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Global gyrokinetic particle simulations of collisionless trapped-electron mode turbulence in toroidal

plasmas find that electron heat transport exhibits a device size scaling with a gradual transition from Bohm

to gyro-Bohm scaling. A comprehensive analysis of spatial and temporal scales shows that the turbulence

eddies are predominantly microscopic because of zonal flow shearing, but the presence of mesoscale

structures drives a nondiffusive component in the electron heat flux due to the weak nonlinear detuning of

the precessional resonance that excites the linear instability.
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The anomalous heat loss in magnetic fusion plasmas is
widely believed to arise from the microscopic turbulence
excited by drift wave instability [1]. The understanding of
and thus the ability to control ion heat transport have been
drastically improved thanks to intensive studies of the ion
temperature gradient (ITG) turbulence in fusion experi-
ments, theory, and simulation. In contrast, electron heat
transport is less understood, even though it is more impor-
tant for burning plasmas such as ITER [2] since fusion
products (energetic � particles) mostly heat the electrons.
A prominent candidate for the electron heat transport in
high temperature toroidal plasmas is collisionless trapped-
electron mode (CTEM) [1] turbulence with a characteristic
eddy size of the ion gyroradius (�i). Despite a renewed
interest [3–6], the nonlinear physics and transport proper-
ties of the CTEM turbulence remain poorly understood.
We report here the device size scaling of the electron heat
transport, as well as the underlying saturation mechanism
and nondiffusive transport process from the largest ever
gyrokinetic particle simulations.

The device size scaling of turbulent transport is one of
the most important issues when predicting confinement
properties of the large device ITER by extrapolating data
from current devices. Tokamak experiments have reported
both Bohm and gyro-Bohm scaling [7] for the ion heat
transport, but more consistently gyro-Bohm scaling for the
electron heat transport. Here, the gyro-Bohm scaling refers
to a normalized heat conductivity independent of the de-
vice size, whereas it increases with the device size in the
Bohm scaling [1]. First-principles turbulence simulation
can provide important physical insights on the size scaling
[8] and avoid the difficulties of the empirical scaling in
isolating a specific type of the turbulence and in varying the
device size while keeping all other dimensionless parame-
ters fixed. Our large scale simulations of the CTEM turbu-
lence using the global gyrokinetic toroidal code (GTC) [9]
find that the electron heat transport exhibits a gradual
transition from the Bohm to gyro-Bohm scaling when the
device size is increased.

The deviation from the gyro-Bohm scaling could be
induced by large eddies [10], turbulence spreading [8],

and a nondiffusive transport process [11,12]. In our simu-
lations, radial correlation function shows that the CTEM
turbulence eddies are predominantly microscopic (a few
�i) but with a significant component in the mesoscale (tens
of �i). The macroscopic, linear streamers (hundreds of �i)
are mostly destroyed by the zonal flow shearing, which is
found to be important in saturating the linear instability
and in regulating the turbulence evolution and transport
process. The mesoscale eddies form in a competing pro-
cess between the breaking of the macroscopic streamers by
the zonal flows and the merging of the microscopic eddies.
A comprehensive analysis of kinetic and fluid time

scales finds very weak nonlinear detuning of the toroidal
precessional resonance of the magnetically trapped elec-
trons that drives the linear CTEM instability. Thus the
trapped electrons behave as fluid elements in the transport
process, and their ballistic radial drifts across the meso-
scale eddies drive a nondiffusive component in the electron
heat flux. In contrast, the ions cannot drift across the
mesoscale eddies due to the parallel wave-particle decor-
relation [13,14], which is not operational for trapped elec-
trons because of the bounce averaging by the fast parallel
motion. The nondiffusive electron heat flux, together with
the turbulence spreading, leads to an electron heat con-
ductivity dependent on the device size, i.e., a breaking of
the gyro-Bohm scaling.
In the GTC simulations, the ion is treated by the gyro-

kinetic equation while the electron by the drift kinetic
equation. A fluid-kinetic hybrid electron model [15] is ap-
plied to improve the numerical efficiency for the electron
dynamics. The following DIII-D H-mode parameters [16]
are used for the nonlinear CTEM simulation: R0=LTe ¼
6:9, R0=LTi ¼ R0=Ln ¼ 2:2, Te=Ti ¼ 1, mi=me ¼ 1837,
q ¼ 0:58þ 1:09r=aþ 1:09ðr=aÞ2, where a is the minor
radius of the tokamak. The circular cross section model is
used in the simulation with the magnetic field defined by
B ¼ B0=½1þ ðr=aÞ cos��. Linear simulations [16] show
that this case is a pure CTEM turbulence instability with
a maximum linear growth rate �max ¼ 0:25vi=Ln, where

