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Resonant heating of a magnetized plasma by low frequency waves of large amplitude is considered.
It is shown that the magnetic moment can be changed nonadiabatically by a single large amplitude
wave, even at frequencies normally considered nonresonant. Two examples clearly demonstrate the
existence of the resonances leading to chaos and the generic nature of heating below the cyclotron
frequency. First the classical case of an electrostatic wave of large amplitude propagating across a
confining uniform magnetic field, and second a large amplitude Alfvave, propagating obliquely
across the magnetic field. Waves with frequencies a small fraction of the cyclotron frequency are
shown to produce significant heating; bringing, in the case of Alfuaves, particles to speeds
comparable to the Alfve velocity in a few hundred cyclotron periods. Stochastic threshold for
heating occurs at significantly lower amplitude with a perturbation spectrum consisting of a number
of modes. This phenomenon may have relevance for the heating of ions in the solar corona as well
as for ion heating in some toroidal confinement fusion device2002 American Institute of
Physics. [DOI: 10.1063/1.1445180

I. INTRODUCTION mary cyclotron resonance, which can change the magnetic
moment leading to pitch angle scattering and heating. We
Resonant heating of particles in a magnetic field is ahave recently foundthat given a sufficiently large ampli-
subject which has been examined by many authors and is afide, obliquely propagating wave there indeed exists effi-
importance in the heating of magnetically confined labora<ient stochastic ion pitch angle scattering and heating by the
tory as well as extraterrestrial plasmas. For a review sedlfvén wave even whem<()..
Lichtenberg and Liebermahnit has been found that it is also We divide the presentation into a discussion of the stan-
possible to break the invariance of the magnetic moment alard model of electrostatic cyclotron heating in Sec. I,
frequencies well below the cyclotron frequerfcy.This phe-  higher order Hamiltonian analysis in Sec. lll, heating with
nomenon is due to the nonlinear coupling of higher harmonAlfvén waves in Sec. IV, and conclusions in Sec. V.
ics of the guiding center motion with the cyclotron motion,
and must be expected to occur for a large amplitude wave of
almost any type. It is most easily analyzed by considering the
classic case of an _electrostatic wave propagating across |2 o| ECTROSTATIC CYCLOTRON HEATING
constant magnetic field.
The Alfven wave is a fundamental excitation of a mag- Consider the simplest cyclotron heating problem

netically confined plasma. Alfvewaves, either excited spon- possiblé* that of a particle gyrating in a constant magnetic
taneously or by external sources, have been observed or prfis|q, acted upon by an electrostatic plane wave propagating
dicted to be present in plasmas with parameters ranging frofcross the field. This situation is realizable, for example, by a
those 01_‘ laboratory to space and astrophysical environ_men%Wer hybrid wave in a plasma of high density and small
Interactions b_etween Alf\re waves and charged particles magnetic field, propagating perpendicularly Boat the ion
thus play crucial roles in many plasma dynamical processesy|asma frequency. The observation of stochastic heating has
Pitch angle scattering and energization of charged particle, tact heen reported in work we only recently discoveted.
(ions) by large amplitude Alfve waves occurs at frequencies \yeg il find that the resonances producing stochastic heating
well below the cyclotron frequendy . through a mechanism pgjow the cyclotron frequency occur through the same
entirely analogous to that described by an electrostatic wavgnechanism as those due to any wave in a magnetized

Previous theoretical investigations of heating mechanismg|asma, so this model illustrates the heating mechanism well.
have nearly always been based on the existence of the pri- The Hamiltonian for this system is

= R)\2
dpaper FI1 6, Bull. Am. Phys. Sod6, 98 (2007). H= ﬁ +d(x,t) (1)
lnvited speaker. 2 ’
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with the magnetic field given by the vector potenti&l
=—ByX, giving equations of motiorv,=Bv,—d,P, vy
=—Buv,—d,®.

Take the units of time to be given Ky, the cyclotron
frequency, and let the electrostatic wave be given by a single
harmonic,® = ®, cosfkx—wt). There are then three dimen-
sionless parameters characterizing the heating problem. De-
fine p=v/Q, to be the instantaneous cyclotron radius. Then
kp characterizes the ratio of cyclotron radius to wavelength,
k?®o=kAx,= w5/ QZ characterizes the ratio of guiding cen-
ter polarization drift displacement in the wave to wavelength,
with wy, the bounce frequency in the wave angthe guiding
center position, and/(). gives the ratio of the wave fre-
guency to the cyclotron frequency.

