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Developments in gyrokinetic particle simulation enable the gyrokinetic toroidal code (GTC) to

simulate turbulent transport in tokamaks with realistic equilibrium profiles and plasma geometry,

which is a critical step in the code–experiment validation process. These new developments

include numerical equilibrium representation using B-splines, a new Poisson solver based on finite

difference using field-aligned mesh and magnetic flux coordinates, a new zonal flow solver for

general geometry, and improvements on the conventional four-point gyroaverage with nonuniform

background marker loading. The gyrokinetic Poisson equation is solved in the perpendicular plane

instead of the poloidal plane. Exploiting these new features, GTC is able to simulate a typical

DIII-D discharge with experimental magnetic geometry and profiles. The simulated turbulent heat

diffusivity and its radial profile show good agreement with other gyrokinetic codes. The newly

developed nonuniform loading method provides a modified radial transport profile to that of the

conventional uniform loading method. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4908275]

I. INTRODUCTION

A complete understanding of the physics of anomalous

transport is critical for the design of future magnetic fusion

reactors.1 It is generally believed that turbulence at the ion

gyroradius scale (micro-scale) leads to the anomalous trans-

port2 observed in experiments. For low-b (defined as the

ratio of kinetic pressure to magnetic pressure) and

high-temperature toroidal plasmas, electrostatic modes might

provide the greatest contribution to turbulent transport. The

ion temperature gradient (ITG) mode2,3 and collisionless

trapped electron mode4 are two prominent candidates in

accounting for ion and electron turbulent transport, respec-

tively. After several decades’ development, massively paral-

lel gyrokinetic simulation based on first-principles has

emerged as a major tool in the investigation of the complex

physics of turbulent transport.5

There are several stages to the code development for

these large-scale gyrokinetic simulations. First, the code is

implemented based on the gyrokinetic model and then veri-

fied by some analytical theory and other numerical codes to

ensure that the code faithfully represents the simulation

model.6,7 The next step is to use the existing code to study

interesting but complex physics, such as the saturation and

transport mechanisms of turbulence.8,9 The third step is

called code validation,10–12 which is usually performed in

parallel to the second stage. In this step, the gyrokinetic sim-

ulation is performed using realistic experimental parameters.

The simulation results, such as the transport flux, and tempo-

ral and spatial characteristics of the turbulence, are compared

with the experimental measurements not only to help explain

the experimental observations, but also to verify whether the

simulation model has captured the essential physics of the

turbulent transport. Following the comprehensive compari-

sons between codes, simulation models, and experiments,

the code is expected to have predictive power. The ultimate

goal of gyrokinetic code development is to guide new cam-

paigns of experiments and to help design the next generation

of fusion devices.

Current efforts on gyrokinetic code development still

focus on the first three stages and in particular, the code vali-

dation step is considered critical in this roadmap. The main

purpose of this article is to report the recent progress of the

global gyrokinetic toroidal code (GTC)5,13 in incorporating

general equilibrium magnetic geometry and real experimen-

tal profiles to simulate turbulent transport in tokamak experi-

ments. In fact, these new features reported in this work have

already been used successfully to validate GTC simulations

of Alfven eigenmodes14–16 in DIII-D experiments and to

study the trapped electron mode instability in the pedestal of

DIII-D H-mode plasmas.17 The general geometry capability

can also be readily used in conjunction with recent upgrades

of GTC physics models for global simulations of macro-

scopic MHD instabilities excited by equilibrium current18

and radio frequency waves in tokamaks.19

In this work, we develop a numerical scheme based on

B-splines to calculate the equilibrium quantities on the com-

putational grids and to evaluate the field quantities at the

particle’s position. This new feature enables the use of the

numerical magnetic equilibrium produced by MHD equilib-

rium codes such as EFIT,20,21 VMEC,22 and the transport

code TRANSP.22,23 To accommodate the general magnetic

geometry, we improve the conventional four-point average

method24 to calculate the gyroaverage, and implement a newa)Electronic mail: yxiao@zju.edu.cn. Tel.: (86)57187952649
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gyrokinetic Poisson solver based on the Pade approximation.

As field-aligned magnetic coordinates are employed, we can

solve the gyrokinetic Poisson equation in the perpendicular

plane rather than the poloidal plane. This new Poisson solver

in the GTC code is able to simulate small-aspect-ratio

tokamaks such as the NSTX in addition to the conventional

large-aspect-ratio tokamaks. A new zonal flow solver is

developed for the general magnetic geometry. We also

implement a nonuniform loading method for the background

marker distribution in addition to the conventional uniform

loading method.

We use DIII-D discharge #101391 as a benchmark case

for these new developments in the GTC. In the simulation,

we include kinetic electrons and find that this discharge is

dominated by ITG instabilities. We compare the heat diffu-

sivity for different gyrokinetic Poisson solvers and different

marker loading methods. The new gyrokinetic Poisson solver

provides about the same level of turbulent transport as the

conventional four-point average method. In addition, the

nonuniform loading method provides about the same

volume-averaged turbulent transport as the conventional

uniform loading. However, the radial profile of the turbulent

transport is different for these two loading methods, which is

attributed to the stabilizing effect of the gyroaverage, i.e., the

finite Larmor radius (FLR) effect. The simulation results are

compared with those from GYRO25,26 and good agreement

is obtained.

The remainder of this paper is organized as follows. In

Sec. II, we introduce the numerical representation of equilib-

rium plasma quantities, especially the B-spline interpolation.

In Sec. III, the perturbative df method used to solve the gyro-

kinetic equation and the particle-pushing scheme in general

magnetic geometry are reviewed for completeness. We then

explain how to use the Pade approximation to solve the gyro-

kinetic Poisson equation and the associated zonal flow com-

ponent in Sec. III, where the conventional four-point average

method is also improved. The finite difference scheme is

used to discretize the Laplacian operator, and it is verified in

Sec. IV. In Sec. V, based on these improvements, a gyroki-

netic turbulence simulation by GTC is benchmarked with

other code using the DIII-D experimental parameters. A

summary and discussion are provided in Sec. VI.

II. NUMERICAL REPRESENTATION OF EQUILIBRIUM
PLASMA QUANTITIES

In plasma turbulence studies, we often divide the physi-

cal quantities into an equilibrium part and a fluctuating part.

The equilibrium quantities obey the MHD equilibrium, i.e.,

the Grad–Shafranov equation, while the fluctuating part is

driven by various instabilities that lead to turbulent transport.

