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Linear properties of the toroidal Alfv�en eigenmode (TAE) excited by energetic particles (EP) in a

DIII-D tokamak experiment have been studied in global gyrokinetic particle simulations treating

self-consistently kinetic effects of EP, thermal ions, and electrons. Simulation results of the TAE

frequency and mode structure agree very well with the experimental measurements. The non-

perturbative EP contribution induces a radial localization of the TAE mode structure, a break-down

of mode radial symmetry, as well as a frequency dependence on the toroidal mode number. The

simulations further demonstrate the dependence of the growth rate and mode structure on EP pres-

sure gradients. The in-out asymmetry of the mode structure and the experimental identification of

the poloidal harmonics have also been clarified. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4908274]

I. INTRODUCTION

In tokamaks, numerous discrete shear Alfv�en eigenmo-

des have been found in the gaps of the continuous Alfv�en

spectrum produced by the toroidal geometry,1,2 acoustic cou-

pling,3,4 etc. These weakly damped modes can be easily

destabilized in the presence of energetic particles (EP),5–8

generated either by fusion products or by auxillary heating

such as neutral beam injection (NBI). While it has been

shown both numerically9–11 and experimentally12–14 that the

transport of energetic particles by ion temperature gradient

microturbulence is usually insignificant, these unstable

Alfv�en eigenmodes, especially the toroidicity-induced

Alfv�en eigenmode (TAE), have been found to induce large

cross-field transport of energetic particles,7,8,12,15–18 which

leads to a degradation of the overall plasma confinement,

and possible serious damage of the first-wall components.

The energetic particle transport induced by nonlinear

dynamics of Alfv�en instabilities may depend on both kinetic

and magnetohydrodynamic (MHD) physics. The compli-

cated nature of this issue requires a nonlinear global gyroki-

netic simulation. Recently, gyrokinetic simulations treating

non-perturbatively the dynamics of both EP and thermal

plasmas have been verified and validated19 for the reversed

shear Alfv�en eigenmode in the DIII-D discharge No. 142111

(Ref. 16) at 725 ms. Several gyrokinetic codes have been

applied to simulate the EP-driven TAE. Lauber et al.20,21

have developed a global gyrokinetic eigenvalue code

LIGKA. Lang et al.22 and Chen et al.23 have extended the

GEM code for both low-n and high-n TAE simulations with

fluid electrons (n is the toroidal mode number). Mischenko

et al.24,25 used df particle-in-cell code GYGLES to demon-

strate EP and bulk plasma pressure effects on TAE. Bass and

Waltz have investigated the nonlinear saturation of high-n
TAE and its associated EP transport with the flux-tube simu-

lation from GYRO.26,27

Here, we apply the gyrokinetic toroidal code (GTC)28

to study the physics of TAE. GTC has been successfully

applied to simulate transport by microturbulence,29,30 lin-

ear31–35 and nonlinear36,37 dynamics of Alfv�en eigenmodes.

GTC simulations of TAE have been carried out since

Nishimura et al.38 W. Zhang et al.33 have observed the ex-

citation of TAE by EP and by antenna. C. Zhang et al.39

have further studied the transition from EP-driven TAE to

energetic particle mode (EPM). The most recent GTC sim-

ulation40 has shown a radial localization of TAE in the

DIII-D discharge No. 142111 at 525 ms. This finding is

important both conceptually and practically. Conceptually,

the localization is beyond the conventional paradigm of the

MHD theory with a perturbative treatment of the EP dy-

namics and blurs the boundary between the Alfv�en eigenm-

odes and the energetic particle modes.5 Practically, the

radial localization could have profound implications on the

EP transport. The radial mode width is one of the impor-

tant factors determining the EP transport level. The TAE

radial drift could induce convective or even avalanche-like

EP transport similar to that of the energetic particle

modes.41

In the current work, we further investigate the effect of

the non-perturbative EP drive on TAE and linear properties

of TAE in the DIII-D experiment No. 142111 at 525 ms. In

addition to the radial localization, we find the radial and
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poloidal asymmetry of the mode structure, and TAE fre-

quency dependence on the toroidal mode number. A scan of

the strength of the EP drive shows a shift of mode structure

when the EP pressure changes.

This paper is organized as follows: GTC simulation

model is described in Sec. II. We show that ideal MHD

result, in particular, the dispersion relation of TAE, can be

recovered in this model. In Sec. III, linear simulation results

of TAE are discussed. In Sec. IV, we present the results of

two scans on the EP pressure. Conclusions and discussions

are in Sec. V.

II. GTC SIMULATION MODEL

In this section, we first describe the electromagnetic

models to treat different species. Then we show that when

kinetic effects are artificially turned off in the long-

wavelength limit, the formulation is reduced to the ideal

MHD theory. Finally, the TAE dispersion relation is derived

from the reduced equations.

A. Nonlinear gyrokinetic model for ion and EP

Ion and EP species in GTC are described by the nonlin-

ear gyrokinetic equations42–44 retaining the finite Larmor ra-

dius effects. In this work, we choose the df method because

we will focus only on the linear properties of TAE, although

GTC is capable of both df and full-f simulations.

Decomposing the quantities into time-independent equilib-

rium and time-dependent perturbed components, we can

write the gyrokinetic equation

ð@t þ _X � r þ _vk@vk Þ½f0aðX; l; vkÞ þ dfaðX; l; vk; tÞ� ¼ 0;

(1)

_X ¼ vk
B0 þ hdBi

B0

þ vE þ vc þ vg; (2)

_vk ¼ �
1

ma

B�

B0

� lrB0 þ Zardh/ið Þ � Za

mac
@thdAki: (3)

The subscripts a¼ e, i, f stand for particle species, elec-

tron e, thermal ion i, and fast ion (also called energetic parti-

cle) f; Za; ma; and Xa are their corresponding electric charge,

mass, and cyclotron frequency, respectively. X; vk; and l
denote the coordinate of the 5D phase space, which are the

gyro-center position, the parallel velocity, and the magnetic

moment, respectively. The E� B drift velocity vE, the mag-

netic curvature drift velocity vc, and the grad-B drift velocity

vg are given by

vE ¼
cb0 �rhd/i

B0

; (4)

vc ¼
v2
k

Xa
r� b0; (5)

vg ¼
l

maXa
b0 �rB0: (6)

hFi denotes the gyro-averaging of any function F over the

gyroangle hc

hFi X; :::ð Þ �
ð

dhc

2p
F X þ q X; l; vk; hc

� �
; :::

� �
; (7)

where q is the gyro-radius vector pointing from the gyrocen-

ter position to the particle position.

