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Resonant heating of a magnetized plasma by low frequency waves of large amplitude is considered.
It is shown that the magnetic moment can be changed nonadiabatically by a single large amplitude
wave, even at frequencies normally considered nonresonant. Two examples clearly demonstrate the
existence of the resonances leading to chaos and the generic nature of heating below the cyclotron
frequency. First the classical case of an electrostatic wave of large amplitude propagating across a
confining uniform magnetic field, and second a large amplitude Alfve´n wave, propagating obliquely
across the magnetic field. Waves with frequencies a small fraction of the cyclotron frequency are
shown to produce significant heating; bringing, in the case of Alfve´n waves, particles to speeds
comparable to the Alfve´n velocity in a few hundred cyclotron periods. Stochastic threshold for
heating occurs at significantly lower amplitude with a perturbation spectrum consisting of a number
of modes. This phenomenon may have relevance for the heating of ions in the solar corona as well
as for ion heating in some toroidal confinement fusion devices. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1445180#
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I. INTRODUCTION

Resonant heating of particles in a magnetic field is
subject which has been examined by many authors and
importance in the heating of magnetically confined labo
tory as well as extraterrestrial plasmas. For a review
Lichtenberg and Lieberman.1 It has been found that it is als
possible to break the invariance of the magnetic momen
frequencies well below the cyclotron frequency.2–7 This phe-
nomenon is due to the nonlinear coupling of higher harm
ics of the guiding center motion with the cyclotron motio
and must be expected to occur for a large amplitude wav
almost any type. It is most easily analyzed by considering
classic case of an electrostatic wave propagating acro
constant magnetic field.

The Alfvén wave is a fundamental excitation of a ma
netically confined plasma. Alfve´n waves, either excited spon
taneously or by external sources, have been observed or
dicted to be present in plasmas with parameters ranging f
those of laboratory to space and astrophysical environme
Interactions between Alfve´n waves and charged particle
thus play crucial roles in many plasma dynamical proces
Pitch angle scattering and energization of charged parti
~ions! by large amplitude Alfve´n waves occurs at frequencie
well below the cyclotron frequencyVc through a mechanism
entirely analogous to that described by an electrostatic w
Previous theoretical investigations of heating mechanis
have nearly always been based on the existence of the

a!Paper FI1 6, Bull. Am. Phys. Soc.46, 98 ~2001!.
b!Invited speaker.
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mary cyclotron resonance, which can change the magn
moment leading to pitch angle scattering and heating.
have recently found7 that given a sufficiently large ampli
tude, obliquely propagating wave there indeed exists e
cient stochastic ion pitch angle scattering and heating by
Alfvén wave even whenv!Vc .

We divide the presentation into a discussion of the st
dard model of electrostatic cyclotron heating in Sec.
higher order Hamiltonian analysis in Sec. III, heating w
Alfvén waves in Sec. IV, and conclusions in Sec. V.

II. ELECTROSTATIC CYCLOTRON HEATING

Consider the simplest cyclotron heating proble
possible,1 that of a particle gyrating in a constant magne
field, acted upon by an electrostatic plane wave propaga
across the field. This situation is realizable, for example, b
lower hybrid wave in a plasma of high density and sm
magnetic field, propagating perpendicularly toBW at the ion
plasma frequency. The observation of stochastic heating
in fact been reported in work we only recently discovere4

We will find that the resonances producing stochastic hea
below the cyclotron frequency occur through the sa
mechanism as those due to any wave in a magnet
plasma, so this model illustrates the heating mechanism w

The Hamiltonian for this system is

H5
~pW 2AW !2

2
1F~x,t ! ~1!
0 © 2002 American Institute of Physics
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1891Phys. Plasmas, Vol. 9, No. 5, May 2002 Resonant heating below the cyclotron frequency
with the magnetic field given by the vector potentialAW