The equilibrium magnetic configurations used by the gyroki-

netic simulation are either from analytic models such as the

simple circular cross section or Miller equilibrium, or from

other numeric equilibrium codes such as EFIT20,21 or

VMEC.22 The equilibrium in tokamaks can be described

better by magnetic flux coordinates rather than Cartesian

coordinates, because most important equilibrium quantities,

such as plasma temperature and density, can be shown to

depend on the magnetic flux only. The GTC employs mag-

netic flux coordinates ðw; h; fÞ to represent the electromag-

netic fields and plasma profiles, where w is the poloidal

magnetic flux, h is the poloidal angle, and f is the toroidal

angle. The equilibrium magnetic field can be represented

either in the following covariant form:

B0 ¼ grfþ Irhþ drw; (1)

or in the contravariant form

B0 ¼ qrw�rhþrf�rw: (2)

Then, the transformation Jacobian takes the following form:

J�1 � rw�rh � rf ¼ B0
2

gqþ I
: (3)

If the Jacobian is chosen properly such that ðw; h; fÞ are the

Boozer coordinates, the toroidal current 2pg and poloidal

current 2pI can be represented by a sole function of w, i.e.,

g ¼ gðwÞ; I ¼ IðwÞ.
The GTC code inputs the numerical magnetic equilib-

rium and plasma profiles from EFIT/VMEC by transforming

the equilibrium quantities defined in the toroidal coordinates

ðR; Z;/Þ to those defined in the magnetic coordinates

ðw; h; fÞ. However, the EFIT outputs only provide equilib-

rium quantities on a coarse mesh, which usually contains a

few tens of grid points in the radial or poloidal direction, as

shown in Fig. 1. This equilibrium mesh cannot be used to

simulate micro-scale turbulence on the order of the ion gyro-

radius (qi), which requires a much denser mesh of grid

points, e.g., hundreds to thousands of grid points in the radial

FIG. 1. Equilibrium mesh from EFIT data. The solid lines are drawn along

constant w and h.
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and poloidal directions for the size of a realistic tokamak, as

sketched by the unstructured computational grids in Fig. 2.

Therefore, it is necessary to map the coarse experimental

mesh to the fine computational mesh to achieve sufficient nu-

merical accuracy. In the GTC code first-order continuous B-

splines are currently implemented for the 1D and 2D func-

tions to interpolate the complicated magnetic geometry and

plasma profiles which provide a good compromise between

high numerical confidence and reasonable computation effi-

ciency. Generally, two classes of function are involved in

describing the magnetic geometry and plasma profiles in axi-

symmetric systems such as tokamaks: a 1D function f ðwÞ to

describe quantities such as the temperature profile TðwÞ, and

a 2D function f ðw; hÞ to describe quantities such as the equi-

librium magnetic field Bðw; hÞ. The detailed implementations

of these functions are illustrated in Appendix A.

III. GYROKINETIC EQUATION AND POISSON SOLVER
IN GENERAL MAGNETIC GEOMETRY

The gyrokinetic particle simulation uses the particle-

in-cell method to solve the gyrokinetic equation, which is

essentially a Monte-Carlo approach to solve the reduced

dynamic equation in the 5D phase space of ðw; f; h; vk; lÞ,
where l ¼ mv?

2=2B is the magnetic moment and vk is the

parallel velocity for the particle. In the GTC turbulence sim-

ulation, we apply gyrokinetics for the ion and drift kinetics

for the electron, because our focus is on the turbulence

on the ion gyroradius scale. The ion distribution function

fi � fMi þ dfi with the perturbed guiding center distribution

function dfi satisfies the following gyrokinetic equation:27

ddfi
dt
� @

@t
þ vkbþ vd þ hvEiu
� �

� r
�

�b� � r lBþ Zieh/iu
� � @

mi@vk

�
dfi

¼ �fMi hvEiu � rlnfMi � b� � rh/iu
Zie@

mi@vk
lnfMi

 !
: (4)

In this equation, b� ¼ bþ mic
ZieB vkr � b, l ¼ miv?2

2B , hvEiu ¼
cb�rh/iu

B with h/iu ¼ 1
2p

Ð
/ðxÞdðx� R� qÞdxdu as the

gyroaveraged electrostatic potential, and vd ¼ vc þ vg with

vc ¼ vk
2

Xi
r� b and vg ¼ l

miXi
b�rB. We decompose the

electrostatic potential to a flux-surface averaged component

(zonal component) and a fluctuating component, i.e., / ¼
h/i þ d/ with hd/i ¼ 0. The electrons might respond

mostly to the fluctuating potential adiabatically because of

their fast motion. Therefore, it is convenient to write the

electron distribution function as fe � fMe þ ed/
Te

fMe þ dge

with ed/
Te
� 1 and dge to satisfy the following drift kinetic

equation:28

@

@t
þ vkbþ vd þ vE
� �

� r � b� � r lB� e/ð Þ @

me@vk

" #
dge

¼ �fMe exp
ed/
Te

� �
@

@t

ed/
Te

� �
þ dvE � r ln fMe

�

� vd þ dvEð Þ � r eh/i
Te

� ��
; (5)

where dvE ¼
cb�rhd/iu

B .

In the df algorithm, to minimize the Monte-Carlo noise

caused by the particle method, the particle weight w ¼ df=f
is introduced as an additional attribute to the particles. The

evolution of the particle weight is determined by the follow-

ing equation:29

dw

dt
¼ 1� w

FM

ddf

dt
: (6)

The guiding centers follow equations of motion in the gen-

eral magnetic geometry for tokamaks, which is discussed in

Appendix B.

To close the preceding gyrokinetic equations, we need

to solve the following gyrokinetic Poisson equation:

Zi
2en0i

Ti
/� ~/
� �

¼ zi�ni1 � ne1; (7)

with ~/ ¼ 1
2p

Ð
h/iuðRÞdðx� R� qÞFMi R; l; vk

� �
dRd3v.30

For perturbed electron density, it is convenient to write

ne1 ¼ ð1� dmÞne0e/=Te þ dne
ð1Þ with dm ¼ 0 for the elec-

trostatic case and dm ¼ 1 for the electromagnetic case.

Therefore, we obtain the following gyrokinetic Poisson

equation:13,28,31

FIG. 2. Unstructured mesh in GTC.

Sketch of unstructured field-aligned

mesh in GTC. The grids are usually set

to make the radial and poloidal grid

sizes equal.
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zi
2eni0

Ti
þ ene0

Te
dm

� �
/� Zi

2eni0

Ti

~/ ¼ Zi �ni1 � dne
1ð Þ; (8)

with ni1 ¼
Ð

dðX� R� qÞdfidRd3v and dne
ð1Þ ¼

Ð
dðX� R

�qÞdgedRd3v. There are two approaches to evaluate ~/: the

four-point average or Pade approximation. The four-point

average method is illustrated in Ref. 32, as is shown sche-

matically in Fig. 3(a). However, the four-point method that

is conventionally implemented in GTC is only accurate

when r 	 qi, since it only retains the leading order term in

the qi=r expansion and it becomes inaccurate when r 
 qi.

