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This work reports on linear global gyrokinetic particle simulations of the excitation of toroidicity-

induced Alfv�en eigenmodes (TAE) and energetic particle modes (EPM), and the comparison

between these two modes. The TAE excitation by antenna clarifies the magnetohydrodynamic

(MHD) mode structure and the discrete eigenmode exists in the gap between the upper and lower

accumulation points. The TAE excitation by fast ions modifies the MHD mode structure because

of radial symmetry breaking and the eigenmode frequency moves towards the lower accumulation

point. The phase space structure of fast ions shows that both passing and trapped particles

contribute to the TAE excitation and that trapped particles dominate the wave-particle resonance

in our simulations. The growth rate of TAE is sensitive to the fast ion energy, density, and density

gradient, which are also important factors contributing to the transition of the TAE to the EPM.

The gyrokinetic particle simulations also confirm the excitation of EPM when the drive is

stronger. The frequency of the EPM is determined by the characteristic frequencies of fast ion

motion in toroidal geometry. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4803502]

I. INTRODUCTION

Alfv�en eigenmodes occurring in toroidal geometry, such

as the toroidicity-induced Alfv�en eigenmode (TAE), are sig-

nificant phenomena that can cause fast ion loss in fusion

devices. The interaction of Alfv�en eigenmodes with fast

ions is an important research topic concerning the develop-

ment of future fusion devices such as the International

Thermonuclear Experimental Reactor (ITER)1 as fast ions

can be produced through fusion reactions (a particles), neu-

tral beam injection (NBI), and radio frequency (RF) heating.

The TAE is a gap mode and the gap is formed by two coun-

terpropagating Alfv�en waves with adjacent poloidal num-

bers, m and mþ 1 for example, at the radial location

when the two wave vectors have the same absolute values

kjjm ¼ �kjjmþ1. The TAE mode is firstly predicted by magne-

tohydrodynamic (MHD) theory2,3 in the radially local limit

with two assumptions: First of all, the wavelengths of waves

propagating perpendicular to the magnetic field are shorter

than those waves propagating along the parallel direction.

Further, the effects associated with the fast magnetosonic

wave and the slow sound wave are ignored. The expression

for TAE excitation by fast ions4 is theoretically derived from

the drift kinetic equation5 of fast ions. In their later works,6,7

Chen and his collaborators provide the fishbone-like disper-

sion relation of fast ion interaction with background plasmas,

which can be used to estimate the stability of modes. The

dispersion relation, �iKþ dWf þ dWk ¼ 0, predicts the

existence of two types of modes, the TAE and energetic

particle modes (EPM). The difference between these two

modes is that TAE is an MHD gap mode whose frequency is

determined by the background plasmas with ReK2 < 0,

while EPM is a mode in the continuum with its frequency

corresponding to the characteristic frequency of fast ions

with ReK2 > 0. Zonca’s theoretical works8–10 demonstrate

the details of the EPM structure. Subsequent to its theoretical

prediction, the TAE was observed in the TFTR,11 DIII-D,12

JET,13 JT-60U,14,15 stellarators,16,17 and other fusion reac-

tors. There are several review papers on TAE regarding

the physical process of the eigenmode. Ref. 18 provides a

theoretical review of the interaction of the Alfv�en eigenmo-

des with fast ions, and further a lengthy review regarding

research in this field appeared in 1999.19 Heidbrink’s recent

reviews20 attend to the basic physics of the interaction of the

Alfv�en eigenmodes with fast ions and some experimental

results also have been discussed therein. Ref. 21 reviews the

experimental results concerned with the occurrence of the

Alfv�en eigenmodes in the TFTR.

