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Abstract
Gyrokinetic theory and simulation find that the nonlinear self-interactions of the long wavelength geodesic acoustic
mode (GAM) in toroidal plasmas cannot efficiently generate the second harmonic due to a cancellation between the
perpendicular convective nonlinearity and the parallel nonlinearity, which is neglected in most of gyrokinetic theory
and simulation. Other mechanisms beyond conventional GAM theory are required to explain recent experimental
observations of the excitation of the GAM second harmonic.

PACS numbers: 52.30.Gz, 52.35.−g, 52.35.Fp, 52.35.Mw, 52.35.Qz

1. Introduction

Geodesic acoustic mode (GAM) [1] is an electrostatic
oscillation in toroidal plasmas with a potential perturbation
dominated by an n = m = 0 component (n and m are
the toroidal and poloidal mode numbers, respectively) and
a density perturbation dominated by an n = 0, m = 1
component. GAM has a real frequency ωGAM on the order
of cs/R (cs is the ion sound speed and R is the major radius)
and a linear damping rate γ which becomes smaller with a
higher safety factor q and a lower collisionality [2, 3]. GAM
has been widely observed [4] in tokamaks in the search for
its counterpart, the zero-frequency zonal flows that play a
dominant role in regulating toroidal drift wave turbulence [5].
GAM can also be spontaneously generated and can regulate
the turbulence [6], particularly in the edge region where the
GAM frequency ωGAM is typically smaller than the drift wave
frequency and the linear damping rate γ is small because of
the large q [7–9].

GAM linear properties [10–14] and excitations [15–19]
have been extensively studied in theory and simulation. On
the other hand, GAM nonlinear self-interactions have not
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attracted much attention due to the fact that GAM has a
wavevector only in the radial direction, which precludes
both conventional E × B and polarization nonlinearities.
However, the second harmonic frequency of GAM (2ωGAM)
has recently been observed in the JFT-2M [20] and DIII-D
[21] tokamaks, providing clear evidence of the nonlinear
GAM interactions. The generation of the second (and higher)
harmonic represents an energy sink for the primary GAM
oscillation [17, 18, 22]. Thus the nonlinear interactions offer a
possible GAM saturation mechanism in addition to the energy
coupling back to the ambient turbulence [23] and the energy
sink because of the linear Landau and collisional damping.
Nonlinear self-interaction of GAM has recently been studied
using fluid theory with conflicting results [24–26].

In this work, we use a gyrokinetic particle simulation and a
nonlinear gyrokinetic theory to study the nonlinear GAM self-
interactions. In the global gyrokinetic toroidal code (GTC)
[5, 27, 28] simulations, the primary GAM is excited by an
initial perturbation of the ion guiding centre density uniform
on the flux surface [29]. GTC simulations of a small amplitude
GAM recover the analytic linear dispersion relation. When the
GAM amplitude increases to the experimentally relevant level,
GTC simulations without the parallel nonlinearity find the
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generation of the second harmonic (ω = 2ωGAM) quasimodes,
which are dominated by a potential perturbation with n =
m = 0 and a density perturbation with n = 0, m = 1. The
generation rate of the second harmonic is proportional to the
intensity of the primary GAM. The radial wavevector of the
quasimode is twice that of the primary GAM. The poloidal
structures of the density perturbation of the quasimodes
are measured from simulations for comparisons with the
gyrokinetic theory. All these simulation results are consistent
with the expectation for a quadratic nonlinearity and agree
well with the nonlinear gyrokinetic theory [30] in toroidal
geometry when the parallel nonlinearity is also neglected.
Specifically, the GTC simulation and the nonlinear gyrokinetic
theory agree well on the amplitude and the mode structure of
the second harmonic. The nonlinear gyrokinetic theory also
shows that the quadratic nonlinearity comes from a nonlinear
toroidal coupling due to the convection of the n = 0, m = 1
density perturbation by the E × B drift of the n = m = 0
potential perturbation. Therefore, this quadratic nonlinearity is
induced by the compressibility of the E×B drift in the toroidal
geometry with a geodesic curvature. This perpendicular
convective nonlinearity is different from the conventional
E × B nonlinearity or the polarization nonlinearity that drives
a nonlinear toroidal coupling [31, 32].

