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The instability of a Harris current sheet under a broad range of finite guide field �BG� is investigated
using a linearized ��f� gyrokinetic electron and fully kinetic ion particle simulation code. The
simulation is carried out in the two-dimensional plane containing the guide field along y and the
current sheet normal along z. In this particle model, the rapid electron cyclotron motion is removed,
while the realistic mass ratio mi /me, finite electron Larmor radii, and wave-particle interactions are
kept. It is found that for a finite BG /Bx0�1, where Bx0 is the asymptotic antiparallel component of
magnetic field, three unstable modes, i.e., modes A, B, and C, can be excited in the current sheet.
Modes A and C, appearing to be quasielectrostatic modified two-stream instability/whistler mode,
are located mainly on the edge of the current sheet. Mode B, on the other hand, is confined in the
current sheet center and carries a compressional magnetic field ��By� perturbation along the
direction of electron drift velocity. Our new finding suggests that mode B may contribute directly to
the electron anomalous resistivity in magnetic reconnection. In the cases with extremely large
BG /Bx0�1, the wave modes evolve to a globally propagating instability. The simulation shows that
the presence of finite BG modifies the physics of the current sheet significantly. © 2008 American
Institute of Physics. �DOI: 10.1063/1.2938732�

I. INTRODUCTION

Magnetic reconnection1 is believed to be a fundamental
physical process that plays an important role in both labora-
tory and natural plasmas. The reconnection process, which
involves the connection of topologically different magnetic
field lines, can take place at a current sheet that separates two
different plasma regions with antiparallel magnetic field
components. Anomalous resistivity in such a current sheet is
thought to be crucial in achieving fast reconnection in colli-
sionless plasmas. A number of microinstabilities, including
Buneman, ion acoustic, electron cyclotron, lower-hybrid
drift, drift kink, modified two-stream, whistler, and Weiber
instabilities, have been proposed to produce such anomalous
resistivity. However, in many applications of interest, the ra-
tio of ion to electron temperatures Ti /Te�1, the ion drift
speed vd� ion thermal speed vthi, and the plasma � is finite,
and thus some of these candidates for the source of resistivity
are ineffective. The lower-hybrid drift instability �LHDI� and
whistler modes are considered by some to be the most pos-
sible instabilities which provide the anomalous resistivity in
a reconnection current sheet.

The low-hybrid drift, whistler, and modified two-stream
instabilities �MTSI� have been studied for decades via theo-
retical analysis and numerical simulations. The electrostatic
local theory by Krall and Rosenbluth2 was the earliest linear
theory that investigates the trapping instabilities in a small
density gradient plasma. This theory was later extended to
investigation of a Harris current sheet.3 An electromagnetic
local linear theory was derived by Davidson et al.4 to study
the LHDI. It was found that a high-beta plasma will stabilize
the LHDI. Another candidate for the anomalous resistivity in

current sheet is the modified two-stream instability,5 which is
driven in homogeneous plasmas by a large relative drift ve-
locity between ions and electrons perpendicular to the mag-
netic field. While the maximum growth rate occurs at k� =0
in the LHDI, the growth rate equals zero at k� =0 and peaks
at finite k� /k in the MTSI. Local theory was also used to
study the kinetic whistler mode driven by cross-field
streaming.6 It was argued that the whistler instability be-
comes the MTSI when ��1 and �k� /k��mi /me�1/2�1.

Nonlocal electrostatic theory of inhomogeneous plasmas
was developed and applied to analysis of the drift wave gen-
erated by a density gradient7 and/or sheared magnetic field.8

In the nonlocal kinetic theory derived by Huba et al.,9 for a
Harris current sheet without a guide magnetic field, it was
found that the fastest growing LHDI is well localized at the
edge of the current sheet. Meanwhile, Daughton10,11 used a
nonlocal electromagnetic theory to investigate the LHDI and
drift kinetic instability �DKI� in a Harris current sheet with
essentially a zero guide field. It was shown in their eigen-
functions that the long wavelength structure with ky

��i�e

�1 has a significant electromagnetic component localized in
the central region of the current sheet, while the fastest grow-
ing mode with ky�e�1, mainly an electrostatic mode, is lo-
calized on the edge of the current sheet.

Nonlinear evolution of the LHDI and its role in anoma-
lous resistivity were investigated by numerical simulations.
The early full-particle simulation by Winske12 described a
long wavelength electromagnetic mode developed at the null
point as a consequence of the nonlinear penetration of the
LHDI, which is initially excited at the edge of the current
sheet. In the simulation performed by Ozaki et al.13 and
Horiuchi and Sato,14 LHDI generated away from the neutral
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sheet in early period has sufficiently large growth rate and
cannot penetrate into the current sheet center, implying that
the LHDI cannot be directly responsible for anomalous re-
sistivity in the neutral sheet. Instead, a drift kink instability,
triggered in later period as a result of nonlinear deformation
of the current sheet by LHDI, can create an anomalous
resistivity.15 Recent particle simulations by Daughton et al.16

and Ricci et al.,17 however, implied that LHDI generated in
thin current sheet can penetrate into the central region and
play an important role in the onset and nonlinear develop-
ment of magnetic reconnection by heating electrons aniso-
tropically and producing current bifurcation. In addition, the
role of whistler mode instabilities in fast reconnection also
attracted broad attention in recent simulations.18–20 It was
shown that in high-beta plasma, the whistler mode plays a
key role in the physics of fast reconnection.21