52Byx̂, giving equations of motionv̇x5Bvy2]xF, v̇y

52Bvx2]yF.
Take the units of time to be given byVc , the cyclotron

frequency, and let the electrostatic wave be given by a sin
harmonic,F5F0 cos(kx2vt). There are then three dimen
sionless parameters characterizing the heating problem.
fine r5v/Vc to be the instantaneous cyclotron radius. Th
kr characterizes the ratio of cyclotron radius to waveleng
k2F05kDxg5vb

2/Vc
2 characterizes the ratio of guiding ce

ter polarization drift displacement in the wave to waveleng
with vb the bounce frequency in the wave andxg the guiding
center position, andv/Vc gives the ratio of the wave fre
quency to the cyclotron frequency.

The equations of motion become,v̇x5vy1kF0 sin(kx
2vt), vy52x1x0 , giving

d2x

dt2
1x5x01kF0 sin~kx2vt !. ~2!

It is easy to see that trapping in the wave is impossib
prevented by the cyclotron motion. During each cyclotr
period, at the pointvy50 the orbit returns to the pointx0 and
every orbit is thus fixed in the laboratory frame. Converse
assuming that the orbit is trapped in the wave withkx.vt
we find thatvy grows without bound, which is inconsisten
with trapping.

For small wave amplitude at the cyclotron frequency it
possible to describe the particle response to the wav
terms of oscillation at the cyclotron frequency with a slow
varying cyclotron radius, or energy. In the case of inter
here, wave amplitudes are large and wave frequencies di
ent from, but comparable to, the cyclotron frequency, so
sponse of the particle at additional frequencies must be
tained. To treat the full problem it is necessary to inclu
particle motion at fractions of the cyclotron frequency, sid
bands, harmonics, etc. The particle motion must be writ
x5x01l cos(t)2a sin(t)1(m@amcos(nmt)1bmsin(nmt)# with
l, a, am , bm slowly varying in time compared to 1,nm , and
nm giving the set of frequencies necessary to describe
motion. A full analytic treatment is not possible, but som
analytic approximations give insight into the nature of t
solutions.

First consider Eq.~2! for s[k(x2x0)!1. Letting 2T
5kx02vt and keeping only lowest order ins we have

d2s

dT2 1F 4

v2 2
4k2F0

v2 cos~2T!Gs5
4k2F0

v2 sin~2T!, ~3!

i.e., a driven Mathieu equation. This equation has unsta
solutions forv.2/N with N integer, indicating the existenc
of large amplitude solutions for these values ofv.

Now consider a Poincare´ section ofkr, c5kx2vt, by
taking points whenvy50, v̇y.0. This givesc5c02vt j ,
with c05kx0 , andt j given by the times at whichx5x0 and
ẋ,0. Givenl(t), a(t), am(t), bm(t) one can solve for the
Poincare´ times t j . Without loss of generality we take att
50 initial values x random, vx random negative andvy

50, giving x5x0 , c(0)5c0 . The values att50 then de-
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termine one Poincare´ point. Others are given bykr(t j ),
c(t j )5c02vt j . Fixed points are given bydv/dt50 and
constant phase, orl̇5ȧ5ȧm5ḃm50.

In general these equations are very complicated and
Poincare´ section must be examined numerically. For sign
cant heating there must exist resonances. A complete ana
would consist of a determination of all fixed points and th
the calculation of the widths of the islands occuring arou
the elliptic points, followed by an estimate of stochas
threshold due to island overlap. Unfortunately this approa
is not feasible, and to make any progress analytically o
must be guided by numerical results. A numerical Poinc´
plot is shown in Fig. 1 fork2F050.1, v51/2, showing
period two fixed points occuring at small wave amplitude.
Fig. 2 are shown these two fixed point orbits, the sma
orbit to the left corresponding to the lower fixed points
kr.0.825,c50, p, and the larger corresponding to the u
per fixed points atkr.1.841, c56p/2. The nature of the
resonance is obvious, a particle at the fixed point comple

FIG. 1. Poincare´ plot for electrostatic wave,k2F050.1, v51/2.

