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Global, first-principles study of the kinetic ballooning mode (KBM) is crucial to
understand tokamak edge physics in high-confinement mode (H-mode). In contrast
to the ion temperature gradient mode and trapped electron mode, the KBM is found
to be very sensitive to the equilibrium implementations in gyrokinetic codes. In
this paper, we show that a second-order difference in Shafranov shift or geometric
coordinates, or a difference between local and global profile implementations can
bring a factor of two or more discrepancy in real frequency and growth rate. This
suggests that an accurate global equilibrium is required for validation of gyrokinetic
KBM simulations.
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1. Introduction
The ballooning mode (Connor, Hastie & Taylor 1978) is an electromagnetic

instability driven mainly by the pressure gradient, and is considered to be one of
the most important instabilities in the high-confinement mode (H-mode) stage of
tokamaks. The H-mode is important for tokamaks since it can improve the plasma
confinement to make fusion more economically feasible. The ideal peeling-ballooning
mode (Connor et al. 1998) and kinetic ballooning mode (KBM) (Tang, Connor &
Hastie 1980; Belli & Candy 2010; Holod & Lin 2013; Tang et al. 2016) are invoked
to predict the constraints of the H-mode pedestal (Snyder et al. 2011). The linear
and nonlinear physics of the peeling-ballooning mode have recently been studied
intensively with fluid codes, such as the eigenvalue code ELITE (Wilson et al. 2002)
and initial value code BOUT++ (Dudson et al. 2009). These studies have helped
explain several important aspects (e.g. mode numbers) of H-mode experiments (cf.
Liu et al. 2014). However, the fluid model ignores many important kinetic effects,
such as the wave–particle resonance and finite Larmor radius effect, which may play
a critical role in the formation of the H-mode pedestal. A complete understanding
of the electromagnetic instabilities in the tokamak edge is still in progress. Even
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after one decade of efforts, gyrokinetic electromagnetic simulation is still working on
code–code verification due to its great challenge.

As an effort of code verification, the linear properties of the KBM have recently
been compared amongst various gyrokinetic continuum codes, including GS2
(Bourdelle et al. 2003; Joiner, Hirose & Dorland 2010) and GYRO (Belli & Candy
2010; Moradi et al. 2012). The KBM is found to be sensitive to parallel magnetic
fluctuation (Belli & Candy 2010) and the treatment of the radial pressure gradient term
in the drift velocity (Belli & Candy 2010). The parallel magnetic fluctuation is not
considered in this paper. Regarding the radial pressure gradient term, this effect may
be particular to flux-tube continuum codes, as the pressure gradient-driven magnetic
drift is automatically included in gyrokinetic particle simulations (Holod et al. 2009).
A newly published paper (Gorler et al. 2016) using the continuum code GENE shows
that in order to obtain consistent linear growth rates, a radially global simulation
model must be used. However, the details of the global equilibrium profile model used
in this study were not specified. In this paper, we use gyrokinetic particle simulations
to emphasize that, even in global simulations, the details of the equilibrium magnetic
configuration are important for studies of the KBM. In contrast, they are not critical
for electrostatic simulation, such as for the standard ion temperature gradient (ITG)
mode or trapped electron mode (TEM). The stabilization effect of the Shafranov shift
on the KBM is also demonstrated by our simulations. This suggests that, for the
purpose of experimental validation, the realistic Shafranov shift is an indispensable
component (Moradi et al. 2014; Citrin et al. 2015). In addition, the global radial
profile of the plasma equilibrium is important for electromagnetic simulations such
as for the KBM, while for electrostatic ITG/TEM simulation, the linear growth rate
and frequency depend only on the peak value of the global gradients.