The equations of motion become,=uv,+k® sinkx
—ot), vy=—X+Xo, giving

d2x ) FIG. 1. Poincarelot for electrostatic wavek’®,=0.1, o=1/2.
WJFXZXOJF kd g sin(kx— wt). (2

It is easy to see that trapping in the wave is impossible!€/Mineé one Poincar@oint. Others are given byp(t;),
Fixed points are given bylv/dt=0 and

prevented by the cyclotron motion. During each cyclotron‘/’(tj):‘/’o_“’tj- o
period, at the poiné, =0 the orbit returns to the poin and ~ constant phase, or=a=an=fn=0.
every orbit is thus fixed in the laboratory frame. Conversely, ~ In general these equations are very complicated and the
assuming that the orbit is trapped in the wave witt= wt Poincaresection must be examined numerically. For signifi-
we find thatv, grows without bound, which is inconsistent cant heating there must exist resonances. A complete analysis
with trapping. would consist of a determination of all fixed points and then
For small wave amp”tude at the Cyc|0tron frequency it isthe calculation of the widths of the islands OCCUring around
possible to describe the particle response to the wave ithe elliptic points, followed by an estimate of stochastic
terms of oscillation at the cyclotron frequency with a slowly threshold due to island overlap. Unfortunately this approach
varying cyclotron radius, or energy. In the case of interestS not feasible, and to make any progress analytically one
here, wave amplitudes are large and wave frequencies diffefust be guided by numerical results. A numerical Poincare
ent from, but comparable to, the cyclotron frequency, so replot is shown in Fig. 1 fork’®,=0.1, =1/2, showing
sponse of the particle at additional frequencies must be rereriod two fixed points occuring at small wave amplitude. In
tained. To treat the full problem it is necessary to includeFig. 2 are shown these two fixed point orbits, the smaller
particle motion at fractions of the cyclotron frequency, side-0rbit to the left corresponding to the lower fixed points at
bands, harmonics, etc. The particle motion must be writtefp=0.825, =0, 7, and the larger corresponding to the up-
X=Xo+ \ cos)— a Sin(t) + =] am COSEt) + Bmsin(v,t)] with  Per fixed points akp=1.841, =+ /2. The nature of the
\, a, am, Bm Slowly varying in time compared to ¥,,, and  resonance is obvious, a particle at the fixed point completes
vy giving the set of frequencies necessary to describe the
motion. A full analytic treatment is not possible, but some

analytic approximations give insight into the nature of the S L B I I ILR
solutions. N ]
First consider Eq(2) for s=k(x—xg)<<1. Letting 2T 5[ h
=kXy,— wt and keeping only lowest order mwe have - 8
d’s [ 4 4k’®, 4k2d, o[ B
W+ P S coq2T) [s= " sin(2T), (3 - ]
i.e., a driven Mathieu equation. This equation has unstable }1 L ]
solutions fore=2/N with N integer, indicating the existence r ]
of large amplitude solutions for these valuesaof - .
Now consider a Poincarsection ofkp, =kx— wt, by o ]
taking points wherv,=0,v,>0. This givesy= ¢y— wt;, C ]
with ¢o=kXo, andt; given by the times at whick=x, and B ]
x<0. Given\(t), a(t), an(t), Bm(t) one can solve for the T L N L N L RV R
Poincafetimestj. Without loss of generality we take &t -1 0 1 2 3 4
=0 initial valuesx random,v, random negative and, X
=0, giving Xx=Xq, #(0)=iy. The values at=0 then de- FIG. 2. Fixed point orbits for Fig. 1.
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two cyclotron periods while completing one wave period.
The first fixed point orbit shows a large variation of the orbit
between one cyclotron period and the second, in the second
orbit this modification is clearly higher order.

Guided by numerical results, including a Fourier analy-
sis of the fixed point trajectories, we illustrate the nature of
the solutions for this case by considering only the cyclotron
motion and the particle response at the wave frequency of
w=1/2. Employing multiple time scales, and using as ansatz

White, Chen, and Lin

the solution to the equations of motiox=Xxy+ A cos()
—asinf)—Bsin(wt) with A, «, B slowly varying with respect
to 1,0, we then find, keeping only leading order in the slow
time scale and using=2s"®=3 7 _(a)e*™®,

da an )
—Zacos(t)—zasm(t)—(l—wz)ﬂ sin(wt)

=k®o.2 3,(kN)Ji (k) In(kB)
Xsin(j—l—mw—w)t]cog ¢+ |/pil2]

