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It is important to integrate full particle orbit accurately when studying charged particle dynamics in

electromagnetic waves with frequency higher than cyclotron frequency. We have derived a form of

the Boris scheme using magnetic coordinates, which can be used effectively to integrate the

cyclotron orbit in toroidal geometry over a long period of time. The new method has been verified

by a full particle orbit simulation in toroidal geometry without high frequency waves. The full

particle orbit calculation recovers guiding center banana orbit. This method has better numeric

properties than the conventional Runge-Kutta method for conserving particle energy and magnetic

moment. The toroidal precession frequency is found to match that from guiding center simulation.

Many other important phenomena in the presence of an electric field, such as E� B drift, Ware

pinch effect and neoclassical polarization drift are also verified by the full orbit simulation. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4929799]

I. INTRODUCTION

Particle-in-cell (PIC) simulation is widely used to study

the complicated plasma dynamics,1 where the position and

velocity of charged particles as well as electromagnetic fields

are advanced in time simultaneously. It is essential in the

PIC simulation to push particle in the phase space accurately.

In order to simulate the particle motion in slowly varying

electromagnetic fields (with frequency lower than cyclotron

frequency), the formulation to push the guiding centers in

magnetic coordinates has been developed and greatly

advanced the gyrokinetic simulation.2–5 When the electro-

magnetic field frequency is comparable or higher than the

cyclotron frequency, e.g., the radio frequency electromag-

netic waves used for plasma heating and current drive, the

full particle orbit, rather than the guiding center orbit needs

to be calculated accurately over a very long time scale.6–9

Boris algorithm is an outstanding choice to integrate the

cyclotron orbit of the charged particle with its time-explicit

nature.10,11 The Boris algorithm conserves phase space vol-

ume in non-relativistic limit, making it very attractive in the

non-relativistic long-time simulation. The Boris algorithm

has been recently found not to conserve phase space volume

in the relativistic limit.12 Qin et al. demonstrate that although

it conserves phase space volume, the Boris algorithm is not

symplectic with finite time step size.13 However, Webb later

reports that the symplectic feature is recovered for the Boris

algorithm by expanding the discrete Euler-Lagrange equa-

tion to the higher order.14 The latest publications by Zhang15

and He16 tend to confirm Qin’s original conclusion.

Therefore, whether the Boris algorithm is symplectic or not

remains an open issue.

The conventional Boris algorithm works well in the

Cartesian and cylindrical coordinates.17–19 However, the

magnetic coordinates are more suited to describe the compli-

cated magnetic geometry and electromagnetic fluctuations in

toroidal plasmas. Therefore, it is desirable to work out a

Boris scheme in the magnetic coordinates to accommodate

the complex physics in the magnetic fusion devices like

tokamaks. In addition, this algorithm should be able to han-

dle the particle dynamics in the long time scale, and it needs

to be verified by the particle dynamics with or without exter-

nal electromagnetic waves.

In this paper, we derive a form of the Boris scheme in

the magnetic coordinates, which is used effectively to push

particles over a long period of time in the toroidal geometry.

In Section II, the basic Boris scheme is introduced and the

magnetic coordinates are used to advance the particle posi-

tion. The complication in advancing velocity in the magnetic

coordinates is carefully examined in Section III. Section IV

shows simulation results for verification of the new Boris

formulation, including the bounce motion and toroidal pre-

cession of banana orbits, E� B drift, Ware pinch effect, and

neoclassical polarization drift in the absence of high fre-

quency waves. Summary and discussion are provided in

Section V.

II. BORIS ALGORITHM AND POSITION ADVANCE IN
TOROIDAL GEOMETRY

The motion of a charged particle in electromagnetic

fields is given by the following equations:

dx

dt
¼ v; (1)

dv

dt
¼ e

m
Eþ v� Bð Þ: (2)

The leap-frog method1 has been widely used to advance

these equations by shifting the position and velocity of the

particle by Dt=2 to make the scheme time-centered

xtþDt=2 � xt�Dt=2

Dt
¼ vt; (3)
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vtþDt � vt

Dt
¼ e

m
Eþ vtþDt þ vt

2
� B

� �
: (4)

In Eq. (4), the electric field E and magnetic field B are eval-

uated at the time of tþ Dt=2. We note that Eq. (4) is implicit

in time and thus advancing v is relatively troublesome.