FIG. 2. Fixed point orbits for Fig. 1.
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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1892 Phys. Plasmas, Vol. 9, No. 5, May 2002 White, Chen, and Lin
two cyclotron periods while completing one wave perio
The first fixed point orbit shows a large variation of the or
between one cyclotron period and the second, in the sec
orbit this modification is clearly higher order.

Guided by numerical results, including a Fourier ana
sis of the fixed point trajectories, we illustrate the nature
the solutions for this case by considering only the cyclot
motion and the particle response at the wave frequenc
v51/2. Employing multiple time scales, and using as ans
the solution to the equations of motionx5x01l cos(t)
2a sin(t)2b sin(vt) with l, a, b slowly varying with respect
to 1,v, we then find, keeping only leading order in the slo
time scale and usinge6 ia sin(b)5(mJm(a)e6imb,

22
da

dt
cos~ t !22

dl

dt
sin~ t !2~12v2!b sin~vt !

5kF0(
j lm

Jj~kl!Jl~ka!Jm~kb!

3sin@~ j 2 l 2mv2v!t#cos@c01 j /pi/2#

1kF0(
j lm

Jj~kl!Jl~ka!Jm~kb!

3cos@~ j 2 l 2mv2v!t#sin@c01 j p/2#. ~4!

Integrating over the short time scales, we have

~12v2!b5kF0(
j lm

Jj~kl!Jl~ka!Jm~kb!

3cos~c01 j p/2!Dv2 , ~5!

2
da

dt
52kF0(

j lm
Jj~kl!Jl~ka!Jm~kb!

3sin~c01 j p/2!D11 , ~6!

2
dl

dt
52kF0(

j lm
Jj~kl!Jl~ka!Jm~kb!

3cos~c01 j p/2!D11 , ~7!

with Dz65d j 2 l 1(2m21)v,z6d j 2 l 1(2m21)v,2z .
To gain an intuitive understanding of the occurences

the nonlinear resonances which permit heating at frequen
well below the cyclotron frequency, we can examine t
limit of small wave amplitude,k2F0!1, analytically forv
51/2. Denoting C05cos(c0), S05sin(c0), and defining
Fa,b(l,a)5(n52`

` (21)nJ2n1a(kl)J2n1b(ka), we find

~12v2!b5kF0@C0~F0,02F0,21!1S0~F1,02F1,1!#,
~8!

2
da

dt
5kF0J1~kb!@C0~F1,02F1,211F1,22F1,1!

1S0~F0,212F0,221F0,12F0,0!#, ~9!

2
dl

dt
5kF0J1~kb!@S0~2F1,01F1,211F1,22F1,1!

1C0~F0,212F0,222F0,11F0,0!#. ~10!
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Within this ansatz, these equations determine the mo
of a Poincare´ point in thekr, c plane for smallk2F0 . To
determine the existence of resonances first look for fix
points of the Poincare´ map. In this casekb andkl are small
and we find for the existence of a fixed point in the casev
51/2, C051, S050 andl50, J0(ka)52J1(ka)1J2(ka)
giving ka50.825 andb521.62kF0 . The Poincare´ points
are given byt j52 j p. The fixed points are thenkr5k(a
2vb), c50 andkr5k(a1vb), c5p, agreeing with the
positions shown in Fig. 1. The second pair of fixed points
Fig. 1 atc56p/2 andkr51.84, giving the larger orbit in
Fig. 2 is more complex, due to a combination of higher ord
motion at v and 3v. Including particle response at mor
frequencies, and allowing larger values ofk2F0 the number
of fixed points in the map increases enormously.