Overall, previous theories and simulations on current
sheet instabilities were focused mainly on the Harris current
sheet without or with a very small guide field, which is cer-
tainly not the case in laboratory plasmas. Few investigated
the instabilities at the current sheet center in the current sheet
with a finite guide field. In the presence of a finite guide field
BG, the value of k�/k in the instabilities may be nonzero, and
the effects of finite k� in anomalous resistivity may not be
ignored. In addition, most of the fully kinetic particle simu-
lations have adopted an artificial mass ratio mi /me between
ion and electron.

The roles of LHDI and whistler modes in a reconnection
current sheet were also investigated in laboratory experi-
ments and by satellite observations. Satellite observations in-
dicated that LHDI is responsible for both large-amplitude
electric field fluctuations22,23 and the low-frequency electro-
magnetic turbulence24 at a neutral sheet. The observation in
MRX,3,25 however, suggested that LHDI fluctuations are
confined to the low-� edge of current sheet and do not play
an essential role in determining the reconnection rate. Bale
et al.26 thought that the contribution of LHDI, observed in a
reconnection current sheet at Earth’s magnetopause, to
plasma resistivity is negligible. On the other hand, many
observations, both in laboratory and nature plasmas, found
that whistler modes with frequency �i	
	�e may play a
significant role in fast reconnection. These whistler waves
could be right-hand or linearly polarized,27 propagating
obliquely28 or nearly perpendicular29 to the reconnection
field with phase speed around Vd, the relative drift speed
between ions and electrons. Note that in laboratory experi-
ments of MRX,3,25,28 the guide field BG is strong. As a whole,
the roles of LHDI and other current sheet instabilities in
reconnection are still controversial and under debate.

To overcome the numerical difficulty of the mass ratio
�mi /me� problem and address the physics of current sheet
with a finite guide field, we have developed an innovative
gyrokinetic electron and fully kinetic ion �GKe/FKi� particle
simulation model.30 In this paper, we use the newly devel-
oped GKe/FKi model to investigate instabilities in a two-
dimensional �2D� Harris current sheet under a finite guide
field BG. In this model, the electron dynamics is determined
by the gyrokinetic �GK� equations, in which fast electron
gyromotion and Langmuir oscillations are removed from the

dynamics, while ions obey the fully kinetic �FK� Vlasov
equation. The microscopic physics and the global Alfvén
scale dynamics in magnetic reconnection can be solved si-
multaneously with a realistic mi /me ratio. Note that the rel-
evant electromagnetic compressional waves are fully covered
in our model. This model is particularly suitable for the dy-
namics with wave frequency 
	�e and wave number k�
	k�. Unlike the studies by Daughton,11 our simulation plane
contains the guide field and the current sheet normal, and
thus instabilities with k��0 are expected to exist.

As a first step of our systematic study, in this paper, we
linearize the GKe/FKi code using a �f method,31 and present
results of microinstabilities in the Harris current sheet based
on the linearized GKe/FKi model. Note that a special case
with a small guide field was studied using a purely electro-
static GKe/FKi �f simulation code, and the results were
found to agree well with a linear local theory.32 The fully
electromagnetic �f scheme is utilized in this paper for gen-
eral cases with a broad parameter range. The outline of the
paper is given below. The GKe/FKi �f model is described in
Sec. II. The simulation results for cases of a small to mod-
erate guide field are presented in Sec. III. A case with ex-
tremely large guide field is also briefly discussed. A summary
is given in Sec. IV.

II. LINEARIZED „�f… GKe/FKi SIMULATION MODEL

Physics of many interesting kinetic processes requires
resolving both the ion and electron time scales in an inte-
grated global-scale system. For example, to understand the
physics of collisionless magnetic reconnection, one needs to
resolve finite electron Larmor radius effects, consider elec-
tron wave-particle resonance �i.e., Landau damping�, and in-
clude electron’s off-diagonal pressure terms, whereas the
spatial and temporal scales of the reconnection process range
from the short electron scales to global Alfvén scales. It is,
however, rather difficult to include all the disparate temporal
and spatial scales due to the constraints of available comput-
ing power �e.g., particle-in-cell codes and hybrid codes�.

In our new GKe/FKi kinetic simulation model,30 the
electrons are treated as gyrokinetic particles. The rapid elec-
tron cyclotron motion is averaged out and thus removed, but
finite electron Larmor radius effects are retained. This allows
for efficient simulation runs for realistic proton-to-electron
mass ratio. The model is particularly suitable for the pro-
cesses in which the wave modes ranging from low Alfvén
wave frequency to intermediate lower-hybrid frequency need
to be incorporated. Wave modes relevant to many applica-
tions, e.g., magnetohydrodynamic modes, the obliquely
propagating whistler/lower-hybrid waves, modified two-
stream instabilities, and kinetic Alfvén waves, fall inside this
range of dynamic scales. The simulation model has been
successfully benchmarked for linear waves in uniform plas-
mas against analytical dispersion relation.30

In the present discussion, we extend the analysis by Lin
et al.30 to the case of inhomogeneous current sheet with a
finite guide field. The initial equilibrium current sheet is as-
sumed to be a Harris sheet. For the purpose of studies on
linear properties of waves, the GKe/FKi code is linearized,
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and the linear simulation results are presented. In the follow-
ing, we first describe the simulation scheme of the GKe/FKi
model in the �f approximation. The initial and boundary
conditions for the Harris current sheet in GKe/FKi plasma
are then described.