However, Boris introduced two intermediate velocities v�

and vþ to make Eq. (4) time-explicit.10 These two intermedi-

ate velocities connect with vt and vtþDt through the following

equations:

v� ¼ vt þ eDt

2m
E; (5)

vþ ¼ vtþDt � eDt

2m
E: (6)

Thus, the acceleration of the electric field E is split into two

half-accelerations. Between these two half-accelerations, the

velocity vector vþ at the time step tþ Dt=2 can be obtained

from v� by the following vector rotation:

vþ � v�

Dt
¼ e

m

vþ þ v�

2
� B

� �
(7)

which approximates the Lorentz rotation by the magnetic

field. We further note that the preceding equation is still in

the implicit form. However, it can be further transformed to

the following explicit form:1

vþ ¼ v� þ ðv� þ v� � tÞ � s (8)

with t ¼ XDt
2

b; s ¼ XDt
1þ XDt=2ð Þ2 b, the gyro-frequency X ¼ eB

m ,

and unit vector along the magnetic field b ¼ B
B. Here the

symbol e denotes the particle charge. Therefore, the proce-

dure of advancing velocity is separated into three steps: a

half-acceleration by the electric field, a rotation of the veloc-

ity vector by the magnetic field, and another half-

acceleration by the electric field. In the Cartesian coordi-

nates, with v ¼ vxex þ vyey þ vzez, the time advancing of ve-

locity is straightforward by following Eqs. (5), (6), and (8) in

the three fixed orthogonal directions.

For a toroidal system like tokamak, it is usually more

convenient to use magnetic flux coordinates ðw; h; fÞ rather

than the Cartesian coordinates, where 2pw is the poloidal

magnetic flux, and f and h are the effective toroidal and poloi-

dal angle, respectively. In the gyrokinetic theory, the velocity

v is decomposed into three components: vjj, l, and the phase

angle /, where / is an ignorable variable due to the fast gyro-

motion. Therefore, the guiding center of the particle is pushed

in the 5D phase space ðw; h; f; vjj; lÞ by the guiding center

equation of motion, which can be derived from the guiding

center Hamiltonian principle.2 In the full-kinetic (or full parti-

cle orbit) simulation, the decomposition of the velocity vari-

able to ðvjj; l;uÞ will lead to numerical difficulties since these

variables are defined on a local orthogonal coordinate system

which rotates with the particle motion and hence is not fixed

in time and space, e.g., the phase angle will rotate along the

magnetic field line in a sheared magnetic field even without

any particle gyromotion.

The velocity v is thus decomposed using three covariant

basis vectors ei ¼ dr
dai

, with ai ¼ w; h; f for i ¼ 1; 2; 3, which

can be defined by the magnetic coordinates. Then

v ¼ ðvw; vh; vfÞ ¼
P3

i¼1 vai ei, with the contravariant velocity

component vai ¼ v � rai. The contravariant basis vector is

defined as ei ¼ rai, with ei ¼ J�1eijkej � ek, where eijk is the

Levi-Civita symbol, eijk ¼ 1 if the indices ði; j; kÞ follow an

even permutation of ð1; 2; 3Þ; eijk ¼ �1 if the indices ði; j; kÞ
follow an odd permutation of ð1; 2; 3Þ; otherwise eijk ¼ 0. The

transformation Jacobian J between the covariant form and

contravariant form is J ¼ e1 � e2 � e3 and J�1 ¼ e1 � e2 � e3.

The position advance in the magnetic flux coordinates derived

from Eq. (3) takes the form

ai
tþDt=2 ¼ ai

t�Dt=2 þ vai tDt: (9)

Once the new particle position ai
tþDt=2 is known, the contra-

variant basis vector eitþDt=2 at this new time step can be

computed.

In Sec. III, we show how to evolve from vt to vtþDt in

the magnetic coordinates following the Boris algorithm.

III. ADVANCE VELOCITY IN TOROIDAL GEOMETRY

Since the particle changes its position with time, the ba-

sis vectors ei and ei at the particle position also change with

time. In the absence of an inductive field, the electric field

can be expressed by an electrostatic potential E ¼ �r/.