B0; dB; d/; and dAk denote the equilibrium and the per-

turbed magnetic field, the perturbed electrostatic potential,

and the perturbed parallel vector potential, respectively. B�

is given by

B� � B0 þ
B0vk
Xa
r� b0 þ hdBi; (8)

where b0 � B0=B0 is the direction of the equilibrium mag-

netic field. We ignore the parallel perturbed magnetic field

dBk for low-b plasmas (b is the ratio of kinetic to magnetic

pressure), so the perturbed magnetic field can be completely

determined by dAk alone

dB ¼ dB? � r � ðdAkb0Þ: (9)

The electrostatic potential d/ is calculated by the gyroki-

netic Poisson equation43

Z2
i ni

Ti
d/� d~/
� �

¼ RaZadna; (10)

where

dna ¼
ð

GC

dfadv for each species; d~/ ¼ 1

ni

ð
GC

f0ihhd/iidv:

(11)

Here,
Ð

GCdv � 2pB
ma

Ð
dldvk is the integral over the gyrocenter

velocity space.43

B. Fluid-kinetic hybrid model for electrons

In order to improve the numerical properties of electrons

for Alfv�en eigenmode simulation, we adopt, in this work, the

fluid-kinetic hybrid electron model,45 which expand the elec-

tron response by the order of a small parameter associated

with the electron to ion mass ratio, i.e., x=kkvk, for the non-

zonal mode.44 The lowest order adiabatic electrons are

described by the fluid equations, which remove numerical

difficulties associated with the collisionless tearing modes

and the electron Courant condition that greatly limit the sim-

ulation time step size. The higher order nonadiabatic

response is treated kinetically with all the kinetic effects

preserved.

1. Electron fluid equations

We calculate the perturbed electron density through the

electron continuity equation, which is obtained by integrat-

ing the electron drift-kinetic equation (k?qe ! 0 limit of Eq.

(1)) over the velocity space. It reads35
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0¼@tdneþB0 �r
n0eduke

B0

� �
þB0vE �r

n0e

B0

� �

�n0e dv�eþvE

� �
�rB0

B0

þdB �r
n0euk0e

B0

� �

þcr�B0

B2
0

� �
rdPke

e
�

dP?e�dPke
� �

rB0

eB0

þn0erd/

" #

þdB �r
n0eduke

B0

� �
þB0vE �r

dne

B0

� �

þcdne

B2
0

b0�rB0 �rd/þcdne

B2
0

r�B0 �rd/: (12)

Here, uk0e; duk; dPke; and dP?e are the equilibrium and per-

turbed fluid veolcity, perturbed electron parallel and perpen-

dicular pressure, etc., defined as

uk0e ¼
ð

GC

f0evkd
3v=n0e; (13)

duke ¼
ð

GC

dfevkd
3v=n0e; (14)

dPke ¼
ð

GC

dfev
2
kd

3v; (15)

dP?e ¼
ð

GC

dfev
2
?d3v ¼ B0

ð
GC

dfeld3v: (16)

In this work, we only keep the linear terms in the first three

lines. Then, duke is calculated by Ampère’s law in the limit

of kk � k?

� c

4p
r2
?dAk ¼RadJka) en0eduke ¼

c

4p
r2
?dAk þRa¼i;f dJka;

(17)

where dJka ¼
Ð

GCZavkdfadv for each species.

We use effective potential /eff to represent the parallel

electric field

dEk ¼ �b0 � rd/eff : (18)

So @tdAk is given by the parallel gradient of the inductive

potential d/ind � d/eff � d/,

@tdAk ¼ cðdEk þ b0 � rd/Þ
¼ �cb0 � rðd/eff � d/Þ ¼ �cb0 � rd/ind: (19)

Note that the kk ¼ 0 component of inductive dEk is ignored

here (i.e., collisionless tearing mode is removed).

In order to calculate the d/eff , we expand the electron

response in the order of the small number x=kkvk. We sepa-

rate the electron distribution function into equilibrium and

perturbed components, fe ¼ f0e þ dfe. The perturbed distribu-

tion function is further separated into adiabatic and non-

adiabatic parts,

dfe ¼ df ð0Þe þ dhe; (20)

where the lowest adiabatic response df ð0Þe is defined as the

solution of the lowest order of Eq. (1) in the limit of me ! 0

(or equivalently vk ! 1).

vkb0 � rjv?df 0ð Þ
e ¼ �vk

dB

B0

� rjv? f0e þ vk
f0ee

Te
b0 � rd/eff :

(21)

Using the Clebsch representation of the toroidal magneitc

fileds,

B ¼ B0 þ dB ¼ rðwþ dwÞ � rðaþ daÞ; (22)

and assuming that the equilibrium distribution function is

uniform along the background field b0 � rf0 ¼ 0 (i.e., ignor-

ing neoclassical effects), we can find the solution of Eq. (21)

df 0ð Þ
e ¼ ed/eff

Te
f0e þ

@f0e

@w

����
v?

dwþ @f0e

@a

����
v?

da; (23)

or equivalently,

ed/eff

Te
¼ dne

n0e
� dw

n0

@n0

@w
� da

n0

@n0

@a
: (24)

Eqs. (10), (12), (17), (19), and (24), together with the

ion contribution, form a closed nonlinear system in the low-

est order of electron-ion mass ratio expansion.

2. Kinetic equation for electron nonadiabatic response

The higher-order correction to the lowest-order adia-

batic response of electrons is defined as dhe � dfe � df ð0Þe

and we ¼ dhe=fe. The ðlþ 1Þ th order correction to the evo-

lution of dhe is still determined by Eq. (1) with the lth order

response df ðlÞe

L0dhðlþ1Þ
e ¼ �dLðlÞf0e � L0df ðlÞe ; (25)

where propagators L0 and dL are defined as

L0 ¼
@

@t
þ vkb0 þ vc þ vg

� �
� r � l

me

B�0
B0

� rB0

@

@vk
; (26)

dL ¼ vk
dB

B0

þ vE

� �
� r � 1

me

dB

B0

� rB0�e
B�0
B0

� rd/

	

� e

c

@

@t
dAk



@

@vk
: (27)

So, dhe can be calculated iteratively with the corrected parallel

effective potential, starting from adiabatic response Eq. (24)

dwe

dt

lþ1ð Þ
¼ 1

fe

dhe

dt

lþ1ð Þ
¼ f0e

fe

1

f0e
�L0df 0ð Þ

e � dLf0e

h i

¼ 1� df 0ð Þ
e

f0e
� w lð Þ

e

 !
�vE � rlnf0e

����
v?

