabatic elec-
tron response, the collisionless damping rate of GAM has
been calculated by Sugama and Watanabe15 �Sugama–
Watanabe theory �S-W theory��. The second order resonance
for the short wavelength zonal flow is also taken into ac-
count. In our GTC simulation, the GAM real frequency and
damping rate for kr�i=0.11 are compared to the S-W theory
in Fig. 3. From Fig. 3�a� we can see that the simulation
frequency agrees very well with the theory within 5% accu-
racy. When q�1, �GAM becomes a constant as expected. In
Fig. 3�b�, the GAM damping rate is also shown to corre-
spond well to the theory. The peak around q=2.2 is due to
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FIG. 4. Comparison of the GAM real frequency and damping rate between
adiabatic and kinetic electron simulations at different q.
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FIG. 5. �Color online� GAM damping rate vs � and kr�i at q=1.6 �gray or
red online� and q=3.0 �black�. The solid lines and the dashed lines are
adiabatic electron and kinetic electron simulation, respectively.
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the second order resonance arising from the finite orbit width
effect. This effect dominates the collisionless GAM damping
at high-q region since the first order GAM damping rate
becomes zero when q�2.0.13 When q�1, our simulation
damping rate does not vanish due to higher order resonances,
as shown in a numerical solution14 or a theory using large
kr�iq

2 expansion.27

Theoretical derivation of the GAM dispersion relation
usually assumes that electrons are adiabatic14,15 to the n=0
mode, i.e., Boltzmann relation for the m�0 harmonics but
no response to the m=0 harmonic. However, trapped elec-
trons could have resonance with the GAM in the high-q re-
gion. The trapped electron bounce frequency is �be


��ve / �qR0�
�43�� /q�vi /R0 for hydrogen ions, which is
close to the magnitude of the GAM frequency ��GAM


2.0vi /R0� for small � and large q. So it is possible that
GAM can be damped through resonance with trapped elec-
tron bounce motion. Since the number of trapped particles is
proportional to �� ,�=0.2 is used in the following simulation,
comparisons are made between kinetic and adiabatic electron
simulations. It is shown that the GAM frequency is insensi-
tive to the trapped electrons while the GAM damping rate is
significantly enhanced �Fig. 4�.

From Fig. 4�a�, the frequency of the simulations with
kinetic electrons and �=0.2 is almost the same as simulations
with adiabatic electrons and �=0.05 �Fig. 3�a�� except for a
small correction at q
2.0 and q
7.0. As for the damping
rate in Fig. 4�b�, simulation results with adiabatic electrons at
�=0.2 are slightly higher than the theory due to the finite �
effects.13 More importantly, we find that the damping rate in
the simulations with kinetic electrons at �=0.2 is much
higher than that of adiabatic electrons. We note that when q
is larger than 3.0, the results of simulation with kinetic elec-
trons are almost one order of magnitude higher than adia-

batic electrons. This means that the trapped electron effect is
typically more important than the finite orbit width effect on
the GAM damping rate in the high-q region.

In Fig. 5, we plot the GAM damping rate versus � and
kr�i with adiabatic and kinetic electron simulations for
q=3.0 and q=1.6. The real frequency of GAM is not plotted
here because it is insensitive to the � and kr�i in both adia-
batic and kinetic electron simulations. In Fig. 5�a�, the damp-
ing rate increases with � in both adiabatic and kinetic elec-
tron simulation cases. When �→0, the fraction of trapped
electrons decreases to zero, and the simulation results in the
kinetic electron cases approach the adiabatic electron cases
�left side of the solid line�. It is noted that the small � will

FIG. 6. �Color� Contour plot of trapped electron bounce frequency �be and passing electron transit frequency �te �in unit of �G��GAM� along with the
simulation result of the �
fe / fe0�2 in E-� space. Here �a� and �b� are simulation with q=4 and q=6, respectively.

FIG. 7. �Color online� Time evolution of GAM radial electric field for
q=6.0 and �=0.2. The black line is simulation with adiabatic electrons. The
blue, red, and green lines �or gray lines� are kinetic electron simulations
with P=0.82, 0.71, and 0.59, respectively.
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enhance the resonance between GAM and trapped electron
bounce motion since �be���, but the number of trapped
electrons is also proportional to ��. So the GAM damping
rate is not enhanced when �→0. When ��0.05, The trapped
electron effect becomes strong, which makes the damping
rate of the kinetic electron cases much larger than the adia-
batic electron cases �right side of the dot line�. In the kr�i

scan of the GAM damping rate �Fig. 5�b��, it is shown that
when kr�i decreases to zero, where the finite orbit width
effect disappears, the GAM damping rate of the adiabatic
electrons decreases to almost zero but the GAM damping
rate of the kinetic electrons still has a finite value due to
trapped electron contribution. As kr�i increases, the finite or-
bit width effect becomes strong and the damping rate in-
creases rapidly. The damping rate in the kinetic electron
cases is higher than the adiabatic electron cases, but the scal-
ing is almost the same. This suggests that the trapped elec-
tron and the finite orbit width effects are two independent
effects.