The velocity evolution equation in the Boris scheme, i.e.,

Eqs. (5) and (6), can be projected onto the three contravar-

iant basis vectors eitþDt=2 for i ¼ 1; 2; 3 at the new time

step tþ Dt=2. By defining uai t ¼ vt � eitþDt=2, uai tþDt

¼ vtþDt � eitþDt=2, uai� ¼ v� � eitþDt=2, and uaiþ ¼ vþ � eitþDt=2,

Eqs. (5) and (6) can be rewritten as

uai� ¼ uai t � XDt

2B

X3

j¼1

@/
@aj

gajai ; (10)

uai tþDt ¼ uaiþ � XDt

2B

X3

j¼1

@/
@aj

gajai ; (11)

where the metric tensor is defined as gajai ¼ ejtþDt=2 � eitþDt=2.

These geometric tensors in the following are evaluated at

time step tþ Dt=2. Similarly, we can define the metric tensor

gaiaj
¼ ei � ej and g

aj
ai ¼ ei � ej. The contravariant component

of Eq. (8) gives

uaiþ ¼ uai� þ v� � s � eitþDt=2 þ ðv� � tÞ � s � eitþDt=2:

(12)

It is known that the magnetic field in toroidal system can be

expressed in both covariant or contravariant form,2

B ¼ drwþ Irhþ grf ¼ qrw�rhþrf�rw, where

q ¼ qðwÞ is the safety factor, d ¼ dðw; hÞ, I ¼ IðwÞ and

g ¼ gðwÞ. Thus, the magnetic field can also be written in

terms of the basis vectors
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B ¼
X3

j¼1

Bje
j ¼

X3

i¼1

Biei (13)

with Bj ¼ ðd; I; gÞ, Bi ¼ ð0; J�1; qðJÞ�1Þ and the Jacobian

J ¼ qgþI
B2 . With these notations, Eq. (12) can be further sim-

plified as

uaiþ ¼ 1� cB

2
XDtð Þ2

� �
uai� þ cB

XDtð Þ2

2B2

X3

j¼1

BiBju
aj�

� cB

J

XDt

B

X3

j;k;l¼1

eijlBjgakal
uak� (14)

with the constant cB ¼ 1

1þ XDtð Þ2=4. This equation can be explic-

itly expressed for each component in the following way:

uwþ ¼ 1� cB

2
XDtð Þ2

� �
uw� þ cB

J

XDt

B

X3

k¼1

ggakh � Igakfð Þuak�;

(15)

uhþ ¼ 1� cB

2
XDtð Þ2

� �
uh�

þ cB

XDtð Þ2

2B2

1

J
duw� þ Iuh� þ guf�� �

þ cB

J

XDt

B

X3

k¼1

dgakf � ggakw
� �

uak�; (16)

ufþ ¼ 1� cB

2
XDtð Þ2

� �
uf�

þ cB

XDtð Þ2

2B2

q

J
duw� þ Iuh� þ guf�� �

þ cB

J

XDt

B

X3

k¼1

Igakw � dgakh
� �

uak�: (17)

The preceding equations can be used to compute

uaiþ(i ¼ 1; 2; 3), which then can be further used to compute

uai tþDt using Eq. (11). However, vai tþDt instead of uai tþDt

is required to evolve ai
tþDt=2 to ai

tþ3Dt=2, with vai tþDt

¼ vtþDt � eitþDt. The basis vector eitþDt ¼ rai
tþDt remains

unknown since ai
tþDt has not been evaluated in the Boris

scheme. Here we use the following approximation for ai
tþDt:

ai
tþDt ¼ ai

tþDt=2 þ uaitþDt Dt

2
: (18)

It can be shown that this approximation in Eq. (18) does not

affect the energy conservation. However, the volume-

preserving property of the Boris scheme is no longer satisfied

since this approximation introduces an error of order Dt2

(see the Appendix).