"

� @f0

@w0

����
v?

@dw
@t
� @f0

@a0

����
v?

@da
@t

� 1

f0e

@df 0ð Þ
e

@t
�vd � r

df 0ð Þ
e

f0e
� d/

 !#
; (28)
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where the adiabatic response df ð0Þe is updated in each itera-

tion by the update of d/eff in its definition, Eq. (23),

d/ lþ1ð Þ
eff ¼ d/ 0ð Þ

eff �
Te

en0e

ð
GC

dh lþ1ð Þ
e d3v: (29)

The kinetic equation above can be used to calculate the

wave-particle interaction. Since the main mechanism for

wave-electron interaction is the parallel and precessional

resonances in the case of Alfv�en eigenmodes in tokamaks,

we only need to resolve the dynamics of low-speed electrons

with the parallel velocity similar to the Alfv�en velocity and

those with the precessional frequency similar to the wave

frequency, rather than the non-resonent electrons, most of

which have a velocity around the electron thermal velocity.

Note that thermal electrons also carry the perturbed non-

resonant density and current that give rise to the shear

Alfv�en wave.45 This non-resonant density and current are al-

ready accounted for in the fluid electron equations, so it is

not required resolving the dynamics of the thermal electrons

in the hybrid model. Nonetheless, we still need to calculate

the electron orbits accurately for the precessional resonance.

This is done by using electron sub-cycling, where electron

orbits are updated several times for each update of ion orbits

and perturbed fields.

In this work, convergence test suggests that the simula-

tion result converges very well when this hybrid model is

solved up to the second order. So, all the results shown in

this paper including kinetic electrons are solved up to the

second order.

C. TAE dispersion relation

It has been shown in Ref. 34 that in the linear and long

wavelength fluid limit, the gyrokinetic formulation described

above reduces to the ideal MHD eigenmode equation

0 ¼
x x� x�Pð Þ

v2
A

r2
?d/þ iB0 � r

r2
? kkd/
� �
B0

" #

�ir kkd/
� �

� b0 �
b0 � r � B0

B0

� �

�ix
4p
c
r � b0

B0

�r � dP

� �
; (30)

where the diamagnetic angular frequency x�P, the Alfv�en ve-

locity vA, and the perturbed pressure tensor dP are given by

x�P ¼ �i
cb0 �rP0i

ZiB0n0i
� r; (31)

vA ¼
B0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pn0imi

p ; (32)

dP ¼ Ra

ð
GC

dfavvd3v: (33)

If we adopt the assumption that x�P � x; k?Leq 	 1,

where Leq is the equilibrium nonuniformity scale length, Eq.

(30) can be simplified to

x2

v2
A

r2
?d/þ B0 � r

1

B0

r2
? b0 � rd/ð Þ

	 

¼ 0: (34)

The equilibrium field B0 is described by the contravar-

iant representation B0 � ra�rw, where a ¼ f� qðwÞh is

the magnetic field line label in a toroidal system and q is the

safety factor. The covariant form reads B0 ¼ drwþ IðwÞrh
þgðwÞrf. Thus, B0 � r ¼ J�1ð@h þ q@fÞ, with J
� ðgqþ IÞ=B2

0 being the Jacobian.44 Now, Eq. (34) becomes

J�1 @

@h
þq

@

@f

� �
1

JB2
0

r2
?

@

@h
þq

@

@f

� �
d/

" #
þx2

v2
A

r2
?d/¼ 0:

(35)

Note that q, g=ðBaR0Þ ¼ 1þOð�2Þ; I=ðBaR0Þ ¼ Oð�2Þ
are all flux functions which do not depend on h, and B0

¼ Ba=ð1þ � cos hÞ þ Oð�2Þ with Ba being the on-axis mag-

netic field.35 Here, � � r=R0 is the inverse aspect ratio. We

can further simplify the equation to the form

@

@h
þ q

@

@f

� �
r2
?

@

@h
þ q

@

@f

� �
d/

	 

þ X2 1þ 4� cos hð Þr2

?d/ ¼ 0; (36)

where X2 � q2R2
0ðx2=B2

aÞðB2
0=v

2
AÞ is a constant.

From the expected TAE mode structures, we bring in

two assumptions here for high toroidal mode number n.

First, we suppose that all poloidal harmonics are localized at

its mode rational surface qðwmÞ ¼ m=n. Then, we assume

that the equilibrium properties barely change between the

neighbouring mode rational surfaces; thus, the poloidal

m-harmonic component of the eigenfunction d/m is approxi-

mately translational invariant (i.e., radial symmetry, or math-

ematically, dUðnqðwmþDwÞ�mÞ�d/mðwmþDwÞ
d/mþ1

ðwmþ1þDwÞ�dUðnqðwmþ1þDwÞ�ðmþ1ÞÞ, where Dw is

the distance from the mode rational surface wm). With these

two assumptions, now we can write the eigenfunction of

TAE of a single toroidal mode number n using ballooning

mode formulas

d/ðr; tÞ ¼ eiðnf�xtÞ
X

m

d/mðwÞe�imh þ c:c:

¼ eiðnf�xtÞ
X

m

dUðnqðwÞ � mÞe�imh þ c:c: (37)

With this form, the eigenmode equation becomes a

differential-difference equation

0 ¼ iQ½r2
?iQðdUðQÞe�imhÞ� þ X2dUðQÞe�imh

þ2X2�r2
?½e�imhðdUðQ � 1Þ þ dUðQ þ 1ÞÞ�: (38)

Here, Q � nq� m. Now, if we define the Fourier transform

of dU

dÛðgÞ �
ð1
�1

dUðQÞeiðQÞgdQ ¼ F½dUðQÞ�; (39)

where g can be seen as the generalized poloidal angle along

the magnetic field line, then we get the Fourier transform of

the eigenmode equation
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0 ¼ d

dg
1þ ŝ2g2
� � d

dg
dÛ

	 

þX2 1þ 4� cos gð Þ 1þ ŝ2g2

� �
dÛ;

(40)

with the magnetic shear defined as ŝ � ðdq=drÞðr=qÞ,
because

eimhF r2
? dUe�imhð Þ

h i
¼ F @2

@r2
� m2

r2

� �
dU

	 


¼ m2

r2
1þ ŝ2g2
� �

dÛ gð Þ; (41)

F½dUðQ � 1Þ þ dUðQ þ 1Þ� ¼ 2 cosðgÞdÛðgÞ: (42)

The final form is the high-n ballooning eigenmode

equation

d2

dg2
þ X2 1þ 4� cos gð Þ � ŝ2

1þ ŝ2g2
� �2

" #
dW ¼ 0; (43)

where dW �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ŝ2g2

p
dÛ. Boundary condition for this or-

dinary differential equation is given by limjgj!1dW ¼ 0.