vi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ti=mi

p
is the ion thermal speed. The field mesh for

the electrostatic potential consists of 32 parallel grids and a
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set of unstructured perpendicular mesh with the perpen-
dicular grid size �0:5�i to capture the short wavelength
modes. A total of 75� 106 spatial grids and 15� 109

particles are used in the largest ever simulation of a device
size a ¼ 500�i to address the disparate spatial and tempo-
ral scales. This large simulation with a real electron-to-ion
mass ratio only becomes feasible on today’s most powerful
supercomputers.

Transport scaling.—First we examine the electron trans-
port scaling with the system size in the CTEM turbulence.
Figure 1(a) shows that the volume-averaged trapped-
electron heat conductivity �e varies with the system size
a=�i, where �e is defined by qe ¼ �entr 5 Te with ntr the
trapped-electron density and �i ¼ vi=�i. The heat flux qe
is computed in the simulation through qe ¼

R
d3vð12v2 �

3
2TeÞ�vE�he, where v is the particle velocity, �vE is the

radial component of the gyroaveraged E� B drift, and �he
is the nonadiabatic electron distribution function. When
the system size is small, a=�i < 250, the electron heat
transport clearly shows the Bohm scaling. When the sys-
tem size increases, the electron heat transport gradually
changes to the gyro-Bohm (GB) scaling with �e ¼ 2:5�GB

and �GB ¼ �2
i vi=a, similar to the ion heat transport in the

ITG turbulence [8]. Detailed 2D correlation analysis shows
that the turbulence eddies for different machine sizes have
the same microscopic scale length with a significant com-
ponent in the mesoscale which drives the electron transport
away from the gyro-Bohm scaling.

To verify the simulation results, extensive studies of
numerical convergence have been carried out with respect
to the number of particle, grid size, and time step. In
particular, the effects of particle noise [17,18] and the
noise-driven transport have been carefully studied in
GTC simulations using a quasilinear theory together with
the measured noise spectrum [13,19]. This has now been
routinely exercised as part of the numerical convergence in
GTC simulations [14,20]. The noise-driven transport in the
CTEM simulation for the case of a ¼ 500�i is plotted as a
time history in Fig. 1(b). During the whole simulation
period, the noise-driven transport is shown to be less than
1% of the CTEM-driven transport for both ions and elec-
trons. We conclude that the physics results reported here
are not affected by the particle noise.

Saturation mechanism.—In order to understand the tur-
bulence structure underlying the transport scaling, we need
to study the saturation mechanism in the CTEM turbu-
lence. Figure 2 shows the poloidal plane snapshots of the
electrostatic potential after the nonlinear saturation. Zonal
flows are self-consistently treated in the simulation shown
in the left panel. The zonal flow shearing breaks the
radially elongated eddies (streamers) into small and nearly
isotropic eddies. The simulation finds that zonal flows have
a substantial component in the small scale with kr�i � 0:7,
which cannot be easily shielded by the linear polarization
[21]. For comparison, zonal flows are artificially removed
in the simulation shown in the right panel, where the radial

streamers dominate in the saturated turbulence. The heat
transport level in the right panel is 5 times larger than that
in the left panel. Therefore, the zonal flow shearing is
important in saturating the CTEM instability, which is
confirmed by a detailed time scale analysis discussed
below. Despite the shearing effects, a significant number
of mesoscale eddies survive and induces a nondiffusive
component on the mesoscale for the electron heat transport
possibly related to the breaking of the gyro-Bohm scaling.
Transport mechanism.—To elucidate the CTEM trans-

port mechanism, we examine the turbulence structure and
various characteristic time scales for the case of a=�i ¼
500. A key evidence for the transport mechanism in the
ITG [8] and electron temperature gradient [20] turbulence
is that the heat conductivity is proportional to the local
turbulence intensity. For the CTEM turbulence, we show
the time and flux-surface-averaged ion heat flux hqii, elec-
tron heat flux hqei, and radial E� B drift intensity h�v2