When approaching the magnetic axis, the flux surface

becomes circular and the polar coordinates ðr; hÞ can be used

to illustrate the improved four-point average method.

Considering a particular point ðr; hÞ, the four points for the

gyroaverage in the conventional four-point average method

are ðr þ qi; hÞ, ðr � qi; hÞ, ðr; hþ qi=rÞ; and ðr; h� qi=rÞ, as

is shown by the dark red points in Fig. 3(b). To capture the

global effects, we need to retain higher-order terms, e.g., the

second-order correction. As shown by the bright red points

in Fig. 3(b), the following four points ðr þ qi; hÞ, ðr � qi; hÞ,
ðr þ qi

2=r; hþ qi=rÞ, and ðr þ qi
2=r; h� qi=rÞ are chosen

for the gyroaverage in the improved four-point average

method. It becomes transparent that the change in the radial

location for this new average method is of the order of

qi
2=r2. For the boundary conditions in the gyrokinetic

Poisson equation, it is usually set as /ðw ¼ w0Þ
¼ /ðw ¼ w1Þ ¼ 0 because we do not want boundary effects

to affect the turbulent transport in the central part of the sim-

ulation domain.

We note that in the long wavelength limit /� ~/
� �qi

2r?2/. Hence, one crucial step in verifying the

improved four-point average method for the gyrokinetic

Poisson equation is to show that it can be used to solve the

Poisson problem �r?2/ ¼ dn. In the high q limit, the toroi-

dal effects can be ignored. Considering a tokamak with a

circular cross section, the Laplacian operator can be approxi-

mated as r?2 ¼ 1
r
@
@r r @

@r þ 1
r2

@2

@h2. This Poisson problem

essentially becomes a Bessel problem. Then, if we let

dn r; hð Þ ¼ Jm k0rð Þ � Jm k0a1ð Þ
Ym k0a1ð Þ Ymðk0rÞ with m ¼ 6 and k0

satisfying Jmðk0a0ÞYmðk0a1Þ � Jmðk0a1ÞYmðk0a0Þ ¼ 0, the

Poisson equation has an analytic solution / ¼ Jm k0rð Þ
� Jm k0a1ð Þ

Ym k0a1ð Þ Ym k0rð Þ under the boundary condition /ðr ¼ a0Þ
¼ /ðr ¼ a1Þ ¼ 0. As shown in Fig. 4, the solid lines show

the analytic solution, while the lines with different shapes

show the different numbers of radial grids applied in the

numeric calculation. Fig. 4(a) shows the solutions from the

conventional local approximation for the four-point average

method for different numbers of radial grids, while Fig. 4(b)

shows the solution by adding higher-order global corrections

to the four-point average method. As can be seen from these

figures, the new implementation of the global correction

makes the numeric solution closer to the analytic value.

FIG. 3. Four-point average revisited.

(a) Eight extra points are required to

compute ~/ based on the four-point

gyroaverage method. (b) The points

used to compute ~/ in the current GTC

(bright red points) capture the global

effect, while the points used conven-

tionally (dark red points) are based on

the local approximation.

FIG. 4. Verification of four-point average. The four-point averages applied

to compute the ~/ are verified in the Bessel problem for the following two

cases: (a) with local approximation and (b) with global correction.
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Next, we discuss the second method to evaluate ~/, the

Pade approximation, as demonstrated in the following:

~/ ¼ 1

1� qi
2r?2

/: (9)

We decompose the electrostatic potential and density pertur-

bation to a flux-surface averaged component (zonal compo-

nent) and a fluctuating component, i.e., / ¼ h/i þ d/;
n1 ¼ hn1i þ dn with hdni ¼ hd/i ¼ 0. The flux-surface

average is calculated by h/i �
Þ

dhdfJ/Þ
dhdfJ

. Subtracting Eq. (7)

by its flux-surface average gives

d/� ~d/ þ h~/i � h~/i ¼ Tie

nizi
2

zid�ni � dneð Þ: (10)

In the large aspect ratio limit, the term h~/i � h~/i in the

preceding equation mainly represents the coupling between

the equilibrium magnetic field and /n¼0;m 6¼0 harmonics,

which is transparent in the long wavelength limit h~/i � h~/i
¼ ðkr

2qi
2 � hkr

2qi
2iÞh/i � hk?2qi

2d/i � �hk?2qi
2d/i. If

we assume the equilibrium magnetic field takes the form

B ¼
P1

m¼0ðAmem cosmhþ Bmem sinmhÞ with e ¼ r=R0 as the

inverse aspect ratio, then it can be estimated with

ðh~/i � h~/iÞn¼0:m 6¼0 
 emd/n¼0;m 6¼0, which is usually much

smaller than ðd/� ~d/Þn¼0;m 6¼0 for tokamaks. Therefore, the

following gyrokinetic Poisson equation can be used to com-

pute the fluctuating potential with the requisite accuracy:

d/� ~d/ ¼ Tie

nizi
2

zid�ni � dneð Þ: (11)

The flux-surface averaged gyrokinetic Poisson equation

using Eqs. (7) and (9) can be written as

hr2
?/i ¼

Ti

qi
2nizi

2
� Ti

niZi
2
r?2

� �
e ne1 � Zi�ni1ð Þ

� 	
: (12)

Using Eq. (16), the flux-surface averaged perpendicular

Laplacian hr2
?/i in the preceding equation can be evaluated

by

hr2
?/i¼

1

J0 wð Þ
@

@w
J0 wð Þhgwwi@h/i

@w

� ��

þ@J0 wð Þ
@w

gww@d/
@w

� 	
þ@J0 wð Þ

@w
gwh@d/

@h

� 	�
; (13)

where J0ðwÞ ¼
Þ

dhdfJ is the flux-surface averaged

Jacobian. The ratio between the second and the first

terms is ed/m¼1=h/i � 1, i.e., negligible in the large-

aspect-ratio limit. The third term is even smaller than the

second by the factor gwh=gww, where gwh measures the non-

orthogonality of the magnetic coordinates ðw; hÞ, which

might be small for most flux surfaces in a tokamak.