Once ai
tþDt is known, vaitþDt can be calculated by

vai tþDt ¼
X3

j¼1

uaj tþDtej
tþDt=2 � eitþDt: (19)

Thus according to Eq. (12), the new position is given by

ai
tþ3Dt=2 ¼ ai

tþDt=2 þ vaitþDtDt, for i ¼ 1; 2; 3. Then, the

velocity variable ~uai tþDt in the next step of velocity evolution

needs to know the basis vector eitþ3Dt=2 rather than eitþDt=2,

which can be then obtained by

~uai tþDt ¼
X3

j¼1

uaj tþDtej
tþDt=2 � eitþ3Dt=2: (20)

Using the preceding procedures, we can advance one full

time step in the original Boris scheme. However, in Eqs. (19)

and (20) we need to calculate the dot-product of the covariant

and contravariant basis vectors at different time steps. It is

most convenient for this calculation if we know the transform

between ða1; a2; a3Þ and the Cartesian coordinates ðx; y; zÞ,
since ei ¼ @ai

@x x̂ þ @ai

@y ŷ þ @ai

@z ẑ and ei ¼ @x
@ai

x̂ þ @y
@ai

ŷ þ @z
@ai

ẑ.

Note the unit vectors ðx̂; ŷ; ẑÞ do not change with the particle

motion. We note that it is often more convenient to introduce

an intermediate toroidal coordinate system ðbiÞ ¼ ðR; Z;/Þ,
and then to find the transformation between the magnetic flux

coordinates ðaiÞ and the toroidal coordinates ðbiÞ. As the

transformation between ðbiÞ and ðx; y; zÞ is straightforward,

we can then rewrite Eqs. (19) and (20) in a more specific form

uai;new ¼
X3

j¼1

X3

m¼1

X3

n¼1

uaj;old @x

@bm

@bm

@aj
;
@y

@bm

@bm

@aj
;
@z

@bm

@bm

@aj

� �

� @ai

@bn

@bn

@x
;
@ai

@bn

@bn

@y
;
@ai

@bn

@bn

@z

� �
; (21)

where the basis vectors of magnetic coordinate system are

expressed using the Cartesian coordinates in order to calcu-

late the dot product in Eq. (19).

It is also interesting to note that Eqs. (19) or (20) can be

regarded as a rotation of the basis vectors as the particle

moves from one time step to the next time step. Especially,

for a locally orthogonal system, the transformation can be

greatly simplified. For example, we can find the transforma-

tion analytically for tokamaks with a concentric circular

cross-section, which is a very useful equilibrium model for

FIG. 1. The rotation of unit basis vectors, ðŵ; ĥ; f̂Þ are the initial directions

of three unit vectors; ðŵ 0; ĥ 0; f̂ 0Þ are the three unit vectors after the first rota-

tion; ðŵ 00; ĥ 00; f̂ 00Þ are the three unit vectors after the second rotation; and

ðŵ 000; ĥ 000; f̂ 000Þ are the three unit vectors after the third rotation.
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many applications. When a particle moves from ðw1; h1; f1Þ
to ðw2; h2; f2Þ, the directions of the basis vectors change with

time as shown in Fig. 1. This rotation can be separated into

three steps: a first rotation about f axis by an angle �h1, a

second rotation about h0 axis by an angle Df ¼ f2 � f1, and

a third rotation about the f00 axis by an angle h2. Thus, the

initial basis vectors can be written by the linear combinations

of the final ones

eold
w ¼

n
enew
w jrw2j sin h1 sin h2 þ cos h1 cos h2 cos Df½ �

þ enew
h jrh2j sin h1 cos h2 � cos h1 sin h2 cos Df½ � � enew

f jrf2j sin Df cos h1

o 1

jrw1j
; (22)

eold
h ¼

n
enew
w jrw2j cos h1 sin h2 � sin h1 cos h2 cos Df½ �

þ enew
h jrh2j cos h1 cos h2 þ sin h1 sin h2 cos Df½ � þ enew

f jrf2j sin Df sin h1

o 1

jrh1j
; (23)

eold
f ¼ enew

w jrw2j cos h2 sin Df� jrh2jeold
h sin h2 sin Dfþ jrf2jeold

f cos Df
h i 1

jrf1j
: (24)

The velocity does not change with the basis vectors, i.e.,

v ¼
X

ui;oldeold
i ¼

X
ui;newenew

i : (25)

The new components of velocity can then be written as

uw;new ¼ jrw2j
uw;old

jrw1j
sin h1 sin h2 þ cos h1 cos h2 cos Dfð Þþ uh;old

jrh1j
cos h1 sin h2 � sin h1 cos h2 cos Dfð Þ þ uf;old

jrf1j
cos h2 sin Df

" #
;