For electrostatic simulations of tokamak plasmas, the equilibrium magnetic geometry
is critical for quantitative study of the nonlinear physics (Xiao & Catto 2006;
Lapillonne et al. 2009; Lin et al. 2012). GTC has recently implemented real tokamak
geometry (Xiao et al. 2015) from EFIT (Lao et al. 1985)/VMEC (Hirshman &
Whitson 1983) for experimental validations (cf. Wang et al. 2013). It has been found
that ignoring the difference in the poloidal angle between torus coordinates (r, θ0, ζ0)

and flux coordinates (rf , θf , ζf ) could lead to significant differences in the turbulent
transport simulated by various gyrokinetic codes (Lin & Hahm 2004; Lapillonne
et al. 2009; Lin et al. 2012). For electromagnetic simulations of finite-β plasmas,
the electromagnetic effect may dominate. The electromagnetic capability has been
implemented in the global gyrokinetic simulation code GTC (Holod et al. 2009). The
semi-analytical, global Shafranov equilibrium is implemented (Xie 2014; Xie 2015;
Xiao et al. 2015) to second order in the GTC code to study the magnetic equilibrium
effects for the electromagnetic KBM. It is found that a slight difference in the
equilibrium can cause a large difference in the linear KBM frequency and growth
rate. The local and global profiles also provide rather different linear frequencies and
growth rates.

2. Equilibrium sensitivity

In this work, we consider a low-β model equilibrium with β ∼ ε2, where
ε = r/R0 � 1 is the inverse aspect ratio. Under the boundary condition given by
a circular conducting wall, the equilibrium flux surfaces are concentric circles to
lowest order. To second order, the flux surfaces are shifted circles, which can be
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FIGURE 1. Scan over βe comparing GTC with other gyrokinetic codes (GYRO, GENE
and GS2) for different equilibrium field models. The transition from ITG to TEM and to
KBM is clearly shown as βe increases. The equilibrium implementations do not affect the
ITG and TEM significantly, but do affect the KBM branch significantly. Data are partly
taken from Candy (2005), Pueschel, Kammerer & Jenko (2008), Belli & Candy (2010),
Holod & Lin (2013). ES means electrostatic simulation.

defined in terms of the usual cylindrical coordinates (R, φc, Z) by the following
equations:

R= R0 + rs cos θs −∆(rs), (2.1a)
φc =−ζs, (2.1b)

Z = rs sin θs, (2.1c)

where R0 is the major radius and the Shafranov shift ∆(0) = 0. (Note: some
authors use ∆|rs=a = 0, where a is the minor radius. However, what really matters
is the derivative of the Shafranov shift.) The relations between Boozer flux
coordinates (rf , θf , ζf ) and geometry coordinates (rs, θs, ζs) are r = rs, ζf = ζs
and θf = θs − (ε + ∆′) sin θs (Meiss & Hazeltine 1990). Here ∆′ is the radial
derivative of the Shafranov shift ∆(r)= ∫ r

0 ((q
2 dr)/(r3R0))

∫ r
0 [r2/q2− 2(R2

0/B
2
0)rp′]r dr

(White 2001), where q is the safety factor, B0 is the on-axis magnetic field and
p is the normalized pressure. In the gyrokinetic community, three types of so
called s–α models (s = (r/q) dq/dr, α = −R0q2β ′, where β is the ratio between
plasma and magnetic field pressures) are generally used, with Model-a: lowest-order
approximation θ = θs, Model-b: first-order approximation without the Shafranov shift,
∆= 0 and θ = θs − ε sin θs and Model-c: ∆ 6= 0 and θ = θs − (ε +∆′) sin θs. Model-a
and Model-b differ in the definition of poloidal angle θ . In Model-a, the poloidal
angle θ is simplified as the geometric poloidal angle. In Model-b, the poloidal angle
is a flux coordinate and contains higher-order corrections in ε.