Following previous work,1,2,46,47 we can solve this equa-

tion in two regions and then match them asymptotically.

First, we consider the outer region jgj 	 1. In this region,

Eq. (43) reduces to the standard Mathieu’s equation, which

gives a gap at X2
 1/4. The lowest order solution in this

outer region is simply

dWout ¼ Aoe�cjgj cos
g
2

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� Cþ=C�ð Þ

p
sin

g
2

� �	 

: (44)

Here, we have

c �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�CþC�

p
and

C� � X2 � X2
u

Cþ � X2 � X2
l ;

(
(45)

with Xu, Xl defined as

X2
u �

1

4 1� 2�ð Þ ; X2
l �

1

4 1þ 2�ð Þ : (46)

Then, we consider the region jgj � Oð1Þ, in which

4X2� cos g� ŝ2=ð1þ ŝ2g2Þ2. The lowest order solution is

given by

dWin ¼ Ai cos
g
2

� �
þ ŝ

2

ŝg

1þ ŝ2g2
þ arctan ŝgð Þ

� �
sin

g
2

� �" #
:

(47)

Now, we match the inner and the outer solution,

limg!1dWin ¼ limg!0dWout. This gives us the eigenvalue x
by solving the following simple algebra equationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2 � X2
l

X2
u � X2

s
¼ jŝjp

4
) 1� � < x

xA
< 1þ �; (48)

with xA � vA0=ð2qR0Þ.
This solution gives the lower and upper bounds of the

continuous spectra, which have a gap width of 2�xA.33

III. MODE STRUCTURE

The equilibrium geometry and the plasma profiles used

in the simulations are all taken from the experimental equi-

librium data at 525(ms) of DIII-D shot No. 142111, con-

structed by EFIT48 and ONETWO.49 The equilibrium radial

profiles are shown in Ref. 40. The magnetic shear is weakly

reversed. In the radial range of interest ðq ¼ 0:4 � 0:7Þ, the

distances between neighbouring mode rational surfaces are

about 3 cm for n¼ 4 TAE, while the equilibrium scale

lengths for thermal species are all over 20 cm. Thus, the

assumption needed for the validity of the ballooning repre-

sentation (Eq. (37)) is satisfied. The dominant TAE drive is

the EP density gradients. The on-axis density and temperature

are ðnf ¼ 2:93� 1012ðcm�3Þ; Tf ¼ 24:5ðkeVÞÞ for EP, ðni

¼ 2:65� 1013ðcm�3Þ; Ti ¼ 1:64ðkeVÞÞ for thermal ions, and

ðne ¼ 2:99� 1013ðcm�3Þ; Te ¼ 2:05ðkeVÞÞ for electrons. At

the steepest EP density gradient, LT;EP¼1=ðdlnðTf Þ=drÞ

52ðcmÞ and Ln;EP¼1=ðdlnðnf Þ=drÞ
9:8ðcmÞ. The on-axis

magnetic field is Ba¼1:94ðTÞ. The on-axis ratio of the

plasma pressure to the magnetic pressure is b¼beþbi

þbEP¼1:89%. The major radius is R0¼176ðcmÞ. Both ther-

mal and energetic ions are deuterium. Because the clearest elec-

tron cyclotron emission imaging (ECEI) data can be observed

at 515 ms, and the background equilibrium does not change

much during this short period (515 ms–528 ms),19,34 we use the

closest equilibrium data at t¼525 ms except for a global trans-

lation of the q value, where the qmin value is calculated from

the fitted equation qmin ¼4�0:004ðt�528Þ with t in ms.

The boundary is assumed to be a perfect conducting

wall. The choices of numerical parameters in simulations are

based on convergence tests. We use 32 grid points in the par-

allel direction and 100 grid points in the radial direction. We

keep the poloidal grid size approximately the same constant

on different flux surfaces. Usually, we use 30–35 grid points

in one poloidal wave length, with a grid size of about two

thermal ion gyro-radii. The time step size is Dt
 0.1R0/vA0,

where vA0 is the on-axis Alfv�en speed. About 50 marker par-

ticles per cell are loaded for all species. The initial distribu-

tion of the marker particles is uniform in real space and

Maxwellian in velocity space. A toroidal filter keeping only

one toroidal mode number n is applied in the linear simula-

tions. All poloidal harmonics are always kept.

A. Radial mode structures of stable TAE excited by
antenna

First, we use artificial antennas to excite the weakly

damped TAE (in the ideal MHD limit) by excluding EPs and

suppressing all kinetic effects in GTC simulations.31–33 The

antenna profiles of the electrostatic potential / are plotted in

Fig. 1(a). The radial coordinate q in Fig. 1 is defined as

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wtor=wtw

p
, with wtor being the toroidal flux and wtw

being the toroidal flux at the separatrix. Several GTC simula-

tions were carried out using antennas with different poloidal

harmonic localized at their mode rational surfaces for the

same toroidal mode number n¼ 4. Different combinations

of antennas [listed in Fig. 1(b)] are loaded in different runs,

but the resultant mode structures [shown also in Fig. 1(b)]

and corresponding resonant frequencies are found to be
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almost the same. This result confirms that the TAE in the

MHD limit is a global eigenmode, which is insensitive to the

location of the driving sources. It also confirms that perturba-

tive drives can only drive the eigenmode without changing

its mode structure or eigenfrequency.

Fig. 2 shows the radial structure of the radial displace-

ment nr of each m-harmonics for the n¼ 4 TAE. Calculation

from NOVA ideal MHD eigenmode code50 is shown in panel

(b). There are, in fact, hundreds of eigenmodes from NOVA

calculation (Fig. 3). Considering both frequency and mode

structure, we choose the eigenmode with 64 kHz (in the red

box in Fig. 3) to be the best match to the ECE signal

observed in the experiment. This eigenmode gives a stable

TAE with a wide mode structure of jnrj, which extends from

q 
 0:4 to q 
 0:9 [Fig. 2(b)]. Note that there is a radial

node in the mode structure from NOVA, i.e., this is not the

ground eigenstate. The jnrj mode structure of antenna-driven

stable TAE from GTC is plotted in Fig. 2(a), which also

shows the global mode structure, but with no radial node

(i.e., this is the ground eigenstate). The definition of radial

displacement nr in GTC is given in Appendix A. Panels

(c)–(e) show the radial structures of EP-driven unstable

TAEs with different EP drives. Details about these three pan-

els will be discussed in Sec. III B.