(26)

uh;new ¼ jrh2j
uw;old

jrw1j
sin h1 cos h2 � cos h1 sin h2 cos Dfð Þþ uh;old

jrh1j
cos h1 cos h2 þ sin h1 sin h2 cos Dfð Þ � uf;old

jrf1j
sin h2 sin Df

" #
;

(27)

uf;new ¼ jrf2j �
uw;old

jrw1j
cos h1 sin Dfþ uh;old

jrh1j
sin h1 sin Dfþ uf;old

jrf1j
cos Df

" #
: (28)

For a concentric circular cross-section tokamak, the preced-

ing three equations can be used to compute the vaitþDt and

~uaitþDt in the Eqs. (19) and (20), respectively. For non-

circular cross-section tokamaks, one needs to resort to Eq.

(21) for a general treatment.

We note that there are other extensions of Boris by con-

verting the particle position and velocity to the Cartesian

coordinates at the beginning of the each step and transforming

them back to the magnetic coordinates at the end of the time

step,17,18 where forward and inverse mappings are required

between the two sets of coordinates. Here we developed a

new approach to extend the Boris algorithm in the complex

tokamak magnetic field without using the inverse mapping of

the coordinates. In addition, this new method is completely

compatible with the current numerical equilibrium model

used in the GTC code5 and can extend the original code natu-

rally to include full particle orbit simulations.

IV. SIMULATION RESULTS

The new algorithm has been implemented first in a full

kinetic code and then incorporated to the gyrokinetic toroidal

code GTC. Several simulations for the charged particle dy-

namics in tokamaks have been carried out by this full kinetic

code to demonstrate the validity and usefulness of this new

Boris algorithm in magnetic coordinates. The typical orbits

for trapped and passing particles are shown in the left panels

of Fig. 2. The right panels show the poloidal projection of

the particles on the R-Z plane. The full particle orbits are

closed loops on the R-Z plane after several hundred gyro-
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periods as predicated by the analytical theory, which indi-

cates good numerical conservation properties for this new

algorithm. Although there is a coordinate transformation in

every time step, this new algorithm does not lose accuracy in

the long time scale.

As a comparison, the 4th order Runge-Kutta algorithm

(RK4) is also employed to simulate the particle orbit in the

tokamak. Fig. 3 shows the time history for the kinetic energy

Ek and magnetic moment l for Boris algorithm and RK4,

respectively, where the kinetic energy Ek ¼ 1
2

mv2 and mag-

netic moment l ¼ mv?2

2B are calculated from the velocity of

the particle and local geometrical information at each time

step. As seen in Fig. 3, for the same time step size Dt
¼ 1=32Tc with Tc ¼ 2p=X, the RK4 algorithm fails to con-

serve kinetic energy and magnetic moment, while the Boris

algorithm conserves kinetic energy and magnetic moment

for more than one thousand gyro-periods. Since the magnetic

field is static and no electric field is invoked, only the direc-

tion of the particle velocity changes at each time step in the

Boris scheme, which leads to a perfect conservation of the

kinetic energy. The magnetic moment l in long time simula-

tion shows variation at three different time scales. First in

the fastest time scale, the magnetic moment oscillates with

the gyromotion. Second, the magnetic moment oscillates in

the slower bounce time scale. Third, at an even longer time

scale the magnetic moment decreases very slowly due to the

numerical dissipation.

To test the convergence of this algorithm, we carry out

several simulations using different time step sizes. In Fig. 4,

we plot the motion of the particle in the toroidal direction.

When Dt ¼ 1=32Tc, the black solid curve denoting the Boris

algorithm overlaps the cyan dashed curve denoting the RK4

algorithm, which shows that these methods converge to the

exact particle orbit in the small time step size limit as is

expected. The RK4 curve begins to deviate from the con-

verged orbit when Dt ¼ 1=16Tc and gives a numerically

diverged orbit when Dt ¼ 1=8Tc. However, it is surprising to

see that the Boris algorithm maintains adequate accuracy

even when Dt ¼ 1=8Tc. If there are high frequency electro-

magnetic perturbations, xperturbDt < 1 will set an upper

bound for the time step size.