+k<b02 J;(kM)Jy(ka) In(KB)
jlm

X cog (j— | —mw— w)t]sin ¢o+ j w/2]. (4)
Integrating over the short time scales, we have
(1—w2)ﬁ=k<bo“2m Ji(kN)Jy (k) In(KB)

X cog o+ | m2)A,,_ , 5
da
2a=—k®0“2m J;(kN)Jy(ka) Ip(kB)
Xsin(go+jml2)AL, (6)

dx
2= "‘DO% J;(kM)Jy(ka) In(kB)

X coq Yo+ mI2) A1, (7

With A+ = 614 (“m-1)w,¢F O~ 1+ (-m—1)w,— -
To gain an intuitive understanding of the occurences o

the nonlinear resonances which permit heating at frequencieDs
well below the cyclotron frequency, we can examine the

limit of small wave amplitudek?®,<1, analytically forw
=1/2. Denoting Co=cos@p), Sp=Ssin(y), and defining
Fap(Na) =27 (—1)"In1a(kN)Jznip(ka), we find

(1—w?) B=k®[Co(Foo—Fo-1)+So(F1o-F11],

(8)
da
2 T k®oJ1(KB)[Co(F10—F1-1tF1o—F11)
+So(Fo-1—Fo-2+Fo1=Fo0 1l 9
d\
2 rTa KDoJ1(KB)[So(—F10tF1-1tF1,—F11)
+Co(Fo-1=Fo-2=Fo1tFool- (10
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FIG. 3. Poincareplot for electrostatic wavek’®,=0.1, 0=1/3.

Within this ansatz, these equations determine the motion
of a Poincarepoint in thekp, ¢ plane for smallk?’®,. To
determine the existence of resonances first look for fixed
points of the Poincarmap. In this cas&B andk\ are small
and we find for the existence of a fixed point in the case
=1/2,Cy=1, Sy=0 andA=0, Jy(ka) =2J3;(ka) + Js(ka)
giving ke=0.825 and8=—1.6X®,. The Poincareoints
are given byt;=2jm. The fixed points are thekp=k(a
—wp), =0 andkp=k(a+ wpB), =, agreeing with the
positions shown in Fig. 1. The second pair of fixed points in
Fig. 1 atyy= = /2 andkp=1.84, giving the larger orbit in
Fig. 2 is more complex, due to a combination of higher order
motion atw and 3w. Including particle response at more
frequencies, and allowing larger valuesksfb, the number
of fixed points in the map increases enormously.

For w# 1/2 but less than 1, the situation is qualitatively
different. The fixed points of the map emerge frgm 0 as
d, is increased. Nevertheless, fixed points and resonances
exist for all integem, associated with the unstable domains
of the associated Mathieu equation. In the following we
show a few of the Poincanglots and associated fixed point
]prbits to make clear the nature of the resonances involved
roducing stochastic heating.

A numerical Poincarglot is shown in Fig. 3 fok?®,
=0.1, o=1/3, showing period three fixed points which
move upward ak’®d, increases. Figure 4 shows the fixed
point orbit for =1/3. The motion is easily interpreted as
consisting of three cyclotron oscillations within one wave
period. The orbit initiates at the orgin, which is one Poincare
point, with x<<0. The three cyclotron periods consist (@)

the left half of the lower ellipse, continuing around to the
bottom of the small central ellipse, which is another Poincare
point, (2) the upper ellipse, returning again to the bottom of
the small central ellipse, which is the third Poincaa@nt,
and (3) the right half of the lower ellipse, returning to the
origin.

In Fig. 5 is shown the Poincanglot for o= 1/4, k?®,,
=0.77, and in Fig. 6 is shown the period four fixed point
orbit associated with the fixed points @&t 0,+ 7/2,= 7 for
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FIG. 4. Fixed point orbit for Fig. 3. . . . . o
FIG. 6. Fixed point orbit associated with Fig. 5.

the same parameters. There are four cyclotron periods con- Now investigate the approach to chaos and the extent of
tained in the wave period. The map has also become verfpe chaotic domain, which limits the possible heating ob-
chaotic, but good KAM surfaces exist fap>2. tained. Stochastic threshold is not simply described in terms