However, more careful analysis of the nonlinear
gyrokinetic theory for the GAM self-interaction finds that the
perpendicular convective nonlinearity can be cancelled by the
parallel nonlinearity in the long wavelength limit (krρi � 1,
where kr is the GAM radial wavelength and ρi is the ion
gyroradius). Indeed, subsequent GTC simulation confirms
that the generation of the second harmonic of the GAM is
much weaker when the parallel nonlinearity is maintained
in the simulation. Although the perpendicular convective
nonlinearity cannot be cancelled by the parallel nonlinearity
when krρi ≈ 1, the short wavelength GAM itself is heavily
damped by the high order resonance [10]. Therefore, our
nonlinear gyrokinetic theory and GTC simulation conclude
that the conventional GAM nonlinearity cannot efficiently
generate the second harmonic of the long wavelength GAM.
Other mechanisms, such as energetic particle nonlinearity,
are required to explain recent experimental observations
of the excitation of the GAM second harmonic [20, 21].
Furthermore, the parallel nonlinearity is neglected in most of
gyrokinetic or fluid theory and simulation with the notable
exception of [33–35] in which its influence on core ITG
turbulence driven heat flux was shown to be negligibly small.
On the other hand, our findings highlight the importance of the
parallel nonlinearity in some applications such as the GAM
self-interaction.

The paper is organized as follows. In section 2, GTC
simulations of the GAM second harmonic are presented. In
section 3, a nonlinear gyrokinetic theory is developed and
compared with the GTC simulation results. Section 4 is the
conclusion and discussion.

2. Gyrokinetic particle simulation

In our GTC simulations, the following D-IIID experiment
parameters are used [36]: a major radius R = 1.7 m, an
inverse aspect ratio ε = a/R = 0.35, where a is the minor

radius, a toroidal magnetic field B0 = 2 T and a temperature
Te = Ti = 1 keV on the flux surface of the GAM measurement.
The radial wavevector is estimated to be krρi = 0.1, where
ρi = vi/�i is the ion Larmor radius and vi = √

Ti/mi,
�i = eB0/mi with mi the ion mass. Electron response is
set to be adiabatic for n = 0, m �= 0 modes and homogeneous
plasmas are used in our nonlinear GAM simulation. In the
D-IIID experiment, the reversed shear is used with qmin = 3.5
near r = 0.5a where the GAM measurement was made [21].
Since our simulation is focused on the middle region of D-IIID,
we use a simulation domain �r = [0.3a, 0.7a] and a constant
q = 3.5 as the magnetic shear has no effect on the n = 0 GAM
and zonal modes. We also note that since we focus on the
nonlinear GAM interactions, the constant simulation profile
can help us minimize the complexity because there is no GAM
continuum damping or mode conversion to short wavelength
kinetic modes in this situation.

2.1. Simulation without parallel nonlinearity

To study the linear GAM properties, we first simulate a small
amplitude GAM by using an initial perturbed distribution
for ion guiding centres: δf00 = (δn00/n0)FM, where
(δn00/n0)max = 10−6 and FM is a uniform Maxwellian,
FM = n0(1/2πvi)

3/2 exp(−v2/v2
i ). Figure 1(a) is the time

evolution of the electric field Er with n = m = 0 and a
numerical fitting result. The fitting function is defined as

Er(t) = Aei(ωt+α) where ω = ωGAM + iγ, (1)

where ωGAM and γ are GAM real frequency and damping rate,
respectively [3]. The numerical fitting result is (ωGAM, γ ) =
(1.71, 0.0124)(vi/R). ωGAM corresponds well with the
analytical solution with an error less than 1%, while γ is
slightly larger than a prediction by the second order theory [10].
More accurate theory needs to include the higher order
solution [11, 12] and nonlocal effects. Figure 1(b) is the
frequency spectrum of Er . The sharp peak at ω = ωGAM =
1.71vi/R corresponds to the linear GAM frequency. The
amplitude at ω = 0 is small since the residual level of zonal
flow is Er(∞)/Er(0) ≈ 0.02 according to the zonal flow
theory [37].