Therefore, we only keep the first term on the right-hand

side of Eq. (13). If we let qc ¼ eðZi�ni1 � ne1Þ, then the

gyrokinetic Poisson equation for the zonal potential h/i
reads as follows:

@

@w
J wð Þhgwwi @h/i

@w

� �

¼ � Ti

niZi
2

J wð Þ 1

qi
2

� 	
þ Ti

niZi
2

@

@w
J wð Þhgwwi @

@w

� �
hqci:

(14)

We integrate the preceding equation to obtain the zonal elec-

tric field

@h/i
@w
¼� Ti

niZi
2

@hqci
@w
� 1

J wð Þhgwwi

ðw

w0

dw
TiJ wð Þ
niZi

2

� 1

qi
2

� 	
þ hgwwi dln Ti=nið Þ

dw
@

@w

� �
hqci: (15)

The preceding equation has been used in the GTC to calcu-

late the zonal flow response for a given density perturbation,

which has reproduced the Rosenbluth–Hinton residual

level.33

IV. LAPLACIAN OPERATOR AND GEOMETRIC
TENSOR

The inversion of the Laplacian operator plays a crucial

role in computing perturbed electromagnetic fields. In this

section, we study how to discretize the Laplacian operator in

magnetic coordinates using the finite difference method. In

the magnetic coordinate system, the Laplacian can be

expressed as

r2f ¼ 1

J

@

@na Jrna � rnb @

@nb f

� �
;

with a ¼ 1; 2; 3; and b ¼ 1; 2; 3; (16)

where ðn1; n2; n3Þ ¼ ðw; h; fÞ are the coordinates of the

Jacobian J ¼ ðrw � rh�rfÞ�1
. We define a contravariant

geometric tensor gna nb � rna � rnb. For an axisymmetric

system, the Laplacian can be explicitly expressed as

r2f ¼ gww @
2f

@w2
þ 2gwh @2f

@w@h
þ ghh @

2f

@h2
þ gff @

2f

@f2

þ 1

J

@Jgww

@w
þ @Jgwh

@h

 !
@f

@w
þ 1

J

@Jgwh

@w
þ @Jghh

@h

 !
@f

@h
:

(17)

To compute the above Laplacian, we first need to compute

the contravariant geometric tensor gnanb
. The B-spline repre-

sentation of the magnetic field provides a transformation

between two coordinate systems, i.e., X ¼ Xðw; hÞ and

Z ¼ Zðw; hÞ, where ðX; Z; fÞ are the toroidal coordinates.

The covariant geometric tensor gnanb can be obtained by the

following formula:

gww ¼
@X

@w

� �2

þ @Z

@w

� �2

; (18)

ghh ¼
@X

@h

� �2

þ @Z

@h

� �2

; (19)

022516-5 Xiao et al. Phys. Plasmas 22, 022516 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.200.44.221 On: Thu, 26 Feb 2015 00:02:17



gwh ¼
@X

@w
@X

@h
þ @Z

@w
@Z

@h
; (20)

and ghw ¼ gwh; gff ¼ X2. Using the identity gnanbgnbnc ¼ dc
a,

we can find the transformation from the covariant to contra-

variant geometric tensor, i.e.,

gww gwh 0

ghw ghh 0

0 0 gff

2
4

3
5 ¼ ghh �gwh 0

�ghw gww 0

0 0 D=gff

2
4

3
5 1

D
; (21)

with the determinant D ¼ gwwghh � ghwgwh.

Closely related to the magnetic coordinates, the field-

aligned coordinates ðw; h0; f0Þ are used in the GTC code to

define the field-aligned mesh, which is essential for reducing

the number of toroidal grids, where h0 ¼ h� f=q and

f0 ¼ f. Then, the Laplacian in this new coordinate system

becomes

r2f ¼gww @
2f

@w2
þ2gwh @2f

@w@h0

þghh @
2f

@h0
2
þgff @

@f0

� @

q@h0

� �2

f

þ1

J

@Jgww

@w
þ@Jgwh

@h0

 !
@f

@w
þ1

J

@Jgwh

@w
þ@Jghh

@h0

 !
@f

@h0
:

(22)

Using the fact that the perpendicular scale length is much

shorter than the parallel scale length, the perpendicular

Laplacian can be obtained from the preceding equation:

r?2f ¼gww @
2f

@w2
þ 2gwh @2f

@w@h0

þ ghhþ gff=q2
� � @2f

@h0
2

þ1

J

@Jgww

@w
þ@Jgwh

@h0

 !
@f

@w
þ 1

J

@Jgwh

@w
þ@Jghh

@h0

 !
@f

@h0

:

(23)

Next, we study how to discretize the preceding perpendicular

Laplacian. In the GTC code, we use an unstructured mesh to

ensure an approximately equal grid size in the radial and

poloidal directions. The mesh grids are uniform in the h0

direction for each flux surface and nonuniform in the w
direction. To evaluate the Laplacian numerically in Eq. (23),

we need to discretize the following five operators: @
@h0
; @
@w,

@2

@w2,
@2

@w@h0
, and @2

@h0
2. The discretization of these differential

operators using the finite difference method is shown in

Appendix C. We note here that in the GTC code, the gyroki-

netic Poisson equation is solved in the field-aligned

coordinates, while the particles are pushed in magnetic coor-

dinates, as shown in Appendix B. To evaluate the electric

field in the particle-pushing procedure, we need to use the

following transformation: @/@h ¼
@/
@h0
; @/@f ¼

@/
@f0
� 1

q
@/
@h0

.

After discretizing each term in Eq. (23), we can convert

the Poisson equation r?2/ ¼ dnðw; hÞ to a big matrix equa-

tion and solve it parallelly using the software of PETSc.34 A

numeric example is provided to verify the numerical Poisson

solver. In the simple circular cross section limit, we assume

the safety factor q ¼ const, then gww ¼ r2=q2, ghh ¼ 1=r2,

gwh ¼ 0, and gff ¼ 1=X2 with X ¼ 1þ r cos h=R0. Then, the

Laplace operator including the essential toroidal effect in the

field-aligned coordinates becomes r?2 ¼ @2

@r2 þ 1
r þ

cos h0

X


 �
@
@r þ 1

r2 þ 1
q2X2


 �
@2

@h0
2 � sin h0

Xr
@
@h0

. The source term in the

Poisson equation is set as dn r; h0ð Þ ¼ r?2 sin 4p r�a0

a1�a0

� ��
cos mh0ð Þ� with m ¼ 6, which is shown in Fig. 5(a) in the 2D

poloidal plane. Using the boundary condition /ðr ¼ a0Þ ¼
/ðr ¼ a1Þ ¼ 0 and the new Poisson solver implemented in

the GTC, we can find the numeric solution to the Poisson

equation, as shown in Fig. 5(b). Then, we find the numeric

values along the black solid line in Fig. 5(b) and compare

FIG. 5. Verification of Poisson solver. Verification of Poisson solver by

solving Poisson equation r?2/ ¼ dn analytically and numerically. (a) 2D

contour for the source term dnðr; hÞ, (b) 2D contour for the numerical solu-

tion /ðr;/Þ to Poisson equation, (c) comparison between the numerical and

analytical solutions along the black line in (b).
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them with those from the analytic solution. As shown in Fig.

5(c), the numeric solution almost overlaps the analytic solu-

tion, which verifies the effectiveness of this finite-difference-

based Poisson solver.