Figure 1 shows the linear frequency and growth rate for a scan over βe, comparing
the GTC results with those from other gyrokinetic codes (GYRO, GENE and GS2).
Here the Cyclone base case parameters (Dimits et al. 2000) are employed, i.e. s=0.78,
q = 1.4, r/R0 = 0.18, R0/LT = 6.9, R0/Ln = 2.2 and Ti = Te, where Ln = −d ln n/dr
and LT = −d ln T/dr. Also, kθρi = 0.22, where kθ = nq/r and ρi = √Ti/mi/Ωci

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0022377816000830
Downloaded from http:/www.cambridge.org/core. Peking University, on 23 Sep 2016 at 11:32:36, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0022377816000830
http:/www.cambridge.org/core


4 H. S. Xie, Y. Xiao, I. Holod, Z. Lin and E. A. Belli

is the ion Larmor radius. In addition, the following parameters are used in the
simulation: mi/me = 1837, R0 = 83.5 cm, ρi/a = 125, B0 = 2.0T , Te = Ti = 2.2 keV.
We set-up different βe parameters by varying the electron density ne (Holod &
Lin 2013), e.g. for βe = 2.0 %, ne = 0.90 × 1014 cm−3. In figure 1, the data for
GENE/GS2/GYRO are interpolated from the original data with kθρi = 0.20 and 0.25
in Candy (2005), Pueschel et al. (2008), Belli & Candy (2010). The transition from
ITG (ion temperature gradient mode) to TEM (trapped electron mode) and to KBM
is clearly shown as βe increases. The GTC (Model-b) electromagnetic (Holod et al.
2009; Holod & Lin 2013) simulation recovers the GTC (Model-b, ES) electrostatic
(Lin & Hahm 2004) result as βe → 0. This shows that the GTC electromagnetic
simulation converges to the electrostatic simulation in the low-β limit. In figure 1 the
equilibrium implemented in GYRO is Model-a while that in GS2/GENE is Model-b
by default. In the GTC code, both Model-a and Model-b are implemented. As can
been seen in figure 1, while the equilibrium implementation does not largely affect
the ITG, TEM and their transitions, it does significantly affect the linear growth rate
of KBM. The GTC code gives a real frequency for the KBM branch similar to the
other gyrokinetic codes, but gives a smaller growth rate. For example, for the case
with βe = 1.75 % and Model-a, γ GYRO ' 1.5γ GTC. We note that this difference could
come from the difference in the equilibrium profiles, as is shown in the latter part of
this paper. That is, other gyrokinetic codes like GYRO use local flux-tube geometry,
whereas the GTC code uses a global geometry. A linear electromagnetic gyrokinetic
study has previously been carried out for the DIII-D H-mode pedestal (Wang et al.
2012), which shows that the frequency and growth rate can have a 50 % deviation
among several gyrokinetic codes with local equilibrium settings. We also note that
the gyrokinetic code GEM with flux-tube equilibrium shows good agreement with the
aforementioned gyrokinetic codes such as GYRO for the ITG and TEM instabilities
based on a different set of parameters (Chen et al. 2013).

To further quantify the effect of the equilibrium implementation, figure 2 shows
a more detailed scan of βe (with kθρi = 0.22) and kθρi (with βe = 1.75 %) for
the KBM branch. It is well known that Shafranov shift has a great effect on the
stability of the KBM (Moradi et al. 2014; Citrin et al. 2015). Indeed, we find a
large discrepancy in both the frequency and growth rate if the Shafranov shift is
considered in the GTC simulation, as shown in figure 2. Both ω and γ become
much smaller in magnitude when the Shafranov shift is included. It is observed that
the electromagnetic perturbations still dominate the electrostatic perturbations, with
A‖/φ∼ 3–6 in ideal Alfvén wave units (i.e. A‖/φ= 1 for the ideal Alfvén eigenmode).
This suggests that the mode is still an electromagnetic mode, such as a KBM. In
addition, we have also compared the Shafranov shift effect on the ITG instability.
In the GTC simulation, the differences in ω and γ between equilibriums with and
without Shafranov shift are less than 5 % (Xie 2014; Xie 2015).