Both GTC and NOVA show that the stable TAE has a

global mode structure. However, there are some minor differen-

ces in the mode structures from these two models as shown in

Figs. 2(a) and 2(b). There are several differences between these

two models; thus, we do not expect their result to be exactly the

same. For example, dBk is ignored in GTC, but NOVA keeps

that component. It is assumed that kk � k? in GTC simula-

tions; however, NOVA formulation is not based on this

assumption. There are also some differences in the Alfv�en con-

tinuum as shown in Fig. 3 (NOVA) and Fig. 4 (GTC), which

are due to the different geometry representations.

The frequency of the antenna-driven TAE from GTC is

found to be 72 kHz, which is in good agreement with the ex-

perimental frequency at 69 kHz. The NOVA result of the

TAE frequency is 64 kHz. The radial extent of the mode

structure from GTC simulation with antenna excitation is

similar to that calculated by NOVA. However, as we will

show in Sec. III B, the mode structure of the unstable TAE

FIG. 1. (a) Electrostatic d/ antenna

profile of different m-harmonics in dif-

ferent simulations. (b) Resultant dTe

profile excited by antennas with differ-

ent m-harmonic combinations.

FIG. 2. Radial sturctures of the m-harmonics of the radial displacement nr for the n¼ 4 TAE from (a) GTC with antenna excitation, (b) NOVA ideal MHD

eigenmode calculation, and GTC with EP drive in (c) case 1, (d) case 2, and (e) case 3 discussed in Sec. III B.
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from GTC simulations with EP excitation is much narrower

than the stable TAE from both GTC and NOVA.

B. Radial mode structure of unstable TAE excited by EP

Then EP drive is included in our following simulations.

The EP profiles given by EFIT are shown in Figs. 4(c) and

4(d). The EP density gradient is much larger than the temper-

ature gradient, and thus, the main drive of the instability.

The TAE gap is very wide from both NOVA (Fig. 3) and

ALCON (Fig. 4) calculations. The TAE eigen-frequency

does not touch the continuum; thus, continuum damping is

not important in this scenario. The best experimental mea-

surement of TAE mode structure is at t¼ 515 ms, so we set

the qmin ¼ 4:052 in our simulation to compare our results

with experimental data. Because the simulation is run in the

plasma frame but not the lab frame, a Doppler shift of

(1.9n)kHz is substracted from experimental measurement

when we compare the frequencies between simulation results

and experimental results. Keeping only n¼ 4 mode in our

simulation, we can observe an unstable TAE if we use the

EP profiles from EFIT. The TAE frequency and mode struc-

ture are shown in red lines in both panel (a) and panel (b) in

Fig. 4. A direct comparison between experimental results

(black lines) and simulation results can also be found in

those two panels. Simulation agrees very well with experi-

ment in terms of real frequency. However, the mode struc-

tures, especially the radial locations of TAE, are very

different in simulation and in experiment.

To resolve this discrepancy, we decide to carry out a

sensitivity test on the EP density profile, which is the most

unreliable data from the experiment. In case 2 and case 3,

plotted in Fig. 4, we use an EP density profile that shifts out-

ward for 0.06 m and 0.10 m, respectively. The EP density

gradients are shown in dashed lines in Fig. 4(b), and their re-

sultant TAE mode structures are shown in solid lines in panel

(b) and dashed lines in panel (a), with corresponding colors.

In this scan of the EP density profile, we find that, contrary

to the antenna-driven stable TAE, the radial position of the

EP-driven unstable TAE is now strongly correlated with that

of the strongest EP drive. This phenomenon is inconsistent

with the prediction from the conventional MHD treatment of

the Alfv�en eigenmodes in which only perturbative EP contri-

bution is added on top of the the thermal plasma described

by the MHD framework.

The amplitudes of different m-harmonics in these three

runs are also shown in panels (c)–(e) of Fig. 2. Each

m-harmonic is always located around its own mode rational

FIG. 3. All n¼ 4 eigenmodes from NOVA calculation using the equilibrium

profile in DIII-D discharge No. 142111 without toroidal flow. Blue line is

the signal observed in the experiment. The eigenmode in red box has radial

overlap with the experimental observation. The eigenmode in green box has

no overlap with the experimental observation. The two lines in the red box

indicate a single eigenmode with a radial node [Fig. 2(b)].

FIG. 4. (a) The frequencies (in the plasma frame) and radial locations (full

width half maximum) of the simulated n¼ 4 TAE with different EP density

profiles in the Alfv�en continua (calculated by ALCON 35). (b) A comparison

of the mode radial structures with their corresponding EP drives. The solid

lines are the rms values of the relative electron temperature perturbation

dTe; The dashed lines are the EP density gradient dnf/dr values. Different

colors indicate different EP profiles in the simulation. The black solid line is

the ECE data of dTe from DIII-D. The last two panels from Ref. 40 show ra-

dial profiles of (c) temperature T, (d) density n and safety factor q of a DIII-

D experiment (shot No. 142111 at 525 ms). Reprinted with permission from

Z. Wang et al., Phys. Rev. Lett. 111, 145003 (2013). Copyright 2013

American Physical Society.
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surface, regardless of where the total mode structure peaks

at. Three radial structures are all significantly narrower than

either the radial structure of the antenna-driven TAE in GTC

[Fig. 2(a)] or that of NOVA eigenmode [Fig. 2(b)].

Perturbative EP treatment will only give the eigenmode a

finite growth rate without changing its eigen frequency or its

mode structure from the ideal MHD theory. But, in our simu-

lation, not only the EP-driven unstable TAE has a different

mode structure from the antenna-driven stable TAE, but the

mode structure can also change as a response to the change in

EP drive as well. In fact, one of the important basic assump-

tion for perturbative treatment for EP, bEP � bthermal, does

not hold in the DIII-D experiments. So, we attribute this radial

localization phenomenon to the non-perturbative EP

contribution.