V. SIMULATION FOR DIII-D EXPERIMENT

Next, we compile all the newly developed features in

the GTC to simulate a real tokamak experiment based on the

DIII-D discharge #101391.26 This low-b L-mode discharge

has been carefully studied by the GYRO code.25 Therefore,

the simulation of this particular discharge provides a useful

benchmark case for the verification of the gyrokinetic codes

through completely different approaches. To undertake a

meaningful verification/validation, it is critical to compare

the conventions used in these codes. We first compare the

convention of the input physical quantities in the GTC with

that of GYRO in Appendix D. Then, we use the GTC to per-

form an electrostatic turbulence simulation with kinetic elec-

trons. The temperature and density profiles for ions and

electrons are taken from the EFIT-produced iterdb file.

Figure 6 shows the input profiles for the GTC simulation for

the domain r � ½0:12a; 0:82a�. As the zero boundary condi-

tion is assumed in the GTC simulation, we artificially flatten

the plasma profiles at the two edges of the simulation domain

to lower the turbulence drive in those regions.

Generally, in the PIC simulation, a limited number of

particles are used to simulate a physical system; these par-

ticles are called “markers.” For the background marker load-

ing at the beginning of the simulation, we apply two

different methods: uniform and nonuniform loading. For the

uniform loading method, the marker temperature and density

are set to be uniform along the radial direction, which is

equal to the value at reference point r ¼ rref , while still

maintaining the experimental temperature and density gradi-

ent profiles, as sketched in Figs. 7(a) and 7(b). For the non-

uniform loading method, we choose the marker temperature

and density to follow faithfully the input profiles and their

gradients, as shown by Figs. 7(c) and 7(d). Conventionally,

the GTC uses the uniform loading method because it has less

Monte-Carlo noise than the nonuniform loading method for

the same total number of particles in the simulation. As dis-

cussed in Sec. III, the gyrokinetic Poisson equation can also

be solved using two approaches: the improved four-point av-

erage method or the Pade approximation method.

We show the time history of the volume-averaged ion

heat diffusivity in Fig. 8, in which the red solid line denotes

uniform loading and the line of red circles denotes nonuni-

form loading. In these two cases, the improved four-point av-

erage method is used to solve the gyrokinetic Poisson

equation. The line of blue squares in Fig. 8 shows the time

history of the ion heat diffusivity for nonuniform loading

using the Pade approximation to solve the gyrokinetic Poisson

equation. Each of these three methods provides the same level

of turbulent transport, which indicates that the uniform load-

ing method is a good approximation to the essential turbulent

transport physics. Furthermore, it confirms that the Pade

approximation is as good as the four-point average method in

solving the gyrokinetic Poisson equation in the turbulence

simulation.

Then, we focus on the gyrokinetic simulation using non-

uniform marker loading and the improved four-point Poisson

solver. The 3D global turbulence mode structure is displayed

for the linear and nonlinear stages in Figs. 9(a) and 9(b),

FIG. 6. Radial profiles for the DIII-D

discharge #101391. Radial profiles

from the GTC for the following equi-

librium quantities: (a) electron and ion

temperature, (b) electron and ion tem-

perature gradient, (c) electron density,

and (d) electron density gradient.
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respectively. In the linear stage, an eigenmode structure

forms along the radial direction. The real frequency of the

eigenmode is in the ion diamagnetic direction, which shows

that it is an ITG instability. In the nonlinear stage, because of

the excitation of the zonal flow, the predominant linear radial

structure is totally destroyed. This confirms that the zonal

flow plays an important role in regulating turbulence for this

particular case.

The ion heat diffusivity is time-averaged during the non-

linear stage at each radial location, which gives the radial

profile of the time-averaged ion heat diffusivity, as shown by

the solid red line in Fig. 10. As a comparison, the ion heat

diffusivity profile from the GYRO simulation is also repre-

sented by the dashed line in Fig. 10.26 These two curves

overlap each other very well, which provides good verifica-

tion in the microturbulence simulation between the two dif-

ferent gyrokinetic codes.

The results are then shown for the simulation that uses

the Pade approximation to solve the gyrokinetic Poisson

equation. The radial profiles of the time-averaged ion and

electron heat diffusivity are shown by the dashed lines in

Fig. 11. In this figure, the time-averaged ion and electron

heat diffusivity from the improved four-point average

method are also represented by the solid lines. These two dif-

ferent methods for solving the gyrokinetic equation provide

approximately similar radial profiles for the ion and electron

heat diffusivity. Therefore, either of these two methods

would be applicable for a large aspect ratio tokamak.

However, the four-point average method relies on the fact

that the poloidal plane is very close to the perpendicular

plane, which is valid only in the large aspect ratio tokamak.

Therefore, the four-point average method might not be

accurate for small aspect ratio tokamaks such as the

NSTX, whereas the Pade approximation would remain

applicable.

Next, we compare the radial profiles for the time-

averaged ion heat diffusivity for the two marker loading

methods mentioned earlier. In Fig. 12, the solid line repre-

sents nonuniform loading and the dashed line stands for uni-

form loading. It can be seen that the ion heat diffusivity from

uniform loading is larger on the inner side than that from

nonuniform loading. However, on the outer side of the

radius, the ion heat diffusivity for uniform loading is smaller.

This phenomenon may be explained by the fact that on the

inner side of the radius, the marker temperature and thus

the ion gyroradius for nonuniform loading is larger than for

uniform loading. Because of the stabilizing effect of the

gyroaverage, i.e., the FLR effect, the linear drive and

FIG. 8. Time history of ion heat diffusivity. Time history of the ion heat dif-

fusivity for three different cases. Uniform means uniform marker loading

with improved four-point average method to solve gyrokinetic Poisson equa-

tion, nonuni means nonuniform marker loading with improved four-point

average method, and nonuni pade means nonuniform marker loading with

Pade approximation to solve gyrokinetic Poisson equation.

FIG. 7. Background plasma profile set-

ting. Sketch of loading scheme of the

background particle distribution in the

GTC simulation: (a) and (b) uniform

loading: uniform radial profiles for

marker temperature and density with

real/nonuniform temperature and den-

sity gradients to excite instability; (c)

and (d) nonuniform loading: real/non-

uniform radial profiles for marker tem-

perature and density with real/

nonuniform temperature and density

gradients to excite instability. For uni-

form loading, the temperature/density

in (a) is set as the value at reference

point r ¼ rref in (c).
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associated turbulent transport for nonuniform loading is

smaller than for uniform loading on the inner side of the ra-

dius. The same argument could be applied to explain why

the turbulent transport on the outer side is smaller for uni-

form loading than for nonuniform loading.

VI. SUMMARY AND DISCUSSION

In this paper, we extended the GTC code to import ex-

perimental profiles and magnetic geometry for the simulation

of turbulent transport in general geometry using B-splines to

FIG. 9. Three-dimensional contour of

turbulence structure. Gyrokinetic simu-

lation of the DIII-D discharge #101391

showing global mode structure in: (a)

linear growth stage and (b) nonlinear

stage.