We also simulate the guiding center orbits with the same

parameters. As Fig. 5(a) shows, the guiding center orbit does

not match exactly the full particle orbit. Although the same

equilibrium magnetic field is used in the guiding center orbit

simulation and full particle orbit simulation, there still

unavoidably exist some higher order corrections in the e
expansion due to the different formulations for these two

algorithms, where e is the inverse aspect ratio and e � r=R0.

The difference for the bounce time of a trapped particle

between these two simulation methods is calculated and plot-

ted in Fig. 5(b). If the equilibrium magnetic field in guiding

center simulation and full particle orbit simulation is accu-

rate to the first order of e, the difference is found to be

FIG. 3. (a) Time history of the kinetic

energy of a particle using the Boris

algorithm and the four-order Runge-

Kutta algorithm (RK4). (b) Time

history of the magnetic moment using

the Boris algorithm and RK4 algo-

rithm. The width of the line shows the

fluctuation caused by gyro-motion.

The simulations last for about four

bounce periods.

FIG. 2. (a) Orbit of a trapped particle in the tokamak. (b) Projection of the

trapped orbit on the R-Z plane. (c) Orbit of a passing particle. (d) Projection

of the passing orbit on the R-Z plane. The projected orbit is closed during

several bounce or transit periods.

FIG. 4. Time history of the toroidal angle of the particle using different time

step sizes.
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proportional to the order of e2, as shown by Fig. 5(b).

Therefore, the difference between the guiding center and full

particle orbits is mainly due to the implementation difference

of the equilibrium model, rather than the algorithm itself. In

addition, the toroidal precession of trapped particles20,21 is

investigated using both full particle and guiding center simu-

lations. Fig. 6(a) shows the toroidal angle of the particle or

the guiding center versus time. The slope of the local max-

ima gives the toroidal precession speed, which can be used

to compute the toroidal precession frequency. The toroidal

precession frequencies for different pitch angles are shown

in Fig. 6(b) with the normalized pitch angle k¼lB0/Ek, and

B0 is the magnetic field at the magnetic axis. The continuous

curves are from full particle simulation and the discrete

circles are from the guiding center simulation. The results

from these two methods are consistent with each other,

which verifies the rB drift and the curvature drift in the

Boris scheme. This shows the validity of the Boris algorithm

in the very long time scale simulation. With an external

poloidal electric field added, the particle will possess a radial

E� B drift, as is verified in Fig. 7.

If there is a toroidal electric field, the Ware pinch22 can

be recovered by the Boris full particle orbit simulation. As

illustrated in Fig. 8(a), the projection of the orbit on the R-Z

plane is no longer closed and there is a radial drift with the

speed v ¼ E/=Bp. The radial drift speed of the trapped parti-

cle can also be calculated by its orbit, as shown in Fig. 8(b),

which matches the theoretical prediction. If a time-

dependent radial electric field is introduced, there will be a

radial polarization drift proportional to @Er

@t given by

vp ¼ e0

ne

x2
pi

x2
ci

@Er

@t

B2
0

B2
p
, which is the neoclassical polarization drift.23

If a monotonically increasing electric field is applied, i.e.,

ErðtÞ ¼ E0t, a constant radial polarization drift vp is

observed, as shown in Fig. 9(b). This neoclassical polariza-

tion drift can also be computed from the full particle orbit,

which matches the theoretical prediction.

V. SUMMARY

In this paper, we have derived a form of the Boris algo-

rithm in the magnetic coordinates to push full particle orbits

(i.e., with cyclotron motion) in the toroidal plasmas. The

metric tensor and Jacobian both appear in the equations of

FIG. 5. (a) Time history of the toroidal

angle of a trapped particle from full

kinetic (FULL) simulation and guiding

center(GC) simulation. (b) The relative

difference for the bounce time between

the full kinetic simulation and the

guiding center simulation. The red

markers are from the simulation data,

and the black line is a fitted straight

line.