It could be argued that there are multiple TAEs in the

TAE gap in the ideal MHD theory and their eigenfrequencies

may have very small differences. However, GTC finds the

same global eigenmode when using different antennas at var-

ious radial locations (Fig. 1). Furthermore, NOVA results

show that in the frequency range of interest, there are only

two relevant eigenmodes (the eigenmode in the red box and

the eigenmode in the green box in Fig. 3) whose eigenfre-

quencies are different by over 7 kHz. The frequency resolu-

tion (half width of the resonance peak) is about 2 kHz in the

antenna frequency scan in our simulation, so what we find by

the antenna excitation in GTC is a single TAE eigenmode.

There are two other differences between simulation set-

tings and experiments, but neither of them would be a rea-

sonable explanation of the radial localization phenomenon.

One factor is the sheared toroidal flow, which induces the

flow shear effects and centrifugal force. Regarding the flow

shear effect, we take it as negligible because the difference

of flow across the whole mode width is only about 4 kHz com-

pared to the 70 kHz frequency of TAE. Regarding the centrif-

ugal force in a rotating frame, it is not likely that it will

influence the results much because the parallel flow is much

smaller than the phase velocity of the Alfv�en wave and the

thermal velocity of particles, uk=vA � uk=vth;i 
 5%.

Another factor is the EP distribution function. Anisotropic

slowing down distribution is often used as a more realistic dis-

tribution for fast ions generated by NBI. However, in this dis-

charge, there are two NBIs both in co- and counter-directions

of the toroidal current. The resultant distribution for EP should

thus be closer to an isotropic distribution, which can be rea-

sonably described by the Maxwellian distribution. Moreover,

such treatments of rotation and EP distribution have already

been successfully applied in the previous study,19,34 which

successfully recovers the reversed shear Alfv�en eigenmode

(RSAE) frequency upsweeping observed also in DIII-D dis-

charge No. 142111. The simulation parameters in that study

are very similar to the current study. In fact, it is just a differ-

ent time window in the same DIII-D discharge.

In summary, we conclude that the non-perturbative EP

contribution is the main reason for the radial localization of

TAE, i.e., the EP-driven TAE has a radial mode width much

smaller than that predicted by the MHD and that the TAE ra-

dial structure peaks at and moves with the location of the

strongest EP pressure gradients. This explanation is also

consistent with the radial outdrift of TAE mode structure

found in this experiment.40

The fast-ion gradient is poorly constrained by the exist-

ing measurements (Fig. 5). One measurement of the fast-ion

profile is obtained from the difference between the equilib-

rium total pressure and the thermal particle pressure. The

random errors in the fast-ion pressure are readily estimated

from the random errors in the electron and carbon densities,

and electron and ion temperatures. However, systematic

errors associated with the equilibrium reconstruction are dif-

ficult to quantify. The EFIT48 procedure fits the pressure pro-

file to a pre-specified functional form that effectively

assumes a smoother gradient than the actual gradient. The

second measurement of the fast-ion profile is from fast-ion

D-alpha (FIDA) light.51 (The “FIDA density” shown in Fig.

5 is the FIDA brightness after integration over wavelength

divided by the injected neutral density.) The plotted error

bars are from an ensemble of 9 time slices with nearly identi-

cal plasma parameters; although photon statistics and back-

ground variations contribute to these errors, it is likely that

significant temporal variations in the actual fast-ion density

also contribute. Both measurements show substantial flatten-

ing of the fast-ion profile relative to classical predictions, as

previously reported.52 Neither measurement provides suffi-

cient spatial resolution to determine the fast-ion gradient. As

shown in Fig. 5, within experimental error, the modelled

pressure profile in case 2 is compatible with the data.

C. Radial shearing of TAE mode structure

Amongst these three simulations in Fig. 4, the resultant

mode radial location from case 2 fits the ECE data the best.

Therefore, all the following simulations have been carried

out with the EP density profile in the case 2.

Contour plots of the d/ mode structure from both

antenna-driven TAE and EP-driven TAE are shown in

Fig. 6. Besides the obvious difference between the mode ra-

dial widths we mentioned in Sec. III B, the next major differ-

ence between antenna-driven stable TAE and EP-driven

FIG. 5. Fast-ion pressure profile (black) and fast-ion density (red) vs. nor-

malized minor radius at 525 ms. The solid lines show the classically pre-

dicted pressure (PB as beam-ion pressure in the figure) and FIDA density

profiles. The bold blue line indicates the EP pressure used as GTC input in

case 2.
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unstable TAE is the radial-shearing of their mode structure.

The antenna-driven TAE shows no radial phase shearing

(i.e., Bloch phase shift is zero in the ballooning mode theory

and the eigenmode can be described by Eq. (37)), which we

refer to as the radial symmetry. When kinetic trapped elec-

trons are included, the mode structure change from Figs. 6(a)

and 6(b). Though the radial position changes, there is still lit-

tle radial shearing. However, the EP-driven TAE [Fig. 6(c)]

shows an obvious radial phase shearing. Apparently, the

strong magnetic diamagnetic flow of EP breaks the radial

symmetry and causes this radial phase shearing. This phe-

nomenon, which has also been observed in the experiment16

and other simulations,19,31–34,36 illustrates that non-

perturbative EP contribution can change the TAE mode

structure significantly.

D. Poloidal asymmetry of wavelength

In both experiments and simulations, it is always

observed that poloidal mode width is larger at the low field

side, even for the mode dominated by a single poloidal mode

number (e.g., RSAE). This phenomenon complicates the

determination of the poloidal mode number in experiments.

The main reason for this poloidal asymmetry is that the

unstable modes in magnetized plasma favour the condition

k? 	 kk 
 0, because of the stabilization of the large-kk
modes by the field line bending effects. Therefore, the mode

mostly aligns with the magnetic field line. In the high field

side, the field lines are compressed, thus give the modes a

smaller poloidal mode width.

To calculate the poloidal asymmetry of the poloidal

wavelength, we consider a flux-tube connecting the high field

side to the low field side. A volume element of ðDw;Dh;DfÞ
at the high (low) field side has a radial width Dri (Dro), a

poloidal width Dl
ðpÞ
i ðDlðpÞo Þ, and a toroidal width Dl

ðtÞ
i ðDlðtÞo Þ.

As we know, the Jacobian J ¼ ðgqþ IÞ=B2 is proportional to

the volume of a volume element ðJDwDhDfÞ. Because g, q, I
are all flux functions in the magnetic coordinate, we know

that on the same flux surface,

Dl
pð Þ

o

Dl
pð Þ

i

� Dro

Dri
� Dl tð Þ

o

Dl
tð Þ

i

¼ J o

J i
¼ Bi

Bo

� �2

¼ 1þ �
1� �

� �2

: (49)

Here, we assume magnetic field intensity depending inver-

sely on the major radius. The subscript o indicates outside

(low-field side), i indicates inside (high-field side).