FIG. 10. Radial profile of ion heat diffusivity. Comparison of radial profiles

of ion heat diffusivity from the GTC and GYRO simulations.

FIG. 11. Heat diffusivity radial profiles from four-point average method and

Pade approximation. Time-averaged heat diffusivity radial profiles from

four-point average (4-ave) method and Pade approximation.
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interpolate the equilibrium data. A new Poisson solver based

on flux coordinates and the finite difference scheme was

designed and successfully implemented in the GTC, which

can be used in conjunction with the Pade approximation to

solve the gyrokinetic Poisson equation. This new Poisson

solver could also be used for electromagnetic simulations.

We also improved the conventional four-point average

method to include higher-order global effects for the gyroki-

netic Poisson equation. An electrostatic turbulence simula-

tion was performed for the DIII-D discharge #101391 using

these two different approaches for the gyrokinetic Poisson

equation. The resultant turbulent transport levels were found

to be consistent with each other. The radial profile of the

heat diffusivity was compared with that from GYRO and

good agreement was found. For the background marker load-

ing, we developed and tested a nonuniform loading method

and found only a small difference from the conventional uni-

form loading method for the volume-averaged turbulent

transport. However, on the radial structure, there was a non-

trivial difference between the different loading methods.

This difference could be attributed to the stabilizing effect of

the gyroaverage (FLR effect). The new algorithm for solving

the Poisson equation using the flux coordinates could be

used for electromagnetic simulations, where Ampere’s

law has a similar Laplacian form. Another advantage of this

new gyrokinetic Poisson solver is that it could be used to

simulate small aspect ratio tokamaks, because the gyroki-

netic Poisson equation is solved in the perpendicular plane

rather than in the poloidal plane as in the conventional GTC

simulation.
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APPENDIX A: B-SPLINE INTERPOLATION

Generally, two classes of function are involved in

describing the magnetic geometry and plasma profiles in axi-

symmetric systems such as tokamaks: a 1D function f ðwÞ
and a 2D function. For the 1D function f ðwÞ, such as the ion

temperature profile TiðwÞ and toroidal current gðwÞ, we can

use the following B-spline representation:

f ðwÞ ¼ f ð1; iÞ þ f ð2; iÞhþ f ð3; iÞh2; (A1)

where wi 
 w < wiþ1; h ¼ wiþ1 � wi; i ¼ 0; 1; :::;N, and

f ð1; iÞ ¼ f ðwiÞ. Here, we assume uniform grid size in the ra-

dial direction. The coefficients f ð2; iÞ and f ð3; iÞ can be cal-

culated from f ð1; iÞ. Using the zeroth and first-order

continuous conditions for the 1D function f ðwÞ

f ðxi þ hÞ ¼ f ðxiþ1Þ; f 0ðxi þ hÞ ¼ f 0ðxiþ1Þ; (A2)

we find that

f ð1; iþ 1Þ ¼ f ð1; iÞ þ f ð2; iÞhþ f ð3; hÞh2; (A3)

f ð2; iþ 1Þ ¼ f ð2; iÞ þ 2f ð3; iÞh: (A4)

The preceding two iterative equations are used to obtain the

B-spline coefficients: f ð2; iÞ and f ð3; iÞ. However, the two

initial values of f ð2; 1Þ and f ð3; 1Þ remain to be determined,

which it relies on the specific features of the 1D function

f ðwÞ around the initial point w0. When w! w0, there are

four relevant cases to be considered.

Case 1: f ðwÞ ¼ aþ bDw;where Dw � w� w0. In this

case, the coefficients f ð2; 1Þ and f ð3; 1Þ are found to be

f ð2; 1Þ ¼ ½f ð1; 2Þ � f ð1; 1Þ�=h (A5)

and

f ð3; 1Þ ¼ 0: (A6)

Case 2: f ðwÞ ¼ aþ bDw2, in which the coefficients f ð2; 1Þ
and f ð3; 1Þ are found to be

f ð2; 1Þ ¼ 0 (A7)

and

f ð3; 1Þ ¼ ½f ð1; 2Þ � f ð1; 1Þ�=h2: (A8)

Case 3:f ðwÞ ¼ aþ bDwþ cDw2, in which the coefficients

f ð2; 1Þ and f ð3; 1Þ are found to be

f ð2; 1Þ ¼ ½4f ð1; 2Þ � f ð1; 3Þ � 3f ð1; 1Þ�=ð2hÞ (A9)

and

f ð3; 1Þ ¼ ½f ð1; 2Þ � f ð1; 1Þ � f ð2; 1Þh�=h2: (A10)

Case 4: f ðxÞ ¼ aþ b
ffiffiffiffiffiffiffi
Dw

p
þ cDw. This case needs special

care to find a smooth f ð1; iÞ and the iteration equations become

f ð2; iÞ ¼ �f ð2; i� 1Þ þ 2½f ð1; iÞ � f ð1; i� 1Þ�=h; (A11)

f ð1; iþ 1Þ ¼ f ð2; iÞ=ð2hÞþ f ð1; iþ 2Þ=4þ 3f ð1; iÞ=4; (A12)

FIG. 12. Heat diffusivity radial profiles for the two methods of marker load-

ing. Heat diffusivity radial profiles for the two different methods of marker

loading. Uniform means uniform marker loading and nonuni means nonuni-

form marker loading.
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and

f ð3; iÞ ¼ ½f ð2; iþ 1Þ � f ð2; iÞ�=2h: (A13)

To evolve the preceding equations, the initial coeffi-

cients f ð2; 1Þ and f ð3; 1Þ are found to be

f ð2;1Þ ¼ ½2f ð1;2Þ� f ð1;3Þ� f ð1;1Þ�= ð2�
ffiffiffi
2
p
Þ
ffiffiffi
h
ph i

(A14)

and

f ð3; 1Þ ¼ f ð1; 2Þ � f ð1; 1Þ � f ð2; 1Þ
ffiffiffi
h
ph i

=h; (A15)

and the initial coefficients f ð2; 2Þ and f ð3; 2Þ are found to be

f ð2; 2Þ ¼ f ð3; 1Þ þ f ð2; 1Þ=ð2
ffiffiffi
h
p
Þ (A16)

and

f ð3; 2Þ ¼ ½f ð1; 3Þ � f ð1; 2Þ � hf ð2; 2Þ�=h2: (A17)

The end point also needs special treatment

f ð2;N�1Þ¼�f ð2;N�2Þþ2½f ð1;N�1Þ� f ð1;N�2Þ�=h:

(A18)

We note that with the above settings, the inversion of these

B-spline functions can also be obtained.