A. GKe/FKi scheme in �f approximation

We apply a linearized �f scheme to the GKe/FKi model
described by Lin et al.,30 in which the ions are treated as
fully kinetic particles and the electrons are treated with gy-
rokinetic approximations. In the �f scheme, the ion motion
in unperturbed orbit under the zeroth-order magnetic field is
governed by the particle equations of motion

dv

dt
=

qi

mi
v � B0,

�1�
dx

dt
= v ,

where mi is the ion mass and qi is the ion charge.
In the electromagnetic GK approximation, the gyro-

center equation of motion for the parallel electron momen-
tum, i.e., p� =meve� +qe�A� /c, and the electron gyrocenter po-
sition, i.e., R=x−�, in zeroth-order fields, are given30 by

dp�

dt
= − b* · � � B̄ ,

�2�
dR

dt
= ve�b* +

c

qeB̄
b̄ � � � B̄ ,

where qe is the electron charge, ve� is the electron parallel

velocity, � is the magnetic moment, b̄= B̄ /B0, and b*= b̄
+ �ve� /�e�b̄� �b̄ ·��b̄.

In the �f scheme, the perturbed density weighting func-

tions, Wi=�f i / f̄ i for the ions and We=�Fe / F̄e for the elec-
trons, are advanced in time according to

dWi

dt
= −

qi

mi
��E +

1

c
v � �B	 ·

� ln f i

�vi
, �3�

dWe

dt
= − 
v̄e��b* + �ve�b̄* +

cb̄

qeB̄
� �qe���*��

·
� ln F̄e

�R
+ ��b* · �� � B̄�

+ b̄* · �qe���*��� ·
� ln F̄e

�p�

, �4�

where �b*= ��ve� /�̄e�b̄� �b̄ ·��b̄− �v̄e���e /�̄e
2�b̄� �b̄ ·��b̄,

�ve� =−qe�A� / �mec�, *=−v ·�A /c, f̄ i and F̄e are the equi-
librium ion and gyrokinetic electron velocity distribution
functions, the operator �…� represents gyroaveraging.

Assuming the condition ���
2 �� ���

2�, the generalized gy-
rokinetic Poisson’s equation for the perturbed scalar potential
 can be written as


�1 + �̄e +

̄pe

2

�̄e
2 	��

2 −

̄pi

2

V̄A
2 �

= − 4�
�1 + �̄e��qi�ni + qe��Ne�� −
4�n̄iqi

B̄2
�� , �5�

where 
̄pe and �̄e are, respectively, the electron plasma fre-
quency and electron gyrofrequency based on the dc magnetic
field and plasma density. The perturbed ion density �ni is
obtained by calculating the zeroth moment according to Wi

in the discrete phase space, deposited to a mesh of spatial
grids. The perturbed electron density ��Ne� is obtained by
calculating the zeroth moment according to the four point
gyroaveraged We. The quantity �� �Ref. 30� in Eq. �4� can
be obtained from

�2�� = − � · 
� · ��Pg� +
1

c
�Ji � B +

1

c
Ji � �B , �6�

where �Ji=qi�v�f id
3v, Ji=qi�v f̄ id

3v, and ��Pg�
=�mevv�Fed

3v.
The perturbed potential �A� is given by the following

linearized parallel Ampère’s law:

��2 −

pe

2

c2 	�A� = −
4�

c
��Ji� + ��Je��� , �7�

where ��Je��= �qe /me��p��Fed
3v, and �Ji� =qi�v��f id

3v. The
perturbed parallel magnetic field �B�, meanwhile, is obtained
from

�B� = 4�
�� + n̄iqi�1 + �e

2��
2 ��

�1 + �̄e�B̄
. �8�

The perturbed potential �A� is determined by the linearized
perpendicular Ampère’s law

�2�A� = −
4�

c
�J�, �9�

with �J�= �c /4��� � ��B�b̄�. Let �A=�A�b̄+�A�+���. To
ensure the Coulomb gauge condition � ·�A=0, � must
satisfy

��
2 � = − � · ��A�b̄� . �10�

The perturbed electric field can be obtained from the
electron force balance equation

n̄eqe�E = � · �Pe −
1

c
�J̄e � �B + �Je � B̄� . �11�

The calculated �E and �B=���A are then used to advance
the ion weighting function Wi, and meanwhile, �A� and �
are used to advance the electron weighting function We.

B. Initial and boundary conditions

To exclude the tearing mode instability, the simulation is
performed in the 2D yz plane, with z being along the current
sheet normal and the antiparallel field component Bx perpen-
dicular to the simulation plane. The initial magnetic field
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B�z� = x̂Bx0 tanh�z/L� + ŷBG, �12�

where L is the half-width of the initial current sheet. We
assume that initial temperatures Ti and Te are constant every-
where in the domain.