For a simple circular cross-section tokamak,

Dro

Dri
¼ 1� D0

1þ D0
;

Dl tð Þ
o

Dl
tð Þ

i

¼ Ro

Ri
¼ 1þ �

1� � ; (50)

so
Dl

pð Þ
o

Dl
pð Þ

i

¼ J o

J i

Dri

Dro

Dl
tð Þ

i

Dl
tð Þ

o

¼ 1þ �
1� � �

1þ D0

1� D0
; (51)

where the D0 is the derivative of Shafranov shift.53 D0 can

either be measured directly from experimental data, or be

calculated by

D0 ¼ L

2
þ bh

� �
r; (52)

where L ¼ ½2=ðr2B2
hÞ�
Ð r

0
B2

hrdr is the internal inductance per

unit length, and bh ¼ ð2=B2
hÞð�p � pÞ, with �p ¼ ð2=r2ÞÐ 2

0
prdr the average pressure.

Now, we can compare this ratio from the theory with the

GTC measurement for the m¼ 18 harmonic mode structure

on the q¼ 4.5 flux surface (Fig. 7). The theoretical estimation

using Eq. (51) is found to match simulation data very well.

For the realistic flux surface in this case, we approximately

calculate D ¼ R0 � ðXo þ XiÞ=2 and r ¼ ðXo � XiÞ=2, where

Xo is the outside intersection between the q¼ 4.5 flux surface

with Z¼ 0 and Xi is the inside intersection. Using the EFIT

FIG. 6. Poloidal contour plot of electrostatic potential d/ from GTC simulation of (a) antenna-driven n¼ 4 TAE without kinetic electrons (b) antenna-driven

n¼ 4 TAE with kinetic electrons (c) EP-driven n¼ 4 TAE eigenstructures with kinetic electrons.
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equilibrium data, � and D0 on the q¼ 4.5 flux surface in this

case are calculated by

� � r

R0 � D

 0:21; D0 � dD

dr

 0:21: (53)

So, the theoretical prediction of DlðpÞo =Dl
ðpÞ
i is:

From theory ðEq: 51ð ÞÞ : Dl
pð Þ

o

Dl
pð Þ

i


 1:21

0:79
� 1:21

0:79

 2:35:

(54)

This ratio measured from simulation (Fig. 7) is:

From simulation :
Dl

pð Þ
o

Dl
pð Þ

i


 0:33m

0:14m

 2:36: (55)

This method can serve as a useful tool to identify the

poloidal mode number from experimental data like ECE

image. In fact, the ECEI data of DIII-D shot No. 146101

(Ref. 54) from both the high-field-side window and the low-

field-side window show a similar ratio of DlðpÞo =Dl
ðpÞ
i 
 2 for

the RSAE mode structure with similar geometric parameters

as shot 142111, but a smaller � in the ECEI windows.

E. Frequency dependence on toroidal mode number

Now we extend our simulation to TAEs with other toroidal

mode numbers. The results are summrized in Fig. 8. The fre-

quencies plotted in this figure are all in the plasma frame. In the

experiment, the three strong signals at t¼ 515 ms are the n¼ 3

TAE with f
 75 kHz, the n¼ 4 TAE with f
 80 kHz, and the

n¼ 5 TAE with f
 85 kHz.55 Their frequencies, subtracted by

their corresponding Doppler shifts, are also shown as black line

in Fig. 8. The frequencies of the EP-driven TAEs in GTC (red

line in Fig. 8) agree very well with those of the experimentally

observed TAEs, all of which lie within the TAE gap in the

Alfv�en continua. In fact, this consistency between simulation

and experimental results can be further extended to the cases

with different qmin values.40 It is observed in both simulations

and experiments that the TAE frequency does not change much

as the qmin value is slowly decreasing.

The growth rates of the TAEs in GTC are shown as the

blue curve in Fig. 8. We find the modes with the largest

growth rates in simulations are n¼ 3–6. Considering that the

nonlinear saturation level is usually lower for modes with

higher-n, we can conclude that the modes with the largest

growth rates in simulation agree qualitatively with the most

dominant modes observed in the experiment (n¼ 3, 4, 5).

In the ideal MHD theory, the lowest order solution for

TAE frequency should not depend on its toroidal mode num-

ber, as we demonstrated in Sec. II C. However, we can find

that there is a frequency dependence on the toroidal mode

number not only in the simulation results but also in the

experiment even after we subtract the Doppler shift from the

experimental results.

This deviation from the ideal MHD prediction should

mainly be attributed to the non-perturbative EP contribution,

i.e., the EP diamagnetic flow effects. The EP diamagnetic flow

angular frequencies at the peak of the EP density gradients is

FIG. 7. dTe mode structure of n¼ 4, m¼ 18 harmonics on q¼ 4.5 flux sur-

face. d is the poloidal distance on the f¼ 0 line of q¼ 4.5 flux surface, meas-

ured from h¼ 0 point in GTC simulation.

FIG. 8. Comparison of EP-driven unstable TAE frequencies and growth

rates, antenna-driven stable TAE (with and without kinetic electrons) fre-

quencies observed in simulations, with TAE frequencies observed in DIII-D

experiments, as a function of toroidal mode number n in the plasma frame at

t¼ 515(ms). Adapted with permission from Z. Wang et al., Phys. Rev. Lett.

111, 145003 (2013). Copyright 2013 American Physical Society.

FIG. 9. (a) TAE frequencies and

growth rates dependence on EP den-

sity. (b) Dominant mode structure de-

pendence on the EP density.
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x�EP ¼ kh
jrPf j
eBnf


 m

r

jrwpj
eB0nf

dPf

dwp

¼ m

r

B0rjrrj=q

eB0nf

dPf

dwp

¼ m

q

Tf

e

d Pfð Þ
Pf dwp

¼ Tf

e

d ln Pfð Þ
dwp

n ¼ 4:97� 105n rad=sð Þ;

(56)

so 1
2p

nf

ni
x�EP ¼ 5nðkHzÞ. Therefore, the difference between the

frequencies of TAEs with neighbouring n modes, about 4(kHz)

in the experiments and 6(kHz) in the simulations, is about the

same magnitude as the difference of their EP diamagnetic flow

frequencies. Another support for our explanation of this fre-

quency dependence comes from our simulation results of

antenna-driven TAEs. If we exclude EP kinetic effects in our

simulation, the resonant frequencies of antenna-driven TAEs

(the green line in Fig. 8) are almost the same for n¼ 2–7. If we

include trapped electron effects, we find that the resonant fre-

quencies of antenna excitations are now higher for modes with

higher-n numbers (the cyan line in Fig. 8). Finally, if we add

EP in our simulation, the dependence of TAE frequency on the

toroidal mode number becomes even stronger.