For vÞ1/2 but less than 1, the situation is qualitative
different. The fixed points of the map emerge fromr50 as
F0 is increased. Nevertheless, fixed points and resona
exist for all integerN, associated with the unstable domai
of the associated Mathieu equation. In the following w
show a few of the Poincare´ plots and associated fixed poin
orbits to make clear the nature of the resonances invol
producing stochastic heating.

A numerical Poincare´ plot is shown in Fig. 3 fork2F0

50.1, v51/3, showing period three fixed points whic
move upward ask2F0 increases. Figure 4 shows the fixe
point orbit for v51/3. The motion is easily interpreted a
consisting of three cyclotron oscillations within one wa
period. The orbit initiates at the orgin, which is one Poinca´
point, with ẋ,0. The three cyclotron periods consist of~1!
the left half of the lower ellipse, continuing around to th
bottom of the small central ellipse, which is another Poinc´
point, ~2! the upper ellipse, returning again to the bottom
the small central ellipse, which is the third Poincare´ point,
and ~3! the right half of the lower ellipse, returning to th
origin.

In Fig. 5 is shown the Poincare´ plot for v51/4, k2F0

50.77, and in Fig. 6 is shown the period four fixed poi
orbit associated with the fixed points atc50,6p/2,6p for

FIG. 3. Poincare´ plot for electrostatic wave,k2F050.1, v51/3.
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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1893Phys. Plasmas, Vol. 9, No. 5, May 2002 Resonant heating below the cyclotron frequency
the same parameters. There are four cyclotron periods
tained in the wave period. The map has also become v
chaotic, but good KAM surfaces exist forkr.2.

For v52/N with N odd the fixed point orbit is not sim
ply interpretable as consisting of an integer number of cyc
tron periods in one wave period, as the cases withv equal to
a simple fraction. Part of the orbit has a peculiar shape
consists of a pause, or syncopation, allowing one wave
riod for everyN/2 cyclotron periods.

In the above figures, the fixed point orbits are sho
only to display the nature of the resonances. Most orbits
obviously very complex, and are not closed. The nature
these resonances is very robust. Small additional pertu
tions of the system shift the location of the O-points, they
not destroy the resonances. Even including pitch angle s
tering in the particle motion the resonances are well p
served until the scattering frequency is comparable to
cyclotron frequency.

FIG. 4. Fixed point orbit for Fig. 3.

FIG. 5. Poincare´ plot for electrostatic wave,k2F050.77, v51/4.
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Now investigate the approach to chaos and the exten
the chaotic domain, which limits the possible heating o
tained. Stochastic threshold is not simply described in te
of island overlap, as is evident from Fig. 1. The islands
small perturbation amplitude are already large, forming
lattice. For frequencies below the cyclotron frequency
resonance domain, and hence the origin of the chaos,
small energies, unlike the case of heating well above
cyclotron frequency.8 The stochastic domain typically ex
tends fromr50 to a maximim value, where good KAM
~Kolmogorov–Arnold–Moser! surfaces exist and the perpe
dicular energy is only oscillatory, described by the magne
moment. The extent of the stochastic domain increase
discrete jumps as new resonances overlap and dom
around them become stochastic. Heating of an initially c
distribution proceeds to the maximum limit given by th
good KAM surfaces in a rather short time; on the order
100 to 200 cyclotron periods.

Figure 7 shows the variation of the extent of the ‘‘hea

FIG. 6. Fixed point orbit associated with Fig. 5.

FIG. 7. Heating domain vsv for k2F05(a) 0.36,~b! 0.8, ~c! 2.6.
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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1894 Phys. Plasmas, Vol. 9, No. 5, May 2002 White, Chen, and Lin
ing domain’’ in kr versus wave frequency fork2F050.36,
0.8, and 2.6. For small wave amplitude some peaking
indeed be seen at low-order~small! integer fractions, as pre
dicted by the Mathieu equation approximation. As the am
tude increases, however, nonlinear generation of many fi
points produces chaos which smooths out the resona
structures and makes the extent of the domain almost lin
in v. Of course at small amplitude and in the limit ofv
→0 for any amplitude the motion is not stochastic, and th
is no real heating, only large amplitude excursions in
potential. But for large amplitude the motion becomes s
chastic, producing true heating, for very low frequencies.
the two larger amplitude plots anX indicates the frequency
for the onset of chaos. Fork2F050.36, curve~a!, there is no
chaos, only large scale convective motion, even atv51.