Recent gyrokinetic simulations of the TAE have been

reported in Refs. 22–30. Gyrokinetic toroidal code (GTC)31

has been used in this paper, as the code has been successfully

applied to simulations of MHD modes such as TAE,22–24

reversed shear Alfv�en eigenmode (RSAE),32,33 beta-induced

Alfv�en eigenmode (BAE),34–36 and geodesic acoustic mode

(GAM).37,38 Ref. 22 illustrates the continuum spectrum exci-

tation by initial perturbation in cylindrical and toroidal geo-

metries, and Ref. 23 focuses on the excitation of TAE by fast

ions with the parameters of toroidal number n ¼ 1, poloidal

numbers m ¼ 1; 2, and the safety factor q ¼ 1þ 1:5r2, the

results of which agree well with Fu’s theory.4 Zhang’s simu-

lations24 focus on TAE excitation by antenna and fast ions

with toroidal number n¼ 5 and poloidal numbers m ¼ 7; 8.a)Electronic mail: wlzh@ustc.edu.cn
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Mishchenko et al.25–27 have used the df particle code

GYGLES for TAE simulations and Ref. 27 interprets the

transition from TAE to EPM instabilities in various parame-

ter regions. A few other gyrokinetic simulations have

focused on the kinetic effects of TAE.28,29 The hybrid mag-

netohydrodynamics gyrokinetic code (HMGC),39 wherein

backgrounds are described by MHD equations and the fast

ions are described by gyrokinetic equations, also focuses on

simulations of TAE40 and EPM.41,42

In this study, using the electromagnetic model of

GTC,43 we carry out gyrokinetic particle simulations of the

TAE and EPM. In comparison with previous gyrokinetic

simulations of TAE, our study focuses on the frequency

spectrum with two components along with concentrating on

the detailed mode structure and wave-particle resonance in

the phase space. Further, our simulations describe the mode

structure of the EPM clearly, and its difference with the TAE

is discussed. In our simulations, the TAE is first excited

using an antenna in order to accurately measure its fre-

quency, growth rate, and mode structure. Subsequently, the

TAE is excited by fast ions, the result of which shows that

the eigenmode frequency moves towards the lower accumu-

lation point. Further, the component of EPM in the frequency

spectrum can be observed when the drive is sufficiently

strong. The phase space structure of the fast ions shows that

both passing and trapped particles contribute to TAE excita-

tion and that trapped particles dominate the wave-particle

resonance in our simulations. We next change the parameters

of the drive strength R=Lnf , fast ion temperature Tf, and den-

sity nf to study the parameters regions of TAE and EPM, and

our results confirm that the frequency of the EPM is deter-

mined by the characteristic frequency of fast ion motion in a

toroidal geometry. Moreover, the mode structure of the EPM

can be clearly observed in our gyrokinetic simulations.

The structure of the paper is as follows. Section II

presents the electromagnetic simulation model. In Sec. III,

TAE excitation by antenna and fast ions are investigated. In

Sec. IV, the EPM structure is presented. Section V presents

the summary of this work.

II. GYROKINETIC SIMULATION MODEL

In this section, the electromagnetic gyrokinetic simula-

tion model used by GTC is described, and the ideal MHD

equation is recovered in the long-wavelength limit. As a

field perturbation can be described by Fourier decomposi-

tion in poloidal harmonics, we can derive the eigenmode

equations of the coupling of the two poloidal modes in the

first order.

A. GTC formulation for electromagnetic simulation

In the GTC formulation for electromagnetic simulation,

both thermal ions and fast ions are described by the gyroki-

netic equation44 in the inhomogeneous magnetic field, using

the gyrocenter position X, magnetic moment l, and parallel

velocity vjj. Thus, the gyrokinetic equations with five inde-

pendent variables are given as

ð@t þ _X � r þ _vjj@vjj ÞfaðX; l; vjjÞ ¼ 0; (1)

_X ¼ vjj
B0 þ dB

B0

þ cb0 �r/
B0

þ
v2
jj

X
r� b0 þ

l
mX

b0 �rB0;

(2)

_vjj ¼ �
1

m

B0þ B0vjj
X r�b0þ dB

B0

� ðlrB0þZr/Þ� Z

mac
@tAjj:

(3)

Here, the index a ¼ e; i; f denotes the particle species (elec-

tron, thermal ion, and fast ion), Za denotes the particle

charge, ma denotes the particle mass, X denotes the thermal

ion cyclotron frequency, dB and /, respectively, denote the

perturbed magnetic field and electrostatic potentials, and

B0 ¼ B0b0 denotes the equilibrium magnetic field. In our

description, we exclude the compressional component of the

magnetic field perturbation by assuming dBjj ¼ 0, and thus,

we obtain

dB ¼ dB? ¼ r � kB0; (4)

with k ¼ Ajj=B0. All the perturbed quantities such as / and

Ajj are gyrophase-averaged for the thermal ions and fast ions.