FIG. 6. (a) Calculation of the toroidal

precession frequency. The red curve

shows the toroidal angle of a trapped

particle. The black solid line connects

several local maxima, i.e., the banana

tips. The slope of the black solid line is

the toroidal precession frequency. (b)

The toroidal precession frequency of

trapped particles vs. pitch angle for dif-

ferent energies: the continuous curves

with different colors are from the full

particle orbit simulation using the

Boris algorithm, and the discrete circu-

lar markers are from the guiding center

simulation.

FIG. 7. The motion of a particle in the direction of E� B drift. The blue

line is the position of the particle in simulation. The red line is the average

drift predicted by theory.

092502-6 Wei et al. Phys. Plasmas 22, 092502 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.200.44.221 On: Fri, 04 Sep 2015 15:21:10



motions to advance the position and velocity, which need to

be calculated at the beginning of the simulation. The contra-

variant component of the velocity needs to be recalculated at

each time step to advance the velocity, since the basis vec-

tors at the particle position change as the particle moves.

This new algorithm has been implemented to calculate the

full particle orbit of the charged particle in a tokamak, recov-

ering faithfully the bounce motion and toroidal precession

over a long time period. The kinetic energy and magnetic

moment of particle are well conserved in this new algorithm.

The orbit from the full particle simulation using the

Boris algorithm overlaps the orbit from the guiding center

simulation. Although more computation time is needed for

the Boris full particle pushing algorithm compared with the

guiding center pushing algorithm, this Boris algorithm is still

desirable since it can properly treat the crucial wave-particle

interaction in the high frequency wave. With low frequency

external electrostatic field, this new Boris algorithm can

faithfully recover the well-known physics including toroidal

precession, Ware pinch, and neoclassical polarization.

Finally, we note that this method and formulation work well

not only for the magnetic coordinate system but also for any

other curvilinear coordinate system, such as the toroidal

coordinates ðR; Z;/Þ.
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APPENDIX: VOLUME-PRESERVING PROPERTY
OF BORIS SCHEME IN MAGNETIC COORDINATES

First, we estimate the error introduced by the approxi-

mation in Eq. (18). By Taylor expanding the particle position

at time step tþ Dt, we obtain

atþDt
i ¼ atþDt=2

i þ _atþDt=2
i Dt=2þ 0:5€atþDt=2

i Dt2=4þ � � �
¼ atþDt=2

i þ ðv � eaiÞtþDt=2Dt=2

þ 0:5ðv � _eai þ _v � eaiÞtþDt=2Dt2=4þ � � � :
(A1)

Then we further expand uai tþDt

uai tþDt ¼ vtþDt � eai tþDt=2

¼ ðv � eaiÞtþDt=2 þ ð _v � eaiÞtþDt=2Dt=2þ � � � : (A2)

By substituting Eq. (A2) in Eq. (A1) we find

atþDt
i ¼ atþDt=2

i þ uaitþDtDt=2

þ 0:5ðv � _eai � _v � eaiÞtþDt=2Dt2=4þ � � � : (A3)

Thus Eq. (18) is recovered by keeping the first two terms of

Eq. (A3), with an error of order Dt2.

In Eq. (19), the error only changes the direction of the ve-

locity in the Cartesian coordinate system instead of the magni-

tude. Therefore, the energy-preserving property is retained.

However, the approximation does not preserve the

volume-preserving property precisely. The phase space vol-

ume is conserved if

dxkdykdzkdvx
kdvy

kdvz
k ¼ dxkþ1dykþ1dzkþ1dvx

kþ1dvy
kþ1dvz

kþ1;

(A4)

where the subscript k means kth time step. The position at

kth time step rk ¼ rðkDt� Dt=2Þ, and the velocity

vk ¼ vðkDtÞ. In the Boris algorithm, the velocity update is a

rotation of the velocity vector, which corresponds to a uni-

tary transformation. Therefore

dvx
kþ1dvy

kþ1dvz
kþ1 ¼ dvx

kdvy
kdvz

k: (A5)

However, it is generally difficult to satisfy dxkþ1dykþ1dzkþ1

¼ dxkdykdzk. For example, one can take ða1; a2; a3Þ
¼ ðx2; y; zÞ to show that dxkþ1dykþ1dzkþ1 6¼ dxkdykdzk. So

the volume-preserving property does not hold in general.

However, energy and magnetic moment are well conserved

for a long period of time with such an approximation, as

shown by our numerical simulation.
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