These findings suggest that an accurate global equilibrium, rather than a local
equilibrium model, is crucial to validate experiments with gyrokinetic simulations.
Another important factor for the gyrokinetic simulation is the density and temperature
profiles and their associated gradients. To illustrate that the local profiles may not
be suitable for validating experiments described by the KBM, we compare results
from various equilibrium profiles using the GTC code. In figures 1 and 2, the
following global profile (‘default test’) for GTC is used: q = 0.82 + 1.1(ψ/ψw) +
1.0(ψ/ψw)

2, ni = ne = 1.0 + 0.205{tanh[(0.3 − (ψ/ψw))/0.4] − 1.0} and Ti = Te =
1.0 + 0.415{tanh[(0.18 − (ψ/ψw))/0.4] − 1.0}. Here ψ is the poloidal flux and
ψw = ψ(r = a) = 0.0375B0R2

0, which gives a/R0 = 0.36. The local parameters at
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FIGURE 2. GTC versus GYRO for different equilibrium implementations. GYRO (s–α,
α= 0) is Model-a; GYRO (Miller, α= 0) is Model-b; GYRO (Miller, α 6= 0) is Model-c.

r = 0.5a (which is the position where the density and temperature profiles peak)
are the same as the Cyclone base case. To model the local equilibrium profile,
we use the following gradients to calculate the density and temperature profiles:
R0/Ln = 2.22e−[(r/a−0.5)/1r]6 and R0/LT = 6.92e−[(r/a−0.5)/1r]6 , where 1r is the radial
width of the local profile. The density and temperature profiles are reproduced to be
consistent with these gradient profiles. Figure 3 shows the R0/Ln used in GTC to
model local equilibrium profiles, where the plateau gradient equals the peak value
of the test gradient profile. In the electrostatic simulations for the ITG and TEM,
the linear frequency and growth rate are not sensitive to 1r. Table 1 shows the
electromagnetic simulation results for the ITG and KBM with different local profile
widths 1r. We see that the frequency and growth rate for ITG change little for
different equilibrium profile implementations. However, the frequency and growth
rate for the KBM change by approximately 25 % for different equilibrium profile
implementations. To ensure that this difference comes from the equilibrium, in the
above simulations, the massless fluid model for electrons (Lin & Chen 2001; Holod
et al. 2009) (where the TEM is excluded) and Model-a equilibrium (to exclude the
Shafranov shift) are used. The only difference between the ITG and KBM simulations
is βe, i.e. β ITG

e = 0.25 % and βKBM
e = 1.75 % respectively. The results confirm that the

KBM is very sensitive to the equilibrium profiles. This sensitivity to the radial
profile may be caused by the relatively larger radial extension of the KBM. To fully
understand this issue, further analytic investigation is required. Overall, this suggests
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FIGURE 3. Various equilibrium profiles of R0/Ln used in GTC.

ω 1r= 0.4 1r= 0.3 1r= 0.2 Default test

KBM 1.67+ 1.09i 1.77+ 1.02i 1.90+ 0.93i 2.06+ 0.75i
ITG 0.47+ 0.16i 0.47+ 0.15i 0.48+ 0.14i 0.50+ 0.13i

TABLE 1. Influence of the radial width of the local profiles on the KBM and ITG. Here,
in contrast to figures 1 and 2, a massless fluid model for electrons is used.

that an exact global equilibrium, such as from EFIT/VMEC, needs to be used in
gyrokinetic simulations to verify codes and to validate experiments with the KBM as
the dominant instability.

3. Summary and discussion
We report that the linear physics of the KBM, in contrast to the ITG and TEM,

is extremely sensitive to the equilibrium implementation in the gyrokinetic code. A
second-order difference in the magnetic equilibrium can result in a factor of two or
more difference in the real frequency and growth rate. This suggests that an accurate
global equilibrium is required for validation of gyrokinetic simulations of the KBM.
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