The electrons are treated as equivalent to fluid in the lowest

order with adiabatic approximation, and the higher-order

nonadiabatic terms are treated kinetically with all nonlinear

effects preserved.43,45 However, only the linear terms are

preserved in this study. The electron continuity equation is

derived from integration of Eq. (1) in the velocity space and

the terms up to the first order are retained in the perturbation

@tdne þ B0 � r
n0dujje

B0

� �
þ B0vE � r

n0

B0

� �

� n0ðdv� þ vEÞ �
rB0

B0

þ dB � r
n0ujj0

B0

� �
¼ 0; (5)

where dne denotes the perturbed electron density,

vE ¼ cb0 �r/=B0; dv� ¼ b0 �rðdPjj þ dP?Þ=ðn0meXeÞ;
dP? ¼

Ð
dvlB0df and dPjj ¼

Ð
dvmv2

jjdf . The electron paral-

lel fluid velocity can be calculated by using the gyrokinetic

Ampère’s law as

n0eedujje ¼
c

4p
r2
?dAjj þ n0ieZidujji þ n0f eZf dujjf ; (6)

where dujji and dujjf , respectively, denote the parallel flow

velocity of the thermal ions and fast ions.

The inductive potential is defined as d/ind ¼ d/ef f

�d/, where d/ef f denotes the effective potential correspond-

ing to the parallel electric field. Consequently, the vector

potential can be written as the following equation:

@dAjj
@t
¼ cb0 � rd/ind: (7)

The value of d/ef f is derived from the expression

ed/ef f=Te ¼ dne=n0 in the lowest order. This system can be

closed by the gyrokinetic Poisson’s equation

Z2
i ni

Ti
ð/� ~/Þ ¼

X
a¼e;i;f

Zadna; (8)
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where ~/ denotes the second gyrophase-averaged electro-

static potential expressed as ~/ðxÞ ¼
P

k /kC0ðk2
?q

2
i Þ

expðik � xÞ.

B. MHD limit and eigenmode equations

In the ideal MHD limit, /ef f ¼ 0 upon assuming

x� � kjjVA, and therefore, the continuity equation (5) can be

written as

@tdne þ B0 � r
n0dujje

B0

� �
� n0vE �

rB0

B0

¼ 0: (9)

The Poisson equation (8) in the long-wavelength limit

becomes

c2

4pe
r?

1

v2
A

� �
r?/ ¼ dne: (10)

Applying the r2
? operator to Eq. (7) yields

1

c

@

@t
ðr2
?AjjÞ ¼ �b0 � rðr2

?/Þ: (11)

Ampère’s law, given by Eq. (6), yields

dujje ¼ c
e

Te
k2

Dðr2
?AjjÞ: (12)

Based on Eqs. (9)–(12), the dispersion relation can be written

as

x2r?
1

v2
A

r?/
� �

¼ �B0b0 � r
1

B0

r2ðb0 � r/Þ
� �

; (13)

which recovers the ideal MHD equations. The wave field

perturbation with frequency x can be described by a Fourier

decomposition in poloidal harmonics as

/ðr; h; f; tÞ ¼
X

m

/mðrÞexpð�imhþ inf� ixtÞ: (14)

In toroidal geometry, the magnetic field strength is

B � B0ð1� �x cos hÞ, the radius is normalized by x ¼ r=a,

and the inverse aspect ratio is defined as � ¼ a=R. Expanding

the toroidicity effects to the first order and retaining only two

dominant poloidal modes, we obtain the following coupled

eigenmode equations:

d

dr
r3 x2

v2
A

� k2
jjm

� �
d

dr
� m2 � 1
� �

r
x2

v2
A

� k2
jjm

� �� �
/m

þ 3

2
�

d

dr

x2

v2
A

r4

a

d

dr

� �
/mþ1 ¼ 0; (15)