Assume that the background and the Harris sheet plas-
mas have the same temperature. For a given ion beta value
�i0, defined with respect to the asymptotic field, the initial
density in the Harris sheet is expressed as

ni0 = nH sech2�z/L� + nb0, �13�

where nb0 is the background density, and the peak ion density
nH in the current sheet is obtained from the total pressure
balance

nH�Ti + Te� =
1

8�
Bx0

2 , �14�

where Ti and Te are in units of energy. The equilibrium ve-
locity distribution of the Harris current sheet ion population
is given by

f̄Hi =
nh0

�2�Ti/mi�3/2e−mi�vx
2+�vy − Vdi�

2+vz
2�/2Ti . e−VdiqiAy�z�/Ti,

�15�

where Vdi is the ion drift speed, and

nh0e−VdiqiAy�z�/Ti = nih0�z� = nH sech2�z/L� . �16�

The background electron density is also chosen as nb0. A
Maxwellian velocity distribution is assumed for the back-
ground ion and electron populations. Initially, the GK elec-
tron equilibrium distribution function for the Harris sheet
electrons takes the form �see the Appendix�

F̄He,g =
nih0

�2�Te/me�3/2 exp�−
Bx

2

B2

meVde
2

2Te
	�1 −

meVde

Te�e

dBx

dz
�	

�exp�−
1

2Te

2�B + me�v� −

VdeBG

B
	2� , �17�

where Vde is the electron drift speed. For the Harris sheet,
Vde /Te=−Vdi /Ti. Note that the initial distribution functions
given above are taken as the equilibrium distributions to be
used in the �f calculations.

In the simulation, plasma density is normalized to n0

�100 particles per grid cell, and magnetic field is normal-

ized to B0��Bx0
2 +BG

2 . In the following, all quantities are
presented as normalized ones. The parameters used in the
simulation are described as follows. The normalized back-
ground density nb0=0.1–2, while nH=1–4 in the cases
shown. The half-width of the current sheet L=0.125–1�i,
where �i is the ion Larmor radius in the asymptotic magnetic
field B0. The system lengths are chosen as ly =0.5–100�i in
the y direction and lz=5.0–40�i in the z direction. The grid
number Ny �Nz=32�128–64�512. The electron tempera-
ture Te=0.1–1Ti. The guide field BG /Bx0=0.05–10. The
electron beta �e0=nb0�0=0.01–0.2 and ion beta �i0

=nb0Ti /Te�0=0.1–2, where �0=n0Te / �B0
2 /8��. The simula-

tions have been run in a wide range of ky�i=0.1–40. Some
other dimensionless parameters are

mi

me
= 1836,


pe

�e
= 2.2 − 10, �18�

where 
pe= �4�n0e2 /me�1/2 and �e=eB0 /mec. Note that the
ratio of light to Alfvén speed c /VA=�mi /me
pe /�e. Periodic
boundary conditions are applied at y=0, ly. The conducting
boundary conditions are applied at z= � lz /2, with ��=0 and
�A=0.

III. SIMULATION RESULTS

Cases with various BG /Bx0, ky, �0, nb0, Te /Ti, and L have
been run to investigate microinstabilities in the Harris cur-
rent sheet. It is found in the simulation that for BG /Bx0	1,
three types of instability modes, namely, modes A, B, and C,
can be excited in the current sheet. These three modes ex-
hibit different wave properties with real frequencies around

LH, the lower-hybrid frequency in the asymptotic magnetic
field. Typical simulation parameters for the generation of
modes A, B, and C are shown in Table I. As BG /Bx0 further
increases, modes with new features can be obtained. Six
typical simulation runs are described below in detail.

A. Mode A

In case 1, the guide magnetic field BG=0.1Bx0, and the
half-width of current sheet L=0.25�i. An unstable mode
�mode A� is obtained. Figure 1�a� shows contours of fluctua-
tions of magnetic field �Bx ,By ,Bz�, electric field �Ex ,Ey ,Ez�,
plasma densities �ni ,ne�, and �� ·�E� and ����E� for ky�i

TABLE I. Typical parameters for generation of current sheet instabilities.

Case:
Dominant by:

Case 1
Mode A

Case 2
Mode B

Case 3
Mode C

Case 4
Modes A and B

Case 5
Modes B and C

Case 6
Mode D

BG /Bx0 0.1 0.2 0.25 0.2 0.2 5

ky�i 6.8 6.8 2.7 6.8 6.8 0.16

nb0 1.0 0.5 0.5 0.9 0.75 1.5

nH 2.7 2.6 2.56 2.6 2.6 1.92

L /�i 0.25 0.25 0.25 0.25 0.25 0.5

�0 0.033 0.033 0.033 0.033 0.033 0.01

Ti /Te 10 10 10 10 10 1


pe /�e 10 10 10 10 10 2.33
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=6.8 in the 2D real space at t=2�i
−1. The dashed lines mark

the positions of z= �L. It is seen that all the quantities ex-
cept for �By are localized mainly near the current sheet edge.
The maximum value of �Bx is four times that of �Bz, and
both are present at z= �1.5L. On the other hand, the fluc-
tuation in By has a much smaller amplitude, and shows a
wide structure. The maximum amplitude of �Ez is about the
same order of that of �Ey and one order greater than that of
�Ex. The fluctuation in the electron density is six times that
in the ion density, and the maximum amplitude of the elec-
tron flow speed is found to be 30 times that of the ion speed.
Note that the fluctuations of electron flow velocity �Ue are
dominant by �Uex, while that of ion velocity �Ui are domi-
nant by �Uiy. The ion density fluctuation �ni is in phase with
the electron �Ne at the current sheet edge, z= �L.