Next, we study nonlinear GAM interactions by initializing
a large amplitude GAM in GTC simulations. In the D-IIID
experiment, the nonlinear generation of the second harmonic
of GAM has been observed. The detected GAM density
fluctuation near the mid-plane is around 1–2% and the
extrapolated peak fluctuation is 10–15%. In our simulations,
we use an initial perturbation of the ion guiding centre density
δn00/n0 = 0.01. Other simulation parameters are kept the
same as in the small amplitude simulation of figure 1(a). Note
that there is no particle density perturbation of the n = m = 0
mode since electrons do not respond to this mode. The particle
density perturbation, on the other hand, is the same as the gyro-
averaged ion guiding centre density perturbation δn01 since
electron is adiabatic to m �= 0 modes. The density perturbation
δn01/n0 is initially zero, but rises within a GAM oscillation
period to a value of δn01/n0 ≈ 0.1. This is a linear coupling
due to the compressibility of the E ×B drift of the n = m = 0
mode. The second harmonic with a characteristic frequency of
2ωGAM is observed in this nonlinear regime as we can see from
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Figure 1. GTC simulations without parallel nonlinearity: (a) and (b) are the time evolution and frequency spectrum of Er in a small
amplitude simulation. In (a) the symbols are simulation data, the solid line is a numerical fitting. (c) and (d) are the frequency spectra of Er

and δn0, respectively, in a large amplitude simulation.

figure 1(c). From the δn0 spectrum (figure 1(d)), we find that
both the second harmonic component and a zero-frequency
density perturbation component are excited. This indicates
that when GAM amplitude grows large sufficiently, a three-
wave interaction process occurs: GAM couples with itself and
produces two branches of daughter waves, i.e. a zero-frequency
component and the second harmonic component. These results
obey the frequency selection rules, i.e.

ω1 ± ω2 = ω3, where ω1 = ω2 = ωGAM, ω3 = 0

or 2ωGAM, (2)

k1 + k2 = k3, where k1 = k2 = k0, k3 = 2k0. (3)

This nonlinear coupling is a quadratic nonlinearity originated
from the toroidal compressibility. Therefore, the wavevector
must also follow the matching condition. Note that the
nonlinearly generated modes of ω = 0 and ω = 2ωGAM

are not normal modes and we only consider the k3 = 2k0

mode since the k3 = 0 would result in an infinite radial
wavelength.

An important signature of the quadratic nonlinearity is that
the generation rate of the second harmonic is proportional to the
intensity of the pump wave. This is confirmed in figure 2(a),
which shows that the spectral ratio of the second harmonic
to the primary GAM is linearly proportional to the amplitude

of the primary GAM measured from a series of simulations
with different initial GAM amplitudes. Here we use the
magnitude of the frequency spectrum of radial electric field
Er in a time domain of [0, 56.6R/vi] to represent the mode
amplitude since the damping rate of the primary GAM and
the growth rate of the second harmonic are much smaller than
ωGAM. To calculate the strength of the nonlinear coupling, we
fit the data in figure 2(a) to a straight line of EII

r /EI
r = AEI

r ,
where EI

r and EII
r (in the unit of viB0) are radial electric

fields of the primary and the second harmonic, respectively.
Here, A is a dimensionless constant representing the nonlinear
coupling strength. We find A ≈ 0.95 from the GTC
simulations, in reasonable agreement with a theoretical result
of A ≈ 0.58 from a nonlinear gyrokinetic theory presented in
section 3.

In this nonlinear mode coupling process, the GAM
damping rate is found to increase with the amplitude of the
primary GAM Er (figure 2(b)). When the amplitude of Er is
small, i.e. the nonlinear generation of the second harmonic
is negligible, the damping rate is a constant equal to the
linear Landau damping rate. On the other hand, when it
exceeds a critical value, i.e. Er ≈ 0.01(1/Bvi), the damping
rate is almost proportional to the amplitude of Er . This
further confirms the observation that the second harmonic
generation rate is proportional to the intensity of the primary
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Figure 2. The second harmonic generation rate (a) and the primary
GAM damping rate (b) versus amplitude of the primary GAM.

harmonic.
Finally, we construct the mode structures using time

Fourier transform of the perturbed density on each grid in the
poloidal plane:

δn0(r, θ, ω) = 1

2π

∫
dteiωtδn0(r, θ, t). (4)

Then we pick up the complex values of each harmonic in the
frequency spectrum for ω = 0, ωGAM, 2ωGAM, respectively:

δn0(r, θ, 0), δn0(r, θ, ωGAM), δn0(r, θ, 2ωGAM). (5)