Ei
during the nonlinear stage in Fig. 3(d). The h�v2

Ei radial
profile consists of an envelope and an oscillating part with
a spatial period of about 10�i. The correlation between the
radial profiles of h�v2

Ei and hqii suggests that the ion heat
transport is driven by the local turbulence intensity h�v2

Ei.
On the other hand, the radial profile of hqei is much
smoother and lacks the small scale oscillations.
Nonetheless, the global profile of hqei is quite similar to
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FIG. 1 (color online). The left panel (a) shows that the heat
conductivity (normalized by �GB) of trapped electrons varies
with the system size a=�i. The right panel (b) shows the time
history of the CTEM heat conductivity and the noise-driven heat
conductivity for both ions and electrons.

FIG. 2 (color). Poloidal plane snapshots for a=�i ¼ 250 case
at t ¼ 29=�max. The left panel (a) shows that the zonal flows
break the radial streamers. The zonal flows are artificially
removed in the right panel (b) and the radial streamers dominate.
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the global envelope of h�v2
Ei. This suggests that the elec-

tron heat transport is close to diffusive on a global scale,
but not on the microscopic and mesoscales.

The radial-time contour plots of the flux-surface aver-
aged hqii, h��2i, and hqei are shown in Figs. 3(a)–3(c),
respectively. The remarkable similarity between hqii and
h��2i in both radial structure and time evolution confirms
that the ion heat transport is driven by the local fluctuation
intensity. However, the electron heat flux hqei contains a
ballistic propagation in the radial direction. This indicates
that the electron heat transport may contain both diffusive
and pinch terms [22]. Therefore, the electron heat transport
follows the global structure of the turbulence intensity
profile but contains a nondiffusive component on the
mesoscale.

We define an effective decorrelation time �decor, since
both ion and electron heat transport are proportional to the
turbulence intensity on the global scale, i.e., �decor ¼
2D=�v2

E. Because the particle diffusivity is much smaller
than the thermal conductivity as observed in the simula-
tions, a test particle diffusivity D can be related to the
electron thermal conductivity �e by D ¼ 2�e=3. It is then
calculated that �decor ¼ 4�e=ð3h�vEi2Þ � 0:61Ln=vi for
the trapped electrons. This characteristic time scale may
reflect the physical process relevant to the transport mecha-
nism [20], which could be either kinetic wave particle
decorrelation or fluid eddy mixing. Through comprehen-
sive analysis of the kinetic and fluid time scales, we can
identify the physical process responsible for the transport.

The two kinetic time scales related to the CTEM eigen-
modes are the wave particle decorrelation time (�k and �?)
for the trapped electrons to cross the turbulence eddies in
the parallel and perpendicular directions. Because of the
fast bounce motion, which averages out the parallel electric
field, the trapped electrons cannot decorrelate from the
wave in the parallel direction, i.e., �k ¼ 1. In the spectral

range of interest, the CTEM frequency is roughly propor-
tional to the toroidal mode number (i.e., nondispersive).
Thus the resonant electrons cannot decorrelate from the
wave in the toroidal direction. Moreover, although the
resonant electrons can decorrelate from the wave in the
radial direction due to the radial dependence of the preces-
sional frequency, this dependence is very weak (on the
equilibrium scale). Therefore, �? ¼ 1. The trapped elec-
trons thus remain resonant with the wave until the eddies
disappear or the electrons jump from one eddy to another,
i.e., the resonant electrons behave as fluid eddies in the
transport process.
To evaluate the fluid time scales, we first calculate

the two-point correlation function Cr	 ð�r;�	Þ ¼
h��ðrþ�r;	þ�	Þ��ðr;	Þiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h��2ðrþ�r;	þ�	Þih��2ðr;	Þi

p , where the average h. . .i is carried
out for toroidal angle 	�½0;2
� and radius r�
½150;350��i at the poloidal angle � ¼ 0. The radial corre-
lation function Crð�rÞ is then calculated by taking the
maxima along the ridge of Cr	 ð�r;�	Þ. The function