The contours of �� ·�E� and ����E� reveal, respec-
tively, the electrostatic and electromagnetic properties of the
instability. It is seen that in mode A, the maximum amplitude
of the electrostatic component is larger than that of the elec-
tromagnetic component. The electrostatic component is lo-
calized mainly at z= �1.2– �1.5L, while the electromag-
netic component is dominant at two locations with z= �1L
and z= �1.5– �2L. The amplitude of �� ·�E� is overall
greater than ����E�. The ratio of �� ·�E� / ����E��0.5–8,
and the average value of ratio �� ·�E� / ����E� is about 2 in
the inner current sheet with �z�	L and about 4 on the current
sheet edge with L	 �z�	2L. Therefore, mode A is quasielec-
trostatic on the current sheet edge, and has a non-negligible
electromagnetic component in the center.

The eigenfunctions of mode A for various quantities are

shown in Fig. 1�b�. The dashed lines mark the positions of
z= �L and �2L. The red �blue� line in Fig. 1�b� represents
the real �imaginary� part of the corresponding quantity. Note
that each quantity is scaled to the maximum of its absolute
value. The black lines show the absolute values, which peak
at current sheet edge within L� �z��2L. Again, mode A is
localized on the current sheet edge.

The powers of the dominant field components �Bx and
�Ez at different locations of z as a function of 
 are pre-
sented in Fig. 2�a�. In this case, the real frequency 
 of mode

FIG. 1. �Color online� Simulation results of case 1 �mode A�. �a� Contours of the perturbed electromagnetic field �Bx ,By ,Bz ,Ex ,Ey ,Ez�, plasma density
�ni ,Ne�, � ·E, and ��E in the 2D simulation plane. The dashed lines mark z= �L, and scales in the colorbars are amplified by a factor of 104. �b�
Eigenfunctions of corresponding quantities, where the red �blue, black� line represents the real �imaginary, absolute value� part. The dashed lines mark z
= �L and �2L.

FIG. 2. Simulation results of case 1. �a� The relative powers of predominant
components �Bx and �Ez, with ky�i=6.8, as a function of real frequency at
different locations of z=0, 0.5, 1, 1.5, 2, 2.5, and 3L. The vertical dashed
line marks the real frequency 
=42.8�i. �b� The power of �Bx with ky�i

=6.8 as a function of time at different locations at z=0, 1, 1.5, and 2L. The
long-dashed line represents �e−� with �=7.14. �c� Time series plot of �Bx

as a function of y at z=1.5L.
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A is found to be 
�42.8�i, as marked by the dashed lines
in Fig. 2�a�. It is seen that the real frequency of mode A is
independent of z, as expected for an eigenvalue. Figure 2�b�
shows the amplitude of �Bx for mode A at locations of z=0,
0.25, 0.38, and 0.5�i, corresponding to z=0, L, 1.5L, and 2L,
as a function of time. A linear growth rate �A is well estab-
lished from the slopes of lines in Fig. 2�b�. It is found that
�A=7.14�i, which is also independent of z, again consistent
with being an eigenmode. Mode A is found to be nonpropa-
gating in the z direction, indicating a bounded state in z, and
it only propagates in the +y direction parallel to the ion drift
velocity. Such propagation of mode A can also be seen from
Fig. 2�c�, the time series plot of perturbed magnetic field
components �Bx as a function of y at z=1.5L. The phase
speed of mode A is Vph,A=
 /ky =6.29vthi=0.782Vdi, where
vthi is ion thermal speed.

Figure 3�a� shows the hodograms of magnetic field in
the �Bx-�Bz plane at z=0.38�i=1.5L for t=2�i

−1. The arrows
in Fig. 3�a� indicate the direction from upstream to down-
stream against ky. Note that By �0. It is seen that mode A
has an elliptic right-hand polarization in magnetic field.

The structures obtained in case 1, with ky�i=6.8 corre-
sponding to kyL=1.7 and ky

��i�e=0.6, have revealed prop-
erties that are similar to the LHDI structure obtained by
Daughton.11 It is well confined on the current sheet edge and
dominated by �Bx. Nevertheless, the fact that electric fluc-
tuation is dominated by �Ez and the electron velocity fluc-
tuation is dominated by �Uex may lead to a somewhat differ-
ent conclusion. In case 1, the wave vector kz is estimated to
be �10 /�i. Consider Bx=0.995 and By =0.0995 on the cur-
rent sheet edge; the ratio k� /k= �kyBy /�Bx

2+By
2� /�ky

2+kz
2

�0.07��me /mi. The existence of finite k� /k indicates that
the mode is unlikely a pure LHDI mode. It is speculated that
the instability associated with mode A is the modified two-
stream/whistler instability,6 or in the transition between
LHDI and MTSI/whistler mode. The fact that the instability
is located on the current sheet edge where ��1 and Vd /VA is
moderate, i.e., �2–5, is also consistent with the MTSI/
whistler mode.