These mode structures are plotted in figure 3 on a poloidal
plane as density contour plots for the zero-frequency harmonic,
the primary harmonic and the second harmonic. The zero-
frequency harmonic has only real part. From these figures
we can see that the primary harmonic GAM is dominated by
an m = 1 density perturbation with an up–down asymmetry,
which corresponds well with the GAM theory [15]. The
structures of the zero-frequency and the second harmonic
components are also dominated by an n = 0, m = 1
density perturbation. Together with the 2ωGAM peak in
both the Er with n = m = 0 and the density frequency
spectrum (figures 1(c) and (d)), GTC simulations thus show
that the second harmonic is dominated by an electrostatic
potential with n = 0, m = 0 and a density perturbation
with n = 0, m = 1 similar to the primary GAM. We can also
see that the structures of the zero-frequency harmonic and

the second harmonic have opposite phases as expected from the
frequency matching condition of equations (2) and (3) . The
structures of both the zero-frequency and the second harmonic
have a poloidal angle shift from the primary harmonic. We
find that the second harmonic poloidal angle shift depends on
the inverse aspect ratio ε as shown in figure 4. As shown in
section 3, the poloidal angle shift of the second harmonic is
due to the competition between the nonlinear term δφII

nl and the
linear term δφII

l . The poloidal angle shift measured from GTC
simulations agrees well with the gyrokinetic theory, as shown
in figure 4.

Mode structures in figure 3 show that the radial scale
length of the second harmonic is shorter than that of the primary
mode. However, the radial wavevector matching condition
is not clearly shown in these simulations due to the large
simulation domain of �r = 0.4a (i.e. lack of radial symmetry
in a realistic DIII-D equilibrium). By performing simulations
of a thin annulus using artificial parameters of �r = 0.03a

in a large torus, we can clearly see that the dominant radial
wavevector of the second harmonic is kII

r = 2kI
r as expected

for the quadratic nonlinearity.

2.2. Simulation with parallel nonlinearity

In simulations presented in section 2.1, the parallel nonlinearity
is neglected. Although in small GAM amplitude simulations,
the removal of the parallel nonlinearity would cause no
difference to the GAM evolution, the nonlinear interaction of
GAM may be different when the GAM amplitude is large. Here
we show that the parallel nonlinearity obviously suppresses
the generation of the second harmonic in large amplitude
GAM simulation, as predicted by the nonlinear gyrokinetic
theory.

We use the same D-IIID experimental parameters to
perform the simulation but keep the parallel nonlinearity.
Figure 5(a) is the frequency spectrum of the perturbed density
δn0, which shows that the second harmonic is suppressed by
the parallel nonlinearity compared with figure 1(d). However,
the zero-frequency mode seems to have little changes. The
suppression of the second harmonic by the parallel nonlinearity
can also be derived from the nonlinear gyrokinetic equation
with the parallel nonlinearity term, which shows that the
parallel nonlinearity term cancels the perpendicular drift
nonlinear term in the lowest order of krρi (see section 3).
Although the second harmonic is suppressed, the GAM
damping rate is still enhanced probably due to the generation of
the zero-frequency mode, but this damping rate is not as large as
the result without parallel nonlinearity (figure 5(b)). Figure 6 is
the mode structures of the zero-frequency mode and the second
harmonic in the simulation with the parallel nonlinearity. We
can see that the mode structure of the zero-frequency mode has
little change when compared with figure 3(a). But the second
harmonic mode becomes much weaker, and the imaginary part
of the second harmonic seems to have no steady structure like
figure 3(c).

3. Nonlinear gyrokinetic theory

In order to better understand the GAM nonlinear interactions,
we use nonlinear gyrokinetic theory to compare with the
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Figure 3. Density mode structures of the zero-frequency harmonic (top panels), the primary harmonic (middle panels) and the second
harmonic (bottom panels). The left column is real components and the right column is imaginary components.

GTC simulations of the generation of the second harmonic.
We consider a large aspect ratio axisymmetric tokamak with
equilibrium magnetic field given by B = B0(eξ /(1+ε cos θ)+
(ε/q)eθ ), where ξ and θ are, respectively, the toroidal and
poloidal angles of the torus.