The onset of chaos at large wave amplitude as a func
of v is shown in Fig. 8. Note that heating at the cyclotr
frequency has a threshold not significantly lower than
subcyclotron frequencies. Values ofk2F0 above the line give
a significantly stochastic plot, with the area of the domain
stochasticity increasing rapidly as one moves away from
line. The onset of chaos is very irregular, it can occ
through period doubling, the overlap of islands of vario
period, or through the stochastic broadening of a separa

III. HAMILTONIAN ANALYSIS

The resonances described above are missed in the u
Hamiltonian formalism. To see how this occurs follow Lic
tenberg and Lieberman.1 The unperturbed Hamiltonian i
H05(pW 2AW )2/2 with BW 5Bẑ, the vector potential AW

5Vcxŷ, and canonical variablesx,y,px ,py . Transform to
guiding center variablesf,X,PX ,Pf using F1(q,Q,t)

5Vc@
1
2(x2X)2 cotf1yX#, with tanf5vx /vy , y5Y

1r cosf, x5X1r sinf, p5]F1 /]q, P52]F1 /]Q, giv-
ing px5Vc(x2X)cotf, py5VcX, Pf5Vcr

2/2, PX

52VcY. Then we haveH05PfVc . Now introduce the
perturbationH5H01F0 sin(kx2vt). Make the transforma-

FIG. 8. Threshold for chaos in thek2F0 , v plane.
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tion X,PX→c,Pc with c5kX2vt using F2(q,P,t)
5(kX2vt)Pc1Pff, giving p5]F2 /]q, Q5]F2 /]P,
PX5kPc , and the Hamiltonian becomes

H5PfVc2Pcv1F0SmJm~kr!sin~c1mf! ~11!

with variablesc,f,Pc ,Pf and unperturbed frequenciesvf

5]Pf
H05Vc , vc5]Pc

H052v.
The first order perturbation gives resonances, with

secularity of the perturbation, whenc1mf5constant, or
v2mVc50, i.e., the usual cyclotron harmonics. But ifF0 is
large, this analysis is incomplete. To obtain higher order
F0 , begin with Eq.~2!. Takev!1, and perform a two time
scale analysis withX(t) slow. Neglecting slow time scale
dependence, and averaging over the fast time scale we
kX5kx01k2F0^sin(kX1kr sinf2vt)&. Again transform
X,PX→c,Pc usingF2(q,P,t) as above. Then find the equa
tion for c to be c5c01k2F0^sin(c1kr sinf)& with c0

5kx02vt. Now iterate twice in powers ofk2F0 giving

c25c01k2F0SmJm~kr!^sin~c01mf!&

1~k4F0
2/2!SmnJm~kr!Jn~kr!^sin~2c01mf1nf!&

1~k4F0
2/2!SmnJm~kr!Jn~kr!^sin~mf2nf!&.

Recall the Hamiltonian isH5H01F0 sin(c1kr sinf),
so ^k2H&;c. But terms inc2 with m1n51 give a secu-
larity at 2v5Vc . To find the secularities atv5Vc /N it is
necessary to performN iterations, and the Hamiltonian be
comes very complicated. Furthermore this is av!Vc ap-
proximation, and cannot even reproduce the casev5Vc/2
described above, with any degree of accuracy.