1. ky dependence

The eigenfunctions of magnetic and electric field for
ky�i=3.4, 6.8, and 13.6 are shown in Fig. 4. Again, the fluc-
tuations in electromagnetic fields are confined in a finite

width in z around the edge on either side of the current sheet.
It is seen that the width of the eigenfunctions increases with
the decreasing wave number ky. The locations of the peaks of
perturbed magnetic field roughly remain unchanged with ky.
The peaks of electric field, however, shift outward as ky in-
creases from ky�i=3.4 to 13.6. The structures of electron

plasma quantities �e.g., �Ne, and � ·�P� x, not shown� are
found to be almost unchanged with ky.

Figure 5�a� shows the dispersion relation and growth rate
of mode A as a function of ky. For the cases with BG /Bx0

=0.1, mode A is unstable for 1.35	ky�i	26.9. The maxi-
mum growth rate=10.0�i, and is found at ky�i=15.6, with
the corresponding real frequency 
=95.24�i. The dispersion
relation of mode A in the range of ky�i	25 can nearly be
expressed as 
=Vphky, where Vph�0.78Vdi is the phase
speed of mode A.

2. � dependence

Cases with electron beta �e0=0.01–0.1, corresponding
to various electron and ion temperatures while maintaining
Te /Ti=0.1, have been simulated. The plasma beta is found to
only slightly affect the perturbed electromagnetic field struc-
tures. The real frequency and growth rate as a function of �e0

are shown in Fig. 5�b�. It is seen that the real frequency
decreases with �e0. The linear growth rate also decreases
with �e0 when �e0�0.033. Mode A is stable for �i0�1 in
high-beta plasma, and is also stable if �e0→0.

3. BG dependence

It is seen from Fig. 5�a� that the range of ky in which
mode A is unstable is narrowed when the guide field BG

increases. The maximum growth rate �max becomes smaller
with the increasing BG /Bx0, and the location of the maximum
growth rate shifts to smaller ky. The phase speed Vph, how-

FIG. 3. Hodograms of magnetic field in �Bx-�Bz plane in �a� case 1 at z
=1.5L, �b� case 2 at z=0.5L, and �c� case 3 at z=0.5L. The arrows indicate
the direction from upstream to downstream against ky. The field quantities
are normalized to their maximum value in each case.

FIG. 4. Eigenfunctions of �Bx and �Ez with ky�i=3.4, 6.8, and 13.6 in mode
A. The dashed lines mark z= �L and �2L.
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ever, increases with BG /Bx0. The frequencies 
 and � as a
function of BG /Bx for ky =6.8 are shown in Fig. 5�c�. It is
seen that the real frequency 
 of mode A increases with
BG /Bx0. The eigenfunctions obtained in the simulation �not
shown� indicate that the width of electromagnetic fluctua-
tions in z become wider with the increasing BG /Bx0.

B. Mode B

As the guide field increases and/or the ambient plasma
beta ��e0 and �i0� decreases, the current sheet instability is
found to shift to the high-� region in the current sheet center,
dominated by mode B. In case 2, in which BG /Bx0=0.2 and
nb0=0.5, mode B is found to be dominant. Contours of vari-
ous quantities at t=2�i

−1 are shown in Fig. 6�a�. It is seen
that the fluctuation of �By and �n are well confined in a
narrow region at the current sheet center with �z�	0.25L,
where �i�10.5. Fluctuations of other quantities are confined
in the region with �z��L. While �Bx dominates mode A in
case 1, here �By and �Ez are dominant in mode B. The am-
plitude of �Ne is about the same as that of �ni. The ion flow
velocity is found to be primarily dominant by �Uiy, while
�Uey and �Uex are stronger in the electron flow components.
It is also seen from Fig. 6�a� that �� ·�E� / ����E��3 in a
very narrow region in the current sheet center with �z�
	0.25L. The amplitudes of electrostatic and electromagnetic
components are about the same order in all the other regions,
with �� ·�E� / ����E��1.

It has been argued in previous simulations that the
LHDI, generated away from the neutral sheet, may not be
able to penetrate into the current sheet center �e.g., Ozaki
et al.13�. Thus, it is questionable whether LHDI can contrib-

FIG. 5. Real frequency and growth rate of mode A �a� as a function of ky for
guide field BG /Bx0=0.1 and 0.2 and �e0�0.033, �b� as a function of electron
�e0, for BG /Bx0=0.1 and ky�i�6.8 and �c� as a function of BG for ky�i�6.8
and �e0�0.033.