We use the nonlinear gyrokinetic equation, in its phase
space-conserving form [38, 39],

∂

∂t
(B∗

‖F) +
∂

∂X
(B∗

‖ẊF) +
∂

∂W
(B∗

‖ ẆF ) = 0, (6)

5
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Figure 4. Dependence of the poloidal angle shift �θ on the inverse
aspect ratio ε. These simulations are done with a large torus and
small simulation region �r = 0.03a. The solid line is theory
prediction, the dots are simulation results.

where F = F(Z, t), Z = (X, W, µ) is the five-dimensional
gyrocentre phase space with X, W and µ being the gyrocentre
position, the parallel velocity and the magnetic moment,
respectively. B∗

‖ = b̂ · B∗, b̂ = B/B, B∗ = B + (B/�)∇̄ ×
(W b̂) and ∇̄ ≡ ∂/∂X. We have, in equation (6), furthermore,
that

Ẋ = B

�B∗
‖

× ∇̄H +
B∗

B∗
‖

∂

∂W
H, (7)

Ẇ = −B∗

B∗
‖

· ∇̄H, (8)

H = µB + W 2/2 + (e/m)〈δφ〉 ≡ H0 + δH. (9)

Here δφ is the perturbed scalar potential, � is the
gryofrequency, 〈· · ·〉 denotes average over the gyrophase angle
while holding Z constant. For weakly nonlinear calculations,
we keep only the linear perturbations δH in the Hamiltonian
H . Here we note the gyrocentre phase-space conservation
property:

0 = ∇ · (B∗
‖Ẋ) +

∂

∂W
(B∗

‖ Ẇ ), (10)

which is exact to all orders in the gyrocentre analysis.
The nonlinear gyrokinetic equation (6), in the case of the

second harmonic generation, can be rewritten as

(
∂

∂t
+ iωd

)
δF II + δẊ I · ∂

∂X
δF I + δẆ I ∂

∂W
δF I = 0, (11)

in which ωd = ω̂d sin θ = −krmi(v
2
⊥/2 + v2

‖) sin θ/(eBR)

is the magnetic drift associated with the geodesic curvature,
the superscripts I and II represent the primary and the second
harmonic, respectively. Here, we consider only the lowest
order nonlinear effects, thus we ignore the O(ωd/ω) ≈
O(krρi) term. For the electrostatic case, we have

δẊ I = 1

B
b̂ × ∇〈δφI〉, (12)

δẆ I = − e

m
b̂ · ∇〈δφI〉 − 1

B
∇ × (W b̂) · ∇〈δφI〉. (13)

We note that in equation (11), the second term is the usual
perpendicular nonlinear convective term and the last term is
the parallel nonlinear term. In the usual gyrokinetic ordering,
the parallel nonlinear term is neglected compared with the
perpendicular nonlinear convective term:∣∣∣∣∣

e
m

b̂ · ∇〈δφ〉 ∂
∂W

δF

1
B

b̂ × ∇〈δφ〉 · ∂
∂X

δF

∣∣∣∣∣ ≈ 1

krρikθR
� 1. (14)

From the linear calculation [14], we have the linear
responses of ions, to the lowest order given by

δF = − e

T
FM〈δφ〉 + δG ≈ ω̂d

ω

e

Ti
FMδφ00 sin θ, (15)

where subscript 00 denotes the n = 0, m = 0 component. The
perpendicular nonlinear convective term is given by

δF II
nl,R = − e2kI

r

m�Tir

ω̂d

ωIωII
F0 cos θ(δφI

00)
2. (16)

The electrons can be described by the adiabatic response. If we
neglect the parallel nonlinearity term, the flux surface averaged
quasi-neutrality condition for the second harmonic yields(

1 − ω2
GAM(r)

(ωII)2

)
δφII

00 +
e

mωIωIIR2

(
kI
r

kII
r

)2

(δφI
00)

2 = 0.