For w=2/N with N odd the fixed point orbit is not sim- of island overlap, as is evident from Fig. 1. The islands at
ply interpretable as consisting of an integer number of cyclosmall perturbation amplitude are already large, forming a
tron periods in one wave period, as the cases withgual to  lattice. For frequencies below the cyclotron frequency the
a simple fraction. Part of the orbit has a peculiar shape angesonance domain, and hence the origin of the chaos, is at
consists of a pause, or syncopation, allowing one wave pesmall energies, unlike the case of heating well above the
riod for everyN/2 cyclotron periods. cyclotron frequenc§l. The stochastic domain typically ex-

In the above figures, the fixed point orbits are showntends fromp=0 to a maximim value, where good KAM
only to display the nature of the resonances. Most orbits aré<olmogorov—Arnold—Mosersurfaces exist and the perpen-
obviously very complex, and are not closed. The nature oflicular energy is only oscillatory, described by the magnetic
these resonances is very robust. Small additional perturb@oment. The extent of the stochastic domain increases in
tions of the system shift the location of the O-points, they dodiscrete jumps as new resonances overlap and domains
not destroy the resonances. Even including pitch angle scag@round them become stochastic. Heating of an initially cold
tering in the particle motion the resonances are well predistribution proceeds to the maximum limit given by the
served until the scattering frequency is comparable to thgood KAM surfaces in a rather short time; on the order of
cyclotron frequency. 100 to 200 cyclotron periods.

Figure 7 shows the variation of the extent of the “heat-
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2 ] 1or ]
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FIG. 5. Poincarelot for electrostatic wavek’d,=0.77, w=1/4. FIG. 7. Heating domain v& for k?®,=(a) 0.36,(b) 0.8, (c) 2.6.
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L LA I B e tion X,Px—#,P, with ¢y=kX—wt using F,(q,P,t)
=(kX—wt)P,+Pyd, giving p=dF,/dq, Q=dF,/dP,
Px=kP,, and the Hamiltonian becomes
H:P¢QC_Pt//w""q)ozm\]m(kp)sm('//_"md’) (13)
with variablesy, ¢,P,,,P, and unperturbed frequencies
:ap¢H0:QC, w¢=z9pwH0=—w.
The first order perturbation gives resonances, with a

secularity of the perturbation, wheyi+m¢=constant, or
o—mQ.=0, i.e., the usual cyclotron harmonics. Butlif is

0.8
k*®
0.6

04 large, this analysis is incomplete. To obtain higher order in
d,, begin with Eq.(2). Takew<1, and perform a two time
0.2 scale analysis withX(t) slow. Neglecting slow time scale
dependence, and averaging over the fast time scale we find
o) AT AR NIRRT IR R kX=kxo+ k2®o(sinkX+kpsinp—wt)). Again transform
0 62 04 06 08 1 X,Px—,P, usingF,(q,P,t) as above. Then find the equa-
@ tion for ¢ to be = y+k>®o(sin(+kpsing)) with o,
FIG. 8. Threshold for chaos in tHé®,,  plane. =kxo— wt. Now iterate twice in powers df’®, giving
2= tho+ K202 Im(kp) (Sin( o+ meh))
ing domain” in kp versus wave frequency fa?®,=0.36, + (K DF2) S mndm(kp) In(Kp)(SIN(24g+ Mp+neh))

0.8, and 2.6. For small wave amplitude some peaking can 452 .
indeed be seen at low-orde&mall) integer fractions, as pre- T (KPY2) 2 mndm(kp)In(kp)(sin(me = nep)).

dicted by the Mathieu equation approximation. As the ampli-  Recall the Hamiltonian i$d =Hq+ ® sin(y+kp sin ¢),
tude increases, however, nonlinear generation of many fixeso (k?H)~ . But terms inyg, with m+n=1 give a secu-
points produces chaos which smooths out the resonandarity at 20= .. To find the secularities ab=Q /N it is
structures and makes the extent of the domain almost linearecessary to perforr iterations, and the Hamiltonian be-
in w. Of course at small amplitude and in the limit @  comes very complicated. Furthermore this iso& (). ap-
—0 for any amplitude the motion is not stochastic, and thergoroximation, and cannot even reproduce the case() /2

is no real heating, only large amplitude excursions in thedescribed above, with any degree of accuracy.

potential. But for large amplitude the motion becomes sto- i

chastic, producing true heating, for very low frequencies. FotV. ALFVEN WAVE HEATING

the two larger amplitude plots axX indicates the frequency

f(:: the onsletl of chaosl. Fdl?d>0=g.36, ct!rve(a), theril's no frequency Alfven waves. The physics of this stochastic heat-
¢ a(_jl_i’ only ?rgfe Ecae ctolnvec Ve Mo |on|,_te;en)a 'f i ing is similar to that due to a perpendicularly propagating
€ onset of chaos at large wave amplitude as a InCliog, o .y gstatic wave with a frequency a small fraction(bf

of w is shown in Fig. 8. Note tha_t ht_agtmg at the CyCIOtrongiven abové. To demonstrate the similarity consider a lin-
frequency has a threshold not significantly lower than for