FIG. 6. �Color online� Simulation results of case 2 �mode B�: �a� contours and �b� eigenfunctions of various quantities. The dashed lines in the top �bottom�
panel mark z= �L �z= �L and �2L�. Scales in the colorbars are amplified by a factor of 108.
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ute to the anomalous resistivity in magnetic reconnection. On
the other hand, mode B obtained in our simulation is local-
ized exactly in the current sheet center. It is associated with a
larger compressional perturbation in By, along the direction
of the electron drift velocity. It would be interesting to study
the role of mode B in the anomalous resistivity in magnetic
reconnection.

Figure 6�b� shows the eigenfunctions of various quanti-
ties in case 2. All fluctuations are clearly well confined in the
current sheet. The quantities �By and �ni peak at the neutral
line at z=0. The perturbation �Ez exhibit an odd eigenfunc-
tion structure, while �Ey and �By have even eigenfunctions.
The electron density, on the other hand, peaks near the cur-
rent sheet edge at z= �0.75L.

It is found that in case 2 the real frequency of mode B is

=46.6�i and the linear growth rate �=2.34�i. Similar to
mode A, both 
 and � in mode B are also seen to be inde-
pendent of z. Mode B only propagates in the y direction, with
phase speed Vph,B=
 /ky =6.86vthi=0.84Vdi in case 2.

The polarization of magnetic field components perpen-
dicular to ky can be found from Fig. 3�b�, which shows the
hodogram of magnetic field in the �Bx-�Bz plane at z
=0.125�i=0.5L for t=2�i

−1. It is seen that mode B is right-
hand and nearly circularly polarized in magnetic field.

Figure 7�a� shows the dispersion relation and growth rate
as a function of ky for mode B in the cases with BG /Bx0

=0.2 and �e0=0.016. It is found that the maximum growth
rate �max�2.55�i. The corresponding ky,max�i=7.69 and

max=54.8�i. The width of ky�i for unstable mode B is
about 6, which is smaller than that of mode A in Fig. 5�a�.

When ky�i	5, mode B becomes stable with �=0, while the
instability is dominated by mode C, which is discussed
below.

The frequencies 
 and � as a function of electron beta in
mode B for BG /Bx0=0.2 and ky�i=6.8 are shown in Fig.
7�b�. It is seen that the real frequency 
 is nearly unchanged
with �e0, while the growth rate � decreases with �e0. Note
that when the asymptotic electron beta becomes higher with
�e0�0.1, the instabilities of mode A will become dominant,
which exist on the low-� current sheet edge.

C. Mode C

As mentioned above, mode C is unstable for small ky, as
shown below in case 3 with ky�i=2.69 and BG /Bx0=0.25.
Figure 8�a� shows the contours of various quantities at t
=4�i

−1. It is found that the magnetic field fluctuations are
present everywhere in the current sheet region with �z�	3L,
while the electric field fluctuations are mainly in the edge
region with L� �z��3L. The electron density �Ne, however,
is confined in a narrow region with �z��L, while the maxi-
mum amplitude of �Ne is much greater than that of ion den-
sity �ni. The fluctuation of �Bx is dominant in the magnetic
field, while �Ez is dominant in the electric field. The ratio
�� ·�E� / ����E��6 on the current sheet edge with �z��2L,
indicating that the fluctuations are highly electrostatic on the
edge. The amplitudes of electrostatic and electromagnetic
components are about the same order in the current sheet
center, with �� ·�E� / ����E��1.

Figure 8�b� shows the eigenfunctions of various quanti-
ties in case 3. It is seen that the region occupied by the
electromagnetic field is wider than that in modes A and B.
The phase differences between the real and imaginary parts
of eigenfunctions are nearly 90° in mode C, while the phase
differences are equal to 0° or 180° in modes A and B. Com-
parison between mode structures of Ez in cases 1 and 3 sug-
gests that mode C is a higher eigenstate of mode A.

In this case, the real frequency is found to be 58.9�i.
The corresponding linear growth rate �=3.96�i. Similar to
modes A and B, the frequency of mode C is also independent
of z, consistent with being a bounded eigenstate. The phase
speed of mode C in case 3, along +y, is Vph,C=
 /ky

=21.9vthi=2.65Vdi, greater than the ion drift velocity Vdi.
Figure 3�c� shows the hodograms of magnetic field in

the �Bx-�Bz plane at z=0.125�i=0.5L for t=4�i
−1. It is seen

that mode C is linearly polarized in magnetic field.

D. General cases with multiple modes

As described above, modes A, B, and C are unstable
predominantly in different parameter regimes. The depen-
dence of modes A, B, and C on the guide field BG for the
cases with background density nb0=0.5, corresponding to
�i0=0.16 and ky�i=6.8, is shown in Fig. 9�a�, in which the
real frequency of each mode and the maximum growth rate
obtained from the simulation are plotted. It is seen that in the
cases with small guide field BG /Bx0�0.1, only mode A is
excited. The growth rate of mode A decreases with BG. As
BG increases, modes B and C appear. When BG is the range
of 0.12�BG /B0�0.167, modes A, B, and C are unstable

FIG. 7. Real frequency and growth rate of mode B �a� as a function of ky for
BG /Bx0=0.2, nb0=0.5, and �e0=0.016 and �b� as a function of �e0 for
BG /Bx0=0.2, nb0=0.5 and ky�i=6.8.
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simultaneously in the current sheet. The frequency of mode
B is the smallest among these three modes, while that of
mode C is the highest. The frequency of mode A is close to
that of mode B. When BG /Bx0�0.2, modes A and C are

stabilized, and only mode B is generated and dominates the
instability in the current sheet. The current sheet is then sta-
bilized for all the modes when BG /Bx0�0.5.