(17)

Here, the first term is obtained from the linear GAM dispersion
relation, while the second term is from the contribution of the
perpendicular nonlinear convective term (δF II

nl,R). Frequency
and wavenumber matching conditions yield ωII = 2ωI, kII

r =
2kI

r and m = n = 0 for the second harmonic as observed
in GTC simulation. We note that the contribution of the flux
surface averaged δF II

nl,R under quasi-neutrality condition comes
from the toroidal coupling. The ratio between the amplitude
of the second and primary harmonic of GAM is thus, given by∣∣∣∣δEII

r

δEI
r

∣∣∣∣ = 1

6S

e

Ti
δφI

00 where S =
(

RωGAM

vi

)
. (18)

In GTC simulations, this formula can be normalized as∣∣∣∣δEII
r

δEI
r

∣∣∣∣ = A
δEI

r

Bvi
, where A = 1

6SkI
rρi

. (19)

In our simulations with kI
rρi = 0.1 and S = 2.9, we

get A = 0.58 as mentioned in section 2.1. This indicates
that the second harmonic generation rate is proportional to
the intensity of the primary harmonic, which is consistent
with GTC simulation results. We emphasize that there is
no threshold for the second harmonic generation, since this
corresponds to a driven excitation rather than a spontaneous
excitation.

In the krρi � 1 limit, the corresponding density
perturbation is dominated by the m = 1 poloidal component:

δn0 = (a cos θ + b sin θ)
e

Ti
(δφI

00)
2 = sin(θ + �θ)

e

Ti
(δφI

00)
2.

(20)

Here, a = −krωdt /(2rBω2) and b = eωdt (1+τ)/(3SωTi)

enter, respectively, via δF II
nl,R and δF II

l . Meanwhile, wdt =
krρivi/R0, �θ is the poloidal angle shift of the second

6
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Figure 5. Frequency spectrum of δn0 (a) from large amplitude simulation with parallel nonlinearity and time evolution of Er (b). In (b), the
dotted line is the small amplitude simulation results, the dashed line and the solid line are the large amplitude simulation with and without
parallel nonlinearity results, respectively.

Figure 6. Density mode structures of the zero-frequency harmonic (top panel) and the second harmonic (bottom panels). The left column is
real components and the right column is imaginary components.

harmonic from the primary harmonic (figure 3(d)), and is
given by

�θ = tan−1(a/b) = tan−1

(
−3

√
Skrρi

4(1 + τ)ε

)
, (21)

which has a dependence on both ε and krρi. Figure 4 shows
that GTC simulation results agree well with that predicted by

equation (21). We note that equation (21) is valid in the large
aspect ratio limit, i.e. ε � 1.

As we pointed out previously, the contribution of the
flux surface averaged perpendicular nonlinear convective term
comes from the toroidal coupling, which is smaller than the
optimal ordering of the perpendicular nonlinear convective
term by a factor of r/R. Thus, it is comparable to the parallel
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nonlinear term. So here we need to include the contribution of
the parallel nonlinear term, which is given by

δF II
nl,P = 1

iωII
˙δW I

∂

B∂W
(BδF I). (22)

Integrating by parts, and employing the phase-space
conserving property (equation (10)), we get

δF II
nl,P = 1

iωII

[
∂

∂W
(δF I ˙δW I) +

δF I

B
∇〈δφI〉 · ∇ × b̂

]
. (23)

The first term is a full derivative, and will vanish in the velocity
space integration. The second term, gives

δF II
nl,P = e2kI

r

m�TiR

ω̂d

ωIωII
F0 sin2 θ(δφI

00)
2. (24)

After doing surface averaging to δF II
nl,R and δF II

nl,P, we find that
these two terms will cancel exactly with each other, i.e.

δF II
nl,P = −δF II

nl,R = e2kI
r

2m�iTiR

ω̂d

ωIωII
F0(δφ

I
00)

2. (25)

Here (. . .) means surface average. So the nonlinear harmonic
generation of GAM is of a higher order in the O(ωd/ω) ≈
O(krρi) effect than the parallel nonlinearity term, and is thus,
ignorable. This result can be directly seen from our simulation
with the parallel nonlinearity in section 2.2, which shows that
the second harmonic is suppressed by the parallel nonlinearity.

4. Conclusion and discussion

Gyrokinetic theory and simulation find that nonlinear self-
interactions of the GAM in toroidal plasmas cannot efficiently
generate the second harmonic due to a cancellation between
the perpendicular convective nonlinearity and the parallel
nonlinearity for the long wavelength GAM. Other mechanisms
are required to explain recent experimental observations of
the excitation of the GAM second harmonic. Our findings
also raise the issue of the validity of the nonlinear GAM
theory proposed to explain the generation of the GAM second
harmonic as observed in tokamak experiments. Our finding
indicates that the toroidal geometry, and in some situations the
parallel nonlinearity, is important for the correct description of
the nonlinear behaviours of the fusion plasmas.
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