) . . early polarized Alfva wave in the laboratory fram¥, Y, Z,
subcyclotron frequencies. Valuesldi®, above the line give . = . . S > N
a significantly stochastic plot, with the area of the domain ofdVe€N bY Bw=ByYy cos@) with y=k-X—wt and B=B,z. -
stochasticity increasing rapidly as one moves away from the e Navew =k, and if we consider ions which are cold in
line. The onset of chaos is very irregular, it can occurt € Igboratory frame we also haug= kzopa=kev with v the
through period doubling, the overlap of islands of variousvGIOCIty in the wave frame,y,z with z=Z—v st. Take the

. . : - units of time to be given by}, the cyclotron frequency, and
period, or through the stochastic broadening of a separatrlxuhormalize the field toBy. In the wave frame we haves

=k,x+k,z and the velocityv =v, is constant in time. Di-
I1l. HAMILTONIAN ANALYSIS mensionless numbers characterizing the problem are then

) ) ) ke, kv=w/Q., and the wave magnitud®,, /B,.
The resonances described above are missed in the usual The equations of motion become, again in the wave

Hamiltonian for_malism. To see how this occurs fpllov_v Ligh— frame, vx=v,—v,ByCOSY, vy=Xo—X, ,=v,B, COSY,
tenberg and LiebermanThe unperturbed Hamiltonian is giving

Ho=(p—A)%2 with B=B?% the vector potential A o

=ngy, and canonipal variables,y,px,py.. Transform to —— +X=Xo—v,B,, COS (12)
guiding center variables¢,X,Px,P, using F4(q,Q,t) dt

=0 J3%x—X)?cotp+yX], with tang=uvilvy, y=Y and the instantaneous location of a particle in phase space is
+pcose, x=X+psing, p=dF,/dq, P=—09F/dQ, giv- given byx,z and the pitchh =v,/v. Note thatv,=0 implies

ing  px=Qc(x—=X)cotp, py=QcX, P¢,=Qcp2/2, Py  againx=Xq and every orbit is thus localized ix, but in
=—.Y. Then we haveH,=P, .. Now introduce the distinction to the electrostatic case the wave is also propa-
perturbationH =H+ &, sin(kkx— wt). Make the transforma- gating inz.

Now examine stochastic heating of cold ions by low
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-0.5

0
Y= kx + k,z

FIG. 9. Poincareplot for a plane polarized Alfwe wave, B,,=0.22, FIG. 10. Poincareplot for a circularly polarized Alfve wave,B,,=0.25.
ko=0.1,ko=1. ke =0.27, kv =0.2.

To lowest order irB,,, the velocityv, dozes not change, positivez direction, and in the wave frame,/v=—1 for an
and we thus find to first orderd®x/dt™+x=Xo ipjtially cold ion distribution. Figure 10 shows a Poincare
—v,(0)B,, cosy. This equation is equivalent to E(R), de- ot for a left-hand circularly polarized wave witB,,
scribing cyclotron heating, wit/Q¢=kv,(0)/Q. playing  — g 25 k y=0.27, k,v=0.2. In the laboratory frame of the
the role of the frequency of the electrostatic wave, and,qq particles this wave has a frequency@fQ,=0.2. At
K 2(0)Bw/(Boflc) the nonlinearity parameter. We again this amplitude the lower part of the plot is chaotic, and ions
find a driven Mathieu equation with unstable solutions for., freely move fromy,/v=—1 to values near-0.4, but
w=2/N with N integer. Thus there are resonances at manypove this there are good KAM surfaces. Transforming back
values of particle pitch in the wave frame. However, notey, the |aboratory frame, the final ion distribution has a mean
that k,=0 implies no nonlinear interaction, so we expect yerpendicular velocity more than three times as large as the
nonlinear effects only for waves propagating across the fieldyean parallel velocity. An initially cold distribution is given

For larger values oB,, the approximation 0b,=v,(0) will 3 |5rge perpendicular energy in a few hundred cyclotron pe-
be invalid in the differential equation for and the motion  j5¢s.