After constructing 1D B-splines, the derivative of the

spline function can easily be found as

f 0ðwiÞ ¼ f ð2; iÞ þ 2hf ð3; iÞ: (A19)

This expression is useful for evaluating the temperature gra-

dient dTðwÞ=dw and density gradient dnðwÞ=dw, which are

the main instability drives for the microturbulence.

Once these 1D spline functions are constructed, we can

proceed to construct the B-spline functions for one class of

very useful 2D functions f ðw; hÞ ¼
P

n gnðwÞhnðhÞ, which can

be used to describe most tokamak equilibrium magnetic config-

urations. Each function gnðwÞ or hnðhÞ can be represented

by the 1D B-splines, i.e., gnðwÞ ¼ gnði; 1Þ þ gnði; 2ÞDw
þgnði; 3ÞDw2 and hnðwÞ¼ hnði;1Þþhnði;2ÞDhþhnði;3ÞDh2.

Then, the 2D function f ðw;hÞ can be expressed by the follow-

ing equation to the accuracy of the second order:

f ðw; hÞ ¼ f ð1; i; jÞ þ f ð2; i; jÞDwþ f ð3; i; jÞDw2

þ f ð4; i; jÞDhþ f ð5; i; jÞDwDhþ f ð6; i; jÞDhDw2

þ f ð7; i; jÞDh2 þ f ð8; i; jÞDwDh2 þ f ð9; i; jÞDw2Dh2;

(A20)

where the coefficients f ðm; i; jÞ; m ¼ 1; :::; 9, can be related

by the spline coefficients gnði; lÞ and hnði; lÞ. The derivatives

of f ðw; hÞ on the grid points, to the accuracy of first order,

can be found as

fwðw;hÞ¼f ð2;i;jÞþ f ð5;i;jÞDhþ f ð8;i;jÞDh2

þ2Dw½f ð3;i;jÞþ f ð6;i;jÞDhþ f ð9;i;jÞDh2�; (A21)

fhðw;hÞ¼f ð4;i;jÞþf ð5;i;jÞDwþf ð6;i;jÞDw2

þ2Dh½f ð7;i;jÞþf ð8;i;jÞDwþf ð9;i;jÞDw2�: (A22)

These expressions are particularly useful for calculating rele-

vant physical quantities such as @B=@w and @B=@h, which

will be used to compute the particle motion in the gyroki-

netic simulation.

APPENDIX B: EQUATION OF MOTION IN BOOZER
COORDINATES

The original equation of motion in Boozer coordinates35

can be applied to the general magnetic geometry case. For

completeness, we list these equations of motion implemented

in the GTC for the electrostatic simulation

_f ¼
�qk �B

2

�D
qþ �qk�I

0

 �

� 1

Za
�l þ Za

2

�ma
�qk

2B

� �
�I
�D

@ �B

@�w
�

�I
�D

@�/

@�w
;

(B1)

_h ¼
�qk �B

2

�D
1� �qk�g

0

 �

þ 1

Za
�l þ Za

2

�ma
�qk

2 �B

� �
�g
�D

@ �B

@�w
þ �g

�D

@�/

@�w
;

(B2)

_�w ¼ � 1

Za

�g
�D

�l þ Za
2

�ma
�qk

2 �B

� �
@ �B

@h

þ 1

Za

�I
�D

�l þ Za
2

�ma
�qk

2 �B

� �
@ �B

@f
þ

�I
�D

@�/
@f
� �g

�D

@�/

@�w
; (B3)

_�qk ¼ �
1

Za

1� �qk�g
0� �

�l þ Za
2

�ma
�qk

2 �B

� �
�D

@ �B

@h
�

1� �qk�g
0� �

�D

@�/
@h

�
�q þ �qk�I

0

 �

�D

@�/
@f
� 1

Za

qþ �qk�I
0


 �
�l þ Za

2

ma
�qk

2 �B

� �
�D

@ �B

@f
:

(B4)

This set of equations is based on a Hamiltonian principle

with the guiding center Hamiltonian H ¼ �qk
2 �B

2
=2þ �l �B

þ�/, which is suitable for determining the motion of the

guiding centers of both ions and electrons. The physical

quantities in the preceding equations are all normalized

quantities: �w ¼ w
B0R0

2 ; �qk ¼
�vk
Xa
¼ vk

R0Xa
, �D ¼ 1

B0R0
qgþ Ið

þ�qk gI0 � Ig0ð ÞÞ, �I ¼ I
B0R0

; �I
0 ¼ d�I

d�w
, �g ¼ g

B0R0
; �g0 ¼ d�g

d�w
; �ma ¼

ma
mH
; �/ ¼ eh/iu

mHR0
2X0

2, where mH is the hydrogen mass, X0 ¼ eB0

mHc

is hydrogen gyrofrequency, R0 is the tokamak major radius,

and B0 is the magnetic field at the magnetic axis. However,

we note in Ref. 35 that this set of equations is normalized by

the particle gyrofrequency Xa ¼ ZaeB0

mac . With some minor

modifications, these equations of motion can also be used to

push particles in the presence of electromagnetic

perturbations.13,35

APPENDIX C: DISCRETIZATION OF DIFFERENTIAL
OPERATOR ON THE GTC UNSTRUCTURED MESH

As the grid size in the h0 is uniform for each flux sur-

face, we can apply a simple algorithm to discretize @
@h0

to

second-order accuracy
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@f

@h0

� �
i;j

¼ fi;jþ1 � fi;j�1

2 Dh0ð Þi
; (C1)

where i is the index label for w and j is the index label for h0,

as shown in Fig. 13.

Then, we discretize @
@w to obtain

@f

@w

� �
i;j

¼ w2

fiþ1;j� � fi;j

h2

þ w1

fi;j � fi�1;j�
h1

; (C2)

with h1 ¼ wi � wi�1, h2 ¼ wiþ1 � wi and w2 ¼ h1=
ðh1 þ h2Þ, w1 ¼ h2=ðh1 þ h2Þ. The value of fiþ1; j� can

be evaluated using the neighboring four points on the same

flux surface wiþ1, as shown in Fig. 13, to second-order

accuracy

fiþ1;j� ¼wiþ1fiþ1;j0þ1 þ kiþ1fiþ1;j0 þ
kiþ1wiþ1

2

wiþ1fiþ1;j0þ1þkiþ1fiþ1;j0 �
1

3
1þ wiþ1ð Þfiþ1;j0þ2

�

� 1

3
1� kiþ1ð Þfiþ1;j0�1

�
; (C3)

where wiþ1 ¼ ðh� hiþ1;j0 Þ=Dhiþ1 and kiþ1 ¼ 1� wiþ1. A

similar expression can be found for the value fi�1; j� .