IV. DEPENDENCE OF GROWTH RATE ON EP DRIVE

In this section, we carry out a scan of fast ion density

and temperature. We adopt all the input parameters in the

case 2 of Sec. III, and then multiply the EP density and tem-

perature with a constant factor from 0.5 to 2.0 in different

simulations. The results are shown in Figs. 9–11. The data

points of nf¼ 0 and Tf¼ 0 use the resonance frequency from

antenna excitation. nf0 and Tf0 denote the equilibrium density

and temperature of fast ions respectively.

In both scans, the frequencies remain roughly constant,

while the growth rates increase with the EP pressure. The

constant frequencies indicate that what we observe is still a

TAE rather than an EPM, whose frequency depends on the

EP transit/bounce frequencies. However, the frequency only

goes up slightly when the EP temperature is increased by a

factor of two. From the right panel of Fig. 9, we can see a

clear shift from an eigenmode structure peaking at q 
 0:52

in the strong drive cases to another eigenmode structure

peaking at q 
 0:44 in the weak drive cases. These two

modes, though have very different mode structures, have

very similar frequencies independent of the EP density. The

dependence of the growth rates of these two modes on the

EP density can both be fitted well to a linear relation, inter-

secting at some point between 0.8nf to 1.0nf. A linear fit of

the growth rate versus EP density shows that the mode closer

to the separatrix has a threshold of 0.3nf. The other mode

closer to the axis, however, has almost no threshold. We can

only observe the most unstable mode in different parameter

regimes in GTC, thus causing the sudden shift of the domi-

nant mode structure with the gradual EP density increase.

This shift of the most unstable mode structure is also illus-

trated in Fig. 11. The mode structures shown in panel (a) and

(b) are quite similar, so are the ones shown in panel (c) and

(d). However, the mode structures on the left peak closer to

the axis. Such a mode shift is also observed in the EP tem-

perature scan.

V. CONCLUSION

In conclusion, GTC linear simulations recover TAEs

observed in DIII-D shot No. 142111 at 525 ms. Agreement

between simulations and experiments in both frequency and

mode structure is in a reasonable range, if we modify the EP

density profile within experimental uncertainty. We find the

dependence of TAE radial location on the EP drive profile.

Antenna excitation results show a wider mode structure for

the TAE from GTC, which is very similar to the ideal MHD

FIG. 10. TAE frequencies and growth rates dependence on EP temperature.

FIG. 11. The electrostatic potential d/ mode structure of EP-driven TAE with the original EP density times a factor of (a) 0.6, (b) 0.7, (c) 1.0, (d) 2.0.
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eigenmode from NOVA. This suggests that the localization

should be attributed to EP non-perturbative contributions.

We find the radial and poloidal asymmetry in the TAE mode

structure. Then we develop a method to estimate the poloidal

mode number in the presence of the poloidal asymmetry.

Kinetic effects, including trapped electron and kinetic EP,

are found to introduce a dependence of the TAE frequency

on the toroidal mode number. Scans of the EP pressure show

a sudden shift of dominant mode structure when the EP pres-

sure is reduced to a certain value.
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APPENDIX A: CALCULATING nr IN GTC

In order to compare GTC results with NOVA results,

first we need to compare the same variable. The mode struc-

ture from NOVA is presented by the radial component nr

� n � rw (Ref. 50) (Their original notation is nw. However,

we use the symbol nr here not to be confused with the covari-

ant and contravariant notations used in this section).

The field equations in NOVA and GTC are

NOVA :
dB ¼ r� ðn� B0Þ
dE ¼ �@tn� B0;

�

GTC :
dB ¼ r� ðdAkb0Þ
dE ¼ �rd/� @tdAkb0;

( (A1)

where dEk ¼ �rkd/� @tdAk ¼ 0 is enforced in the ideal

MHD limit of GTC. It is shown in Ref. 31 that these two

frameworks are equivalent, so these two expressions should

only be different in the choice of the gauge function. Now

we define a gauge function (Eq. (A2)). FðX; tÞ should satisfy

the following relation (Eq. (A3)), so that the GTC expression

can match exactly the MHD expression used in NOVA with

a change of gauge (Eq. (A4)).

FðX; tÞ �
ðt

0

d/ðX; t0Þdt0 (A2)

satisfies this relation:

n� B0 ¼ rFþ dAkb0; (A3)

then the GTC expression of fields matches exactly the MHD

expression of the fields

dB¼r� ðdAkb0Þ ¼ r� ðdAkb0þrFÞ ¼ r� ðn�B0Þ
dE¼�rd/� @tdAkb0 ¼�@tðdAkb0þrFÞ ¼ �@tn�B0:

�
(A4)

Thus, the perpendicular component of the ideal MHD dis-

placement n? can be calculated as

n? ¼ B0 �rFð Þ=B2
0 ¼ drwþ Irhþ grfð Þ � rF=B2

0

¼ I@fF� g@hFð Þ ew

JB2
0

þ g@wF
eh

JB2
0

� I@wF
ef

JB2
0

(A5)

in GTC; if we neglect drw, the radial component of the

equilibrium magnetic field in Boozer coordinates. Here, J
� ½ðrw�rhÞ � rf��1 ¼ ðgqþ IÞ=B2

0 is the Jacobian.

ew; eh; ef are the covariant basis vectors defined as

ew �
rh�rf

rw�rhð Þ � rf
¼ J rh�rfð Þ; (A6)

eh �
rf�rw

rw�rhð Þ � rf
¼ J rf�rwð Þ; (A7)

ef �
rw�rh
rw�rhð Þ � rf

¼ J rw�rhð Þ: (A8)

So, the contravariant expression of n? is given by

n? ¼ nwew þ nheh þ nfef

¼ I@fF� g@hF

gqþ I
ew þ

g@wF

gqþ I
eh �

I@wF

gqþ I
ef: (A9)

Then the radial component of displacement is

nr ¼ n � rw ¼ n? � rw ¼ nw ¼ I@fF� g@hF

gqþ I
; (A10)

where the gauge function F is defined in Eq. (A2).
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