d

dr
r3 x2

v2
A

�k2
jjmþ1

� �
d

dr
� ðmþ1Þ2�1
h i

r
x2

v2
A

�k2
jjmþ1

� �� �
/mþ1

þ 3

2
�

d

dr

x2

v2
A

r4

a

d

dr

� �
/m¼0: ð16Þ

In the limit of cylindrical geometry ð� ¼ 0Þ, the two poloidal

modes /m and /mþ1 are decoupled and Eqs. (15) and (16)

are singular at x2
1 ¼ k2

jjv
2
A; this singularity yields the two cy-

lindrical shear Alfv�en continua. In toroidal geometry, the

two poloidal modes are coupled ð� 6¼ 0Þ due to finite toroi-

dicity and two following branches of the toroidal continuum

can be derived from Eq. (15) and Eq. (16) by setting the de-

terminant of the coefficient of the second-order derivative

terms to zero.4 The toroidal continuum is given by

x2
6 ¼

4k2
jjmv2

A þ 4k2
jjmþ1v

2
A64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2
jjmv2

A � k2
jjmþ1

v2
AÞ

2 þ 9�2x2k2
jjmv2

Ak2
jjmþ1

v2
A

q
2� 9�2x2

: (17)

The TAE exists in the gap whose width is given by

Dx ¼ xþ � x� ffi 2qxðjkjjmvAjÞq¼ðmþ1=2Þ=n; (18)

and the frequency of the eigenmode lies between the two

continuum spectra.

III. GTC SIMULATION OF TAE EXCITATION

A. TAE excitation by antenna

In this subsection, we discuss TAE excitation by antenna,

which provides an accurate method to determine the eigenfre-

quency, growth rate, and mode structure. In our simulations,

the inverse aspect ratio of tokamak is � ¼ 0:3 and the safety

factor is q ¼ 1:2886þ 0:8ðw=wwÞ � 0:4ðw=wwÞ
2
, where w

denotes the poloidal flux and ww ¼ wðr ¼ aÞ. Thus, the

safety factor q ¼ 1:5 and the magnetic shear has a value 0:2
at the r ¼ 0:5a position. The simulations are all linear and we

apply a toroidal mode filter to select only the n ¼ 5 toroidal

mode. In toroidal geometry, the two poloidal modes couple at

the center of two rational surfaces, where the parallel wave

number is kk ¼ 1=ð2qRÞ and the safety factor is

q ¼ ðmþ 1=2Þ=n. We can define xA ¼ VA=ð2qRÞ as a unit

of frequency in our simulations. Fig. 1 shows the continuum

spectrum of the m¼ 7 and m¼ 8 harmonic coupling obtained

using a code called ALCON33 to solve the ideal Alfv�en con-

tinuum equations, where the lower and upper accumulation

points are 0:800xA and 1:200xA, respectively. In our gyroki-

netic simulations, TAE excitation by antenna is the first step.

The computation mesh consists of 16 parallel grids and 64 ra-

dial grids. The number of poloidal grids is 32 in the innermost

surface and 128 in the outmost surface, and therefore, the

total number of grids on a poloidal plane is 8385. The

antenna is implemented through an extra synthetic potential

d/ant added to the inductive potential d/ind in the GTC,
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d/ind ¼ d/ef f � d/þ d/ant; (19)

and the potential d/ant is implemented in the form of a

potential perturbation

d/ant ¼ d/antðŴÞ½cosðmh� nfÞ
þ cosððmþ 1Þh� nfÞ	cosðxanttÞ: (20)

Here, d/antðŴÞ represents the profile of a small perturbation

along the radial direction, with its maximum located at

r ¼ 0:5a, and it decays exponentially to zero at the inner and

outer boundaries. The time history plot in Fig. 2 shows that

the mode amplitude grows linearly with time when xant ¼ xA

and the two lines with black and red colors represent the real

and imaginary parts of the amplitude. The frequency spectra

can be obtained by performing a fast Fourier transform (FFT)

of the time series. Fig. 3 shows the corresponding frequency

spectra obtained when the driving frequency is varied. We

first set the drive frequency xant ¼ xA, as shown in Fig. 3(a),

and the spectrum shows the existence of only one component

since the antenna and eigenmode have the same frequency.