We continue to discretize @2

@h0@w
to obtain

@2f

@h0@w

 !
i;j

¼ w1

h1

� w2

h2

� �
fi;jþ1 � fi;j�1

2Dhi
þ w2

h2

@fiþ1; j�

@h0

� w2

h2

@fi�1; j�

@h0

: (C4)

Using the four neighboring points in the same flux surface,

we can obtain

@fiþ1; j�

@h0

¼ 1

2Dhiþ1

�
kiþ1 fiþ1;j0þ1 � fiþ1;j0�1ð Þ

þ wiþ1 fiþ1;j0þ2 � fiþ1;j0ð Þ þ
1

3
1þ 3kiþ1wiþ1ð Þ

� fiþ1;j0�1 � 3fiþ1;j0 þ 3fiþ1;j0þ1 � fiþ1;j0þ2ð Þ
�
: (C5)

Similar expressions can be written for
@fiþ1; j�

@h0
. Finally, we deal

with the operator @2

@w2

@2f

@w2

 !
i;j

¼ 2

h1h2

w1fi�1; j� þ w2fiþ1; j� � fi;jð Þ; (C6)

where fiþ1; j� can be evaluated by the four-point interpolation

using Eq. (C3). A similar expression can be found for fi�1; j� .

APPENDIX D: CONVENTION ISSUES FOR THE GTC
AND GYRO

The DIII-D discharge #101391 serves as a concrete

example to discuss the differences between the GTC and

GYRO. The GTC can create an analytic equilibrium

based on a circular cross-sectional model or input a numeri-

cal equilibrium from EFIT data; the latter is usually used for

precise comparison of experiments. All figures relating to

the DIII-D discharge #101391 in this paper are taken from

the GTC’s output data and then translated to the GYRO con-

vention if necessary. As shown in Fig. 14, each flux surface

represents a particular value of the poloidal flux function

w ¼ wðR; ZÞ. The center of each flux surface w has the coor-

dinates ðR0; Z0Þ, where Z0 �
Þ

dZRZ=
Þ

dZR and R0 �
ðRþ � R�Þ=2 with R� and Rþ being the intersection points

of the flux surface and the horizontal line Z ¼ Z0. As shown

by Fig. 14(a), the levitation of the flux surface center Z0 is

negligibly small for all flux surfaces. Starting from the flux

surface center, we can define a set of new coordinates ðr; hÞ,
as shown in Fig. 15, which leads to Rþ ¼ R0 þ rðw; h ¼ 0Þ;
R� ¼ R0 � rðw; h ¼ pÞ. Then, on the flux surface w, the

effective radius in the GTC is set as r � rðw; h ¼ 0Þ
¼ Rþ � R0, which becomes a flux surface function. In the

GYRO code, the effective radius rg is defined slightly differ-

ently, i.e., rg� ½rðw;h¼ 0Þ þrðw;h¼ pÞ�=2¼ðRþ�R�Þ=2.

The effective radiuses rgtc and rgyro are shown in Fig. 14(c)

to vary with poloidal flux w. Another useful effective radial

variable q¼ qðwÞ is also used in the GYRO code, which has

the definition wT ¼B0q2=2, where B0 is the magnetic field at

the magnetic axis. The toroidal magnetic flux wT is related to

the poloidal magnetic flux w by dwT=dw¼ qðwÞ, where q is

the safety factor. The quantity qdq=ðrgdrgÞ, as shown in Fig.

14(d) for DIII-D discharge #101391, is important for deter-

mining the local effective magnetic field at the reference

point, Bunit¼B0
qdq

rgdrg
.25 In the GYRO convention, the normal-

ized gyroradius is q� ¼ qs=a, where qs¼ cs=Xi, and

cs¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
, and Xi¼ qiBunit

cmi
. For the case of DIII-D dis-

charge #101391, R0ð0Þ¼ 1:72m. According to Figs. 14 and

7, at the reference point rgyro=a¼ 0:60, R0¼ 0:98R0ð0Þ
¼ 1:69m. In Fig. 14, we see that a¼ 0:362R0ð0Þ¼ 0:62m.

We can obtain Te¼ 1:2kev at the reference point rg=a
¼ 0:60 from Fig. 6(a). In this discharge, B0¼ 2:106T and at

the reference point Bunit¼ 3:085T. These parameters give

qs¼ 0:0017m and then qs=a¼ 0:0027. This value is the

same as in Ref. 26. For a better comparison, we list some

key parameters in Table I for the GTC and GYRO25,26 in the

simulation of the DIII-D discharge #101391. As shown by

Table I, the GTC parameters are very close to those of

GYRO with some differences within only a few percent.

FIG. 13. Laplacian discretization. Discretization of Laplacian at mesh point

(i, j) involves an additional 10 points around it.
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The definition of heat diffusivity is another issue. The

GTC employs heat flux~q to compute heat diffusivity vgtc

~q ¼
ð

d3vd~vEdf
mv2

2
� 3

2
T

� �
; (D1)

vgtc ¼
h~q � rwi

nhjrwj2i @T

@w

; (D2)

where the hi represent the flux surface average. However, the

GYRO employs heat flux ~Q to compute heat diffusivity vgyro

~Q ¼
ð

d3vd~vEdf
mv2

2
; (D3)

vgyro ¼
h~Q � rwi

nhjrwj2i @T

@w

: (D4)

In principle, the symbol w in Eqs. (D2) and (D4) could be

any flux surface function such as rgtc, rgyro, or q. Here, the

symbol w refers specifically to the poloidal magnetic flux.

The relationship between vgtc and vgyro can be described by

the following equation:

vgyro ¼ vgtc þ
3

2

T@n=@w
n@T=@w

h~C � rwi
hjrwj2i@n=@w

; (D5)

where the particle flux is defined as

~C ¼
ð

d3vd~vEdf : (D6)

TABLE I. Important equilibrium parameters at r=a ¼ 0:6 for the DIII-D dis-

charge #101391. The GYRO parameters are taken from Refs. 25 and 26.

GTC GYRO

a (m) 0.62 0.63

R0 (m) 1.69 1.69

B0 (T) 2.11 2.1

q� 0.0027 0.0026

q 1.55 1.59

Te (kev) 1.28 1.25

vGB (m2/s) 1.14 1.02

FIG. 15. Equilibrium flux surface for the DIII-D discharge # 101391.

Equilibrium flux surface for the DIII-D discharge #101391 is demonstrated

to show the coordinate definitions in the GTC and GYRO.

FIG. 14. Radial coordinate conven-

tions. In the case of the DIII-D dis-

charge #101391: (a) Z0 in units of

R0ð0Þ varies with poloidal flux surface

w; (b) R0 in units of R0ð0Þ varies with

poloidal flux surface w; (c) effective

radius r (for GTC), rg (for GYRO) and

rðw; h ¼ 0Þ in units of R0ð0Þ vary with

poloidal flux surface w; (d) dq
drg

varies

with rg in units of R0ð0Þ, which is used

to calculate the effective magnetic field

Bunit.
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