In order to further illustrate that the enhancement of the
GAM damping rate in the kinetic electron simulation is
mainly due to the trapped electron response, we analyze the
�
fe / fe0�2 in the E-� phase space �
fe is the electron density
perturbation, and E and � are the electron energy and mag-
netic moment, respectively�. The initial 
fe is set to be zero,
while the ion guiding center density perturbation is initiated
as a flux-surface-averaged quantity. If trapped electron
bounce motion resonates with GAM oscillation, the ampli-
tude of �
fe / fe0�2 for the resonant electrons in the phase
space will increase faster than the nonresonant electrons. As
electron bounce frequency is only the function of E and �,
we plot the electron bounce frequency along with the

�
fe / fe0�2 in the same E-� phase space �Fig. 6�. The electron
bounce frequency is integrated by the following equation:

�be = 2�/�be = 2���
−�b

�b dl


v�

�−1

= 2���
−�b

�b dl
�2�E-�B��

−1

. �5�

Here �be and �b are the trapped electron bounce period
and poloidal angle at the turning point, respectively. From
figure we can see that the �
fe / fe0�2 of the trapped electrons
with bounce frequency around the GAM frequency �GAM

=�be is much larger than that of other trapped electrons.
Comparing Figs. 6�a� and 6�b�, we can see that the maximum
of �
fe / fe0�2 locates at E
0.45�Ti� and E
1.0�Ti� for
q=4.0 and q=6.0, respectively. It also agrees with the
bounce frequency relation �be��Ti /q for deeply trapped
electrons. These simulation results clearly show that the en-
hancement of the GAM damping rate in simulations with
kinetic electrons is due to the resonance between the GAM
oscillation and the trapped electron bounce motion.

We now show that the passing electrons transit reso-
nance is less important than the trapped electrons bounce
resonance in the GAM collisionless damping. In the above
simulations with �=0.2, electrons with P���1−�� / �1+��

0.82 are treated as kinetic electrons. Next, we fix �=0.2
and induce more passing electrons to be treated as kinetic
electrons by decreasing the kinetic electrons simulation
boundary from P=0.82 to P=0.59. In Fig. 7, as P changes
from 0.82 to 0.59, the GAM amplitude only changes slightly.
The results for P=0.71 and P=0.59 are almost identical,

FIG. 8. �Color� Contour plot of �be and �te �in unit of �G��GAM� along with the simulation result of the �
fe / fe0�2 in E-� space. Here �a� and �b� are
simulation with q=4 and q=6, respectively. The red line corresponds to �te=�GAM. The blue line is the kinetic electron boundary for P=0.59 in the
simulation.
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which means if we further decrease P, the GAM damping
rate would not change. Figure 8 is the �
fe / fe0�2 distribution
in the simulation with P=0.59. The blue line corresponds to
the kinetic electron boundary in the simulation, i.e., only
electrons above the blue line in the E-� space are treated as
kinetic electrons in the simulation. The red line is the reso-
nant transit frequency for passing electrons and we can
clearly see a narrow colored contour line along the red line.
This contour line shows the resonance of the passing elec-
trons with the GAM oscillation. Comparing Figs. 8�a� and
8�b�, we find that the passing electron resonance is stronger
at q=6, which indicates that it is easier for passing electrons
to resonate with the GAM at a larger q. It is obvious that
most of the resonant passing electrons reside at P�0.59.
This can provide an explanation on why the damping rate
does not change if further decreasing P in Fig. 7. We can
also see that the resonant contribution of the passing elec-
trons is much smaller than that of the trapped electrons. This
suggests that the trapped electrons effect is more important
than the passing electrons in the GAM collisionless damping.

IV. CONCLUSION AND DISCUSSION

In this work, we use gyrokinetic particle simulation to
study the zonal flow residual level and the GAM collision-
less damping in the presence of kinetic electrons. Our simu-
lation results of the residual level agree very well with the
theory in appropriate limits. The kinetic electrons have little
effects on the zonal flow residual level.

Our simulation results of the GAM frequency and colli-
sionless damping rate with adiabatic electron response are
also shown to correspond well with the theory. Comparisons
between adiabatic electron response and kinetic electron re-
sponse show that the GAM frequency is insensitive to the
kinetic electrons but the GAM damping rate is greatly en-
hanced. Through the investigation of the perturbed electron
distribution function in the phase space, we find that the
enhancement of the GAM collisionless damping rate is due
to the resonance of trapped electron bounce motion with the
GAM oscillation. This result provides a possible explanation
of the finite GAM damping rate in the high-q region of the
tokamak edge, where the contribution of the ion resonance is
small.
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