However, when the frequencies are set to xant ¼ 0:400xA

and xant ¼ 1:500xA, all of the frequencies at the lower and

upper accumulation points and the eigenmode are observed,

as shown in Figs. 3(b) and 3(c). From these figures, it is
obvious that the frequencies of the upper accumulation point,

the lower accumulation point, and the eigenmode are

1:200xA; 0:800xA, and xA, and these values agree well with

the continuum spectrum shown in Fig. 1. The mode structure

of / and Ajj are shown in Fig. 4 for TAE excitation by

antenna. The radial mode structure shows a clear symmetry as

an MHD mode and m ¼ 7; 8 are the dominant poloidal

harmonics.

B. TAE excitation by fast ions

In this section, we discuss the gyrokinetic simulations of

TAE excitation by fast ions. From Fu’s theory,46 the growth

rate c of TAE excitation by fast ions can be expressed as

c
xTAE

¼ q2bf

x�
xTAE

� 1

� �
fr �

cd

xTAE
; (21)

FIG. 1. Alfv�en continuum spectrum of the n¼ 5 mode in the ideal MHD

limit.

FIG. 2. Time history of vector potential Ajj with n¼ 5 and m¼ 7 when the

TAE is excited by antenna.

FIG. 3. Frequency spectrum of Ajj when the drive frequency scans from

0:400xA to 1:500xA. (a) Frequency spectrum obtained when drive fre-

quency is equal to the TAE frequency. (b) The drive frequency is

xant ¼ 1:500xA. (c) The drive frequency is xant ¼ 0:400xA. The green lines

indicate the lower and upper bounds of the continuum.
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where bf denotes the fast ion beta value, x� ¼ khqf Vtf =Lnf

denotes the diamagnetic drift frequency of fast ions, fr

denotes the fraction of the number of resonant particles, cd

denotes the growth rate of the TAE due to thermal plasma ki-

netic effects and continuum damping, and xTAE represents

the frequency of TAE. From Eq. (21), we note that TAE exci-

tation by fast ions should satisfy at least three conditions.

First, wave-particle resonance should occur. The resonance

condition of passing particles is lxt ¼ xTAE and the trapped

particles resonance can be expressed as the bounce-

precession resonance nxpre þ lxb ¼ xTAE, where xt denotes

the transit frequency, xb denotes the bounce frequency, xpre

denotes the precession frequency of fast ions, and l represents

an integer number. As predicted by Chen’s theory,6,7 Vtf

¼ VA and Vtf ¼ 1
3

VA are the two resonance points of the

wave-particle interaction. Here, Vtf ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Tf =mf

p
denotes the

thermal speed of the fast ions. Consequently, the diamagnetic

drift frequency of fast ions, as a source of free energy, should

be sufficiently large to allow inverse Landau damping to

occur. When the equilibrium parameters are chosen, the dia-

magnetic drift frequency x� is determined by R=Lnf , which is

the profile of the fast ions density gradient. Finally, the mode

must overcome the damping of thermal plasma, such as con-

tinuum damping, Landau damping, and radiative damping.

FIG. 4. Radial (upper panels) and poloidal (lower panels) mode structures of / (left) and Ajj (right) for TAE excitation by antenna.

FIG. 5. (a) Time history of vector potential Ajj with n ¼ 5;m ¼ 7 when the

TAE is excited by fast ions. (b) Frequency spectrum of Ajj where the dominant

frequency is that of the TAE. The weaker component corresponds to the EPM.
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In our simulations, the equilibrium parameters are set to

R0¼ 70:97cm; �¼ 0:3; B0¼ 19100Gauss; Te¼Ti¼ 2500eV,

and ne¼ ni¼ 4:525�1014=cm3. These simulations evolved

4�106 thermal ions and fast ions over 2000 time steps. From

these parameters, the Alfv�en speed is VA¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2=4pnimp

p
¼ 1:96�108cm=s, the thermal speeds of the fast ion

Vtf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Tf=mp

p
¼1:96�108 cm=s, when Tf ¼16Ti. Therefore,

the fast ion energy in this case satisfies the resonance point of

Vtf ¼VA. All the three species are loaded with the Maxwell

distribution, and the other parameters are set as nf ¼0:07ni;
a¼80qf , and be¼4pn0Te=B2

0¼0:125 on the magnetic axis.