IV. ALFVÉN WAVE HEATING

Now examine stochastic heating of cold ions by lo
frequency Alfvén waves. The physics of this stochastic he
ing is similar to that due to a perpendicularly propagati
electrostatic wave with a frequency a small fraction ofVc

given above.7 To demonstrate the similarity consider a lin
early polarized Alfve´n wave in the laboratory frameX, Y, Z,
given by BW w5Bwŷ cos(c) with c5kW•XW 2vt and BW 5B0ẑ.
We havev5kzvA and if we consider ions which are cold i
the laboratory frame we also havev5kzvA5kzv with v the
velocity in the wave framex,y,z with z5Z2vAt. Take the
units of time to be given byVc , the cyclotron frequency, and
normalize the field toB0 . In the wave frame we havec
5kxx1kzz and the velocityv5vA is constant in time. Di-
mensionless numbers characterizing the problem are
kxv, kzv5v/Vc , and the wave magnitudeBw /B0 .

The equations of motion become, again in the wa
frame, v̇x5vy2vzBw cosc, vy5x02x, v̇z5vxBw cosc,
giving

d2x

dt2
1x5x02vzBw cosc ~12!

and the instantaneous location of a particle in phase spa
given byx,z and the pitchl5vz /v. Note thatvy50 implies
again x5x0 and every orbit is thus localized inx, but in
distinction to the electrostatic case the wave is also pro
gating inz.
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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To lowest order inBw , the velocityvz does not change
and we thus find to first order d2x/dt21x5x0

2vz(0)Bw cosc. This equation is equivalent to Eq.~2!, de-
scribing cyclotron heating, withv/Vc5kzvz(0)/Vc playing
the role of the frequency of the electrostatic wave, a
kxvz(0)Bw /(B0Vc) the nonlinearity parameter. We aga
find a driven Mathieu equation with unstable solutions
v.2/N with N integer. Thus there are resonances at m
values of particle pitch in the wave frame. However, no
that kx50 implies no nonlinear interaction, so we expe
nonlinear effects only for waves propagating across the fi
For larger values ofBw the approximation ofvz5vz(0) will
be invalid in the differential equation forx and the motion
will be more complex. Thus we expect the threshold
chaos to occur at lower perturbation amplitude than for
case of an electrostatic wave.

To study the resonances, again take a Poincare´ section of
l,c, formed by taking points whenvy50 and v̇y.0 for a
distribution at a fixed energy, i.e., all particles with the sa
v in the wave frame. Figure 9 shows a sample Poincare´ plot
with kxv50.1, kzv51, Bw50.22, with resonances atkzvz

52/n for all integern>2, although only a few are visible in
this plot. Large islands centered at zero pitch are populat
of particles trapped in the magnetic well. In a way, t
Alfvén problem is simpler than the electrostatic proble
because the location of the resonances in the Poincare´ plot in
this case is known. At larger wave amplitude these re
nances produce stochastic motion, and hence allow nona
batic, permanent change in pitchl. Transformed back to the
laboratory frame such a change in pitch is equivalent to p
ticle acceleration and heating as well as pitch angle sca
ing.

Noting that waves of left-hand polarization are often e
cited in space plasmas, we shall consider in the follow
only a left-hand circularly polarized Alfve´n wave. Thus we
have, again in the wave frameBW w52Bwx̂ cos(a)sin(c)
1Bwŷcosc1Bwẑsin(a)sin(c) with c5kxx1kzz and tan(a)
5kx /kz. In the laboratory frame the wave propagates in

FIG. 9. Poincare´ plot for a plane polarized Alfve´n wave, Bw50.22,
kxv50.1, kzv51.
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positivez direction, and in the wave framevz /v521 for an
initially cold ion distribution. Figure 10 shows a Poinca´
plot for a left-hand circularly polarized wave withBw

50.25, kxv50.27, kzv50.2. In the laboratory frame of the
cold particles this wave has a frequency ofv/Vc50.2. At
this amplitude the lower part of the plot is chaotic, and io
can freely move fromvz /v521 to values near20.4, but
above this there are good KAM surfaces. Transforming b
to the laboratory frame, the final ion distribution has a me
perpendicular velocity more than three times as large as
mean parallel velocity. An initially cold distribution is give
a large perpendicular energy in a few hundred cyclotron
riods.