will be more complex. Thus we expect the threshold for |, Fig. 11 is shown a numerical determination of the

chaos to occur at lower perturbation amplitude than for thes;ochastic threshold in the planelgi, B,, for frequencies of

case of an electrostatic wave. o w/Q.=0.1,0.25, 0.5. This plot was obtained by observing
To study the resonances, again take a Poinsacéon of  he poincareplot of initially cold (pitch=—1) particles.
\, ¢, formed by taking points when,=0 andv,>0 for a

distribution at a fixed energy, i.e., all particles with the same

v in the wave frame. Figure 9 shows a sample Poinpioe

with k,w=0.1, k,v=1, B,,=0.22, with resonances &tv, O N L B B
=2/n for all integern=2, although only a few are visible in -
this plot. Large islands centered at zero pitch are populations L
of particles trapped in the magnetic well. In a way, the
Alfvén problem is simpler than the electrostatic problem,
because the location of the resonances in the Poimptatén

this case is known. At larger wave amplitude these reso-
nances produce stochastic motion, and hence allow nonadia-
batic, permanent change in pitah Transformed back to the B
laboratory frame such a change in pitch is equivalent to par-
ticle acceleration and heating as well as pitch angle scatter-
ing.

Noting that waves of left-hand polarization are often ex-
cited in space plasmas, we shall consider in the following - q
only a left-hand circularly polarized Alfrewave. Thus we g YL T T T
have, again in the wave framéw=—BWRcos@)sin(¢) 0 0.1 0.2kv 0.3 0.4
+B,y cosy+B,zsin(e)sin(y) with ¢=k,x+k,z and tang) *
=k./k,. In the laboratory frame the wave propagates in the FIG. 11. Stochastic thresholt) w=0.5, (b) @=0.25, () ®=0.1.
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FIG. 12. Energy time history for spectrum of Alfvewaves with FIG. 13. Energy time history for spectrum of Alfwvewaves with 5B/B
SB/B=4x10"3. =4x102,

Above the line there is a significant chaotic domain leadingy coNnCLUSION
to heating, and below it good KAM surfaces exist, prevent-
ing heating.

With a spectrum consisting of waves of different fr

In conclusion, we have demonstrated that significant per-
o- pendicular heating of a magnetized plasma can be obtained

quencies a Poincarglot cannot be used to investigate the Welltbflow the cyclotror;_frequency. The extamtple of ant_elic] d
onset of chaos. However, it is possible to examine the pre§—rOS atic wave propagating across a constant magnetic fie

ence of chaos by using a perturbation which is Gaussian iW'th a frequency _below the cyclotron frequency serves as a
time, tending to zero at= =2 with a width of t>1/,. In ~ SIMPIe mathematical model for the effect. The resonances
Fig. 12 is shown the adiabatic nature of the particle energ>'}ﬁ'voIVe orbits which complete multiple cyclotron periods in

change for a small amplitude perturbation, with a spectrunﬁ"’ne wave penod.. StOChaS.t'C threshold fgr a single wave oc-
of 21 modes all withk,V,=k,V,=Q,, uniformly distrib-  CU'S at an amplitude which is almost independent of the

uted in the interval 0.2 w/().<0.7, the amplitude for mode wave frequency, and in the presence of several waves the

k given by 6B,~Al/w,, as suggested by solar corona
spectroscopy.The initial particle distribution was monoen-
ergetic withv =V /20 and uniform in pitch. Over 90% of the
energy is in the perpendicular velocity, so these plots are
essentially of the magnetic moment. In Fig. 13 is shown the 4,
nonadiabatic response with a larger amplitude perturbation A
Figure 14 gives the final energy change as a function ofﬂ
average mode amplitude for spectra consisting of 1, 5, 21

and 51 modes witkk,V,=1 and one spectrum witk,V 30
=10, all in the frequency range 62w/ .<0.7, showing

an approximate threshold behavior. As expected from the
linear analysis, largek, increases the level of chaos. There
is not a precise threshold for heating becauséBscreases
small chaotic domains begin to appear, with a few particles
affected. However above a fairly well defined point almost
all of phase space is stochastic up to some limiting energy 10
and the whole distribution is heated irreversibly. Within lim-

its, extending the width of the Gaussian perturbation does

not change results, the particles are heated up to the limiting

50

20

KAM surface in a few hundred cyclotron periods. The sto- 8001 0.01 0.1 1
chastic threshold and the amount of heating depend on th 6B/B

properties of the spectrum in ways which are still being in-

vestigated. FIG. 14. Stochastic heating due to a spectrum of Alfveaves.
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