The maximum density gradient of fast ions is R=Lnf ¼62:2,

located at the r¼0:5a surface where the safety factor q¼1:5.

Fig. 5(a) shows the linear growth of amplitude of the TAE

excited by fast ions; the two lines represent its real and imagi-

nary parts similar to the notation followed in Fig. 2. Fig. 5(b)

shows the corresponding frequency spectra. From Fig. 5(b),

we note that the dominant TAE frequency is x¼0:880xA

which moves towards lower accumulation point when com-

pared with the dominant frequency in the case of antenna

excitation. The weaker component in the spectrum is the

EPM frequency, which is discussed in detail in Sec. IV. The

mode structure of the TAE excited by fast ions shows a

clear radial symmetry breaking (Fig. 6), which is due to the

non-perturbative kinetic effects of fast ions.33 Moreover, this

radial structure of the TAE indicates that m¼7 and m¼8 are

the dominant modes. The phase space structure in Fig. 7 con-

firms the theoretical prediction that both passing and trapped

particles can contribute to wave-particle resonance. The pitch

angle of the passing particles is greater in terms of absolute

number, and the trapped particles resonate with the TAE in

the region with a smaller absolute value of the pitch angle.

The solid lines in Fig. 7 indicate the transit resonance of pass-

ing particles with harmonics l¼1;2;3. The resonance is

strongest near the region of Tf ¼5Ti, and it is very weak

when the fast ion energy exceeds 20Ti. Based on the reso-

nance strength and the size of resonance island, we can con-

clude that trapped particles dominate the wave-particle

resonance in our simulations. However, the type of particles

dominating the wave-particle resonance may depend on the

experimental apparatus used as the heating methods are dif-

ferent for different experimental setups.

IV. GLOBAL GYROKINETIC PARTICLE
SIMULATION OF EPM

It is well known that TAE as weakly damped gap modes

can be destabilized; however, EPM can only be observed

FIG. 6. Radial (upper panels) and poloidal (lower panels) mode structures of / (left) and Ajj (right) for TAE excitation by fast ions.
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when the mode drive is sufficiently strong to overcome the

continuum damping. The term �iK in the fishbone-like dis-

persion relation �iKþ dWf þ dWk ¼ 0 represents the mode

frequency shift from the accumulation points for TAE, and it

denotes continuum damping in the case of EPM. The fre-

quency of the EPM is determined by the characteristic fre-

quencies of fast ion motions such as bounce, transit, and

precession frequencies in toroidal geometry, which always

locate close to the lower or upper of the continuum spectrum.

At the same time, the growth rate of the EPM is also deter-

mined by the motions of fast ions. The real frequency of the

EPM near marginal stability is

RedWkðxrÞ þ dWf ¼ 0; (22)

and the growth rate is

c
xr
¼ ð�xr@xr

RedWkÞ�1ðImdWk � KÞ: (23)

It is interesting to study the parametric dependencies of the

mode. We observe a continuous modification of the TAE

into EPM that is caused by varying the fast ion parameters

such as density, density gradient, and energy. The mode

growth rate dependence on the fast ion density gradient is

shown in the upper panel of Fig. 8, and the parameter regions

of the TAE and EPM are distinguished by the dashed line.

The TAE shows a clear mode structure when R=Lnf is chosen

near the critical value, as shown in Fig. 8. In this case, all the

parameters are the same as those in the case of TAE excita-

tion by fast ions except the density gradient. It is obvious

that the TAE is excited with a weak drive while the EPM is

excited with a stronger drive. The mode structure is not clear

in the parameter regions near the transition region due to

continuum damping. In our simulation of TAE excitation

with R=Lnf ¼ 62:2, the TAE coexists with a weaker EPM, as

shown in Fig. 5(b). Such a two-component spectrum has not

thus far received any attention from other researchers.

Therefore, distinguishing the parameters regions of TAE and

EPM may be useful in analyzing experimental data. The

lower panel of Fig. 8 shows the energy scan of the growth

rate, and the plot indicates that the growth rate is not a mono-

tonic function of the fast ion energy. As the fast ion energy

FIG. 7. df 2 as a function of particle energy E=Te and pitch angle k ¼ vjj=v.