In Fig. 11 is shown a numerical determination of th
stochastic threshold in the plane ofkxv,Bw for frequencies of
v/Vc50.1, 0.25, 0.5. This plot was obtained by observi
the Poincare´ plot of initially cold (pitch521) particles.

FIG. 10. Poincare´ plot for a circularly polarized Alfve´n wave,Bw50.25.
kxv50.27, kzv50.2.

FIG. 11. Stochastic threshold,~a! v50.5, ~b! v50.25, ~c! v50.1.
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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Above the line there is a significant chaotic domain lead
to heating, and below it good KAM surfaces exist, preve
ing heating.

With a spectrum consisting of waves of different fr
quencies a Poincare´ plot cannot be used to investigate th
onset of chaos. However, it is possible to examine the p
ence of chaos by using a perturbation which is Gaussia
time, tending to zero att56` with a width ofdt@1/Vc . In
Fig. 12 is shown the adiabatic nature of the particle ene
change for a small amplitude perturbation, with a spectr
of 21 modes all withkxVa5kzVa5Vc , uniformly distrib-
uted in the interval 0.2,v/Vc,0.7, the amplitude for mode
k given by dBk;A/vk , as suggested by solar coron
spectroscopy.9 The initial particle distribution was monoen
ergetic withv5VA/20 and uniform in pitch. Over 90% of th
energy is in the perpendicular velocity, so these plots
essentially of the magnetic moment. In Fig. 13 is shown
nonadiabatic response with a larger amplitude perturbat
Figure 14 gives the final energy change as a function
average mode amplitude for spectra consisting of 1, 5,
and 51 modes withkxVA51 and one spectrum withkxVA

510, all in the frequency range 0.2,v/Vc,0.7, showing
an approximate threshold behavior. As expected from
linear analysis, largerkx increases the level of chaos. The
is not a precise threshold for heating because asdB increases
small chaotic domains begin to appear, with a few partic
affected. However above a fairly well defined point almo
all of phase space is stochastic up to some limiting ene
and the whole distribution is heated irreversibly. Within lim
its, extending the width of the Gaussian perturbation d
not change results, the particles are heated up to the lim
KAM surface in a few hundred cyclotron periods. The s
chastic threshold and the amount of heating depend on
properties of the spectrum in ways which are still being
vestigated.

FIG. 12. Energy time history for spectrum of Alfve´n waves with
dB/B5431023.
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V. CONCLUSION

In conclusion, we have demonstrated that significant p
pendicular heating of a magnetized plasma can be obta
well below the cyclotron frequency. The example of an ele
trostatic wave propagating across a constant magnetic
with a frequency below the cyclotron frequency serves a
simple mathematical model for the effect. The resonan
involve orbits which complete multiple cyclotron periods
one wave period. Stochastic threshold for a single wave
curs at an amplitude which is almost independent of
wave frequency, and in the presence of several waves

FIG. 13. Energy time history for spectrum of Alfve´n waves withdB/B
5431022.

FIG. 14. Stochastic heating due to a spectrum of Alfve´n waves.
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threshold is significantly lowered. This generic process
due to the nonlinear coupling of the motion of the guidi
center due to the wave with the cyclotron motion, and c
occur with any type of wave. The process may have ap
cation in laboratory heating devices as well as in astroph
cal situations. Of particular interest is a spectrum of Alfv´n
waves, which can energize cold ions even when the w
frequency is well below the ion cyclotron frequency. Th
effect may be of importance in the heating of ions in t
solar corona7 and in transfering energy directly from a fa
ion population to bulk thermal ions in a magnetically co
fined toroidal plasma with low aspect ratio.10
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