Crð�rÞ shown in Fig. 4 clearly demonstrates a two-
length-scale structure, i.e., microscopic eddies and meso-
scale eddies, consistent with the contour plot in Fig. 2(a).
An exponential fit of the initial drop of Crð�rÞ gives the
short length scale Lr � 5�i. This is the average radial size
of the microscopic eddies. The eddy turnover time �eddy ¼
Lr=h�vri, describes how fast the eddy rotates due to the
E� B drift without the zonal flow shearing. For micro-
scopic eddies, �eddy � 1:6Ln=vi. Another fluid time scale

that is relevant to the dynamics of the turbulence eddies is

the zonal flow shearing time, �s ¼ ½Lr

L’

@
@r ðqVE

r Þ��1, which is

calculated to be �s � 0:66Ln=vi.
We now calculate the two-time-two-point correlation

function Ct	 ð�t;�	Þ ¼ h��ðtþ�t;	þ�	Þ��ðt;	Þiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h��2ðtþ�t;	þ�	Þih��2ðt;	Þi

p , where

the potential ��ðt; 	Þ is recorded at � ¼ 0 and r ¼ 0:5a
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FIG. 3 (color). The time-radial contour
plot is shown for ion heat flux hqii in the
top left panel (a), turbulence intensity
h��2i in the top right panel (b), and
electron heat flux hqei in the lower left
panel (c). The lower right panel (d)
shows the radial profiles of the time
averaged hqii, hqei, and radial E� B
drift intensity h�v2

Ei.
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for each time step and the average is carried out for 	 �
½0; 2
� and t � ½20; 40�=�max. The time correlation func-
tion Ctð�tÞ is then calculated by taking the maxima along
the ridge of Ct	 ð�t;�	Þ. It shows a perfect exponential

decay with a decay time of �au � 11Ln=vi, which is the
autocorrelation time of the turbulence. Therefore, this
CTEM turbulence has a large Kubo number with K ¼
�auto=�eddy � 7 for the microscopic eddies, which could

affect the transport scaling [23]. Since the mesoscale
eddies would have a smaller K value, the quasilinear
estimate of the effective decorrelation time �decor may be
relevant to the transport on the global scale, which is in the
transitional regime between the small and large K value.

We list all the characteristic time scales in Table I.
Compared to �decor, the zonal flow shearing time �s and
eddy turnover time �eddy are the two closest time scales.

This suggests that the decorrelation process should be
mostly the eddy mixing regulated by the zonal flows. All
the kinetic time scales are much larger than �decor, �s, and
�eddy. Therefore, the electron heat transport in the CTEM

turbulence is mainly a fluid process although the linear
instability is driven by the kinetic process of the toroidal
precessional resonance. The radially random distribution
of the microscopic and mesoscale eddies enables the elec-
trons to average out the local structure of the turbulence
intensity. For comparison, we perform a simulation of the
ITG turbulence with adiabatic electrons with a system
size of a=�i ¼ 500 and also list the ITG characteristic
time scales in Table I. The ion heat transport is found to
be a quasilinear process [13] and regulated by the wave
particle decorrelation with �k ¼ 1=h�kkvii and �? ¼
3=ð4�is

2h�2ihk2�iÞ, using the method in Ref. [20].

Finally, the physical picture of the device size scaling of
the electron heat transport in the CTEM turbulence
emerges from a combination of the turbulence structure
and the fluidlike nature of the electron transport process.
The significant long tail of the radial correlation function in
Fig. 4 indicates the existence of a large number of meso-
scale eddies in Fig. 2(a). The resonant trapped electrons

can be convected by the E� B drift across the meso-
scale eddies. This mesoscale ballistic motion then drives
the electron heat transport that contains a nondiffusive
component on the mesoscale and smooths out the small
radial structure of the turbulence intensity as shown in
Fig. 3. The mesoscale ballistic electron heat flux, together
with the turbulence spreading [8], leads to the deviation
from the gyro-Bohm scaling for the small devices as shown
in Fig. 1(a).
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TABLE I. Characteristic time scales for trapped electrons in
the CTEM turbulence and for ions in the ITG turbulence.

½Ln=vi� �decor �k �? �eddy �au �s
1

�max

CTEM e 0.61 1 1 1.6 11 0.66 4.0

ITG i 1.7 1.8 2.0 4.9 7.2 1.4 9.1
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FIG. 4. The solid curve shows the radial correlation function
Crð�rÞ of the electrostatic potential as a function of the radial
separation �r. The dashed line is an exponential fit of the initial
drop of Crð�rÞ.
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