The solid lines from top to bottom indicate the points satisfying the reso-

nance condition xTAE ¼ lxt with the harmonic l ¼ 1; 2; 3.

FIG. 8. Upper panel: Growth-rate dependence of the drive strength. The

dashed line indicates the critical transition point between the TAE and EPM,

as the TAE exists under relatively the weaker drive conditions while the

EPM is observed for a stronger drive. Lower panel: The growth-rate depend-

ence on the fast ion energy when the drive is sufficiently strong. The EPM

exists in the lower fast ion energy region.

FIG. 9. Frequency spectrum of Ajj for varying fast ion energy. (a) Only the

EPM is observed when Tf ¼ 1:78Te. (b) Weak TAE coexists with EPM

when Tf ¼ 16Te. (c) A stronger TAE coexists with EPM when Tf ¼ 20Te.

The dashed lines denote the frequency range of the continuum spectrum.
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is increased stepwise, the density corresponding varies in the

opposite direction such that keep the parameter bf remains

constant. In this figure, Tf ¼ 1:78Te and Tf ¼ 16Te indicate

the two peaks of mode growth rate; in fact, these two points

are the resonance points Vtf ¼ VA=3 and Vtf ¼ VA corre-

sponding to the fast ion resonance with TAE. Fig. 9 shows

the plot of the frequency spectrum when the fast ion energy

is varied. Only the EPM is observed in the lower fast ion

energy region Tf ¼ 1:78Te in Fig. 9(a) and the weak TAE

spectrum coexists with the EPM (Fig. 9(b)) for Tf ¼ 16Te. In

Fig. 9(c), with Tf ¼ 20Te, the fast ion energy is so large that

the strength of the TAE exceeds that of the EPM. This result

validates the demarcation of the parameters regions of TAE

and EPM in the lower panel of Fig. 8. From all the three

plots shown in Fig. 9, we conclude that the frequency of the

EPM is determined by the characteristic frequencies of fast

ion motion in toroidal geometry as the frequency moves

towards the lower accumulation point with increasing fast

ion energy. The frequency of the TAE does not change sig-

nificantly because it is determined by background plasmas.

Besides, the frequency of the EPM does not exceed the lower

bound of the continuum upon varying the fast ion energy

because of the effects of continuum damping. Fig. 10 shows

the mode structure of the EPM with fast ion energy

Tf ¼ 4Te. The poloidal mode structure of the EPM shows the

feature of an MHD mode, which is different from the radial

symmetry break observed for TAE excitation by fast ions.

The radial width of the EPM mode structure is larger that of

the TAE.

V. SUMMARY

In summary, we successfully performed global gyroki-

netic particle simulations of TAE and EPM. Further, the dif-

ferences between TAE and EPM were discussed. In our

simulations, the frequency, growth rate, and mode structure

of the TAE were measured. TAE excitation by antenna pro-

vides a method to precisely measure the eigenmode fre-

quency, growth rate, and mode structure of the TAE. The

fast ion excitation leads to a significant radial symmetry

breaking of the TAE mode structure relative to ideal MHD

mode due to non-perturbative contributions of fast ions, and

consequently, the frequency of the TAE moves to the lower

region of the continuum. The phase space structure of fast

ions shows that both passing particles and trapped particles

can contribute to TAE excitation; however, trapped particles

FIG. 10. Mode structure of EPM. Radial (upper panels) and poloidal (lower panels) mode structures are shown. The right hand image is obtained using the

data of the electrostatic potential / and the left hand image is obtained using the data of the vector potential Ajj.
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dominate the wave-particle resonance in our simulations.

The comparison of the TAE and EPM shows that these two

modes can coexist in certain parameter regions. The fre-

quency of the EPM is determined by the characteristic fre-

quencies of fast ion motion in toroidal geometry, and the

frequency of TAE does not vary significantly because this

frequency is determined by background plasmas. In this

work, we measured the frequency, growth rate, and mode

structure of the EPM. Through our analysis of the simulation

results, we distinguished the TAE and EPM clearly, and we

confirmed that the gyrokinetic particle-in-cell code can accu-

rately simulate the Alfv�en eigenmodes in toroidal geometry.
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