Figure 9�b� shows frequencies and growth rates of the
current sheet instabilities as a function of density nb0 for the
cases with BG /Bx0=0.2, Ti /Te=10, and ky�i=6.8. Note that
nb0=0.1–1 corresponds to ion �i0=0.033–0.33. It is seen
that under a relatively high nb0, only mode A is excited, with
growth rate �3�i. When nb0 decreases to nb0�1.0, mode B
is also unstable. Mode B becomes stronger with the decreas-
ing nb0. When nb0�0.8, unstable mode C is also excited.
When 0.6�nb0�0.75, modes B and C coexist in the system,
while at nb0�0.8, all three modes exist simultaneously.
Mode B gradually becomes the dominant instability as nb0

decreases.
As shown in Fig. 9, there can exist multiple modes si-

multaneously in general cases. Some examples with coexist-
ing unstable modes A, B, and/or C are shown below. Figure
10�a� shows the powers of eigenmodes at different
z-distances as a function of the real frequency in case 4 with
BG /Bx0=0.2 and nb0=0.9. It is found in this case that the
instabilities in the current sheet are governed by modes A
and B. The frequency of mode A is 
A=53.8�i, which is
larger than that of mode B with 
B=43.5�i. The fluctuations
of mode B are present mainly at the center with z�0, while
the fluctuations of mode A are dominant on the current sheet
edge with z�L. The powers of all quantities but �By in mode
A are greater than those of mode B. The growth rate of mode
B can be estimated by calculating the growth of �By local-
ized at the current sheet center, while the growth rate of
mode A can be determined by the growth of �Bx at the edge.

FIG. 8. �Color online� Simulation results of case 3 �mode C�: �a� contours and �b� eigenfunctions of various quantities. The dashed lines in the top �bottom�
panel mark z= �L �z= �L and �2L�. Scales in the colorbars are amplified by a factor of 103.

FIG. 9. Real frequency of modes A, B, and C and growth rate of eigenmode
�a� as a function of BG for ky�i=6.8, nb0=0.5, and �e0=0.016 and �b� as a
function of nb0 for ky�i=6.8, BG /Bx0=0.2, and �e0=0.016.
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From the time dependence of �Bx and �By, we can obtain the
growth rate of mode A as �A�2.1�i and that of mode B as
�B=1.76�i.

In case 5 with BG /Bx0=0.2 and nb0=0.75, as shown in
Fig. 10�b�, modes B and C are excited simultaneously. It is
seen that the frequency of mode B is about 
B=45.1�i,
while the frequency of mode C is 
C=99.4�i�
B. It is

clear that mode B dominates the instability in the current
sheet center, and mode C is dominant outside the current
sheet region with �z��1.5L. The growth rates of modes B
and C in this case are �B��C�1.89�i.

E. Case with strong guide field

As BG increases, k� and diamagnetic drift direction shift
away from the current flow direction y. The location of maxi-
mum growth rate shifts to smaller ky. In the situation with an
extremely strong guide field, the instabilities generated in
current sheet are found to become globally propagating. Fig-
ure 11�a� shows contours of various quantities in the 2D
domain in case 6 with BG /Bx0=5.0 at t=4�i

−1. A new mode,
mode D, with a very small wave number ky�i=0.16 domi-
nates the instability. Fluctuations of electromagnetic fields
are seen throughout the region in �z��4�i=8L, which is dif-
ferent from the smaller-BG cases shown above. The strength
of electron density fluctuations is on the same order of that of
ions. The maximum amplitude of �� ·�E� is much larger than
that of ����E�, indicating that the instability is highly elec-
trostatic. Figure 11�b� shows the “eigenfunctions” of various
quantities. Note that unlike the standing wave bounded-state
structures in previous cases with smaller BG, mode D is not
in a bounded eigenstate. It is generated in and propagates
with time away from the current sheet. Similar to mode C,
the real parts of the eigenmodes for electromagnetic fields
have a nearly �90° phase difference with those of the imagi-
nary parts. The plasma densities �Ne and �ni are present

FIG. 10. The relative powers of perturbed electromagnetic quantities as a
function of the real frequency at different z’s for �a� case 4 and �b� case 5.

FIG. 11. �Color online� Simulation results of case 6 for extremely large guide field BG /Bx0=5: �a� contours and �b� eigenfunctions of various quantities. Scales
in the colorbars are amplified by a factor of 107.
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mainly near the current sheet, with �z��L, while the electron
flow velocity �Ue is dominant in a wide region with �z�
�8L.

The real frequency of the instability in this case is found
to be 43.1�i, and the linear growth rate is about 1.58�i. The
mode is found to propagate not only in the y direction but
also in �z, outward away from the current sheet. The phase
speed of the mode is about Vph=
 /ky =268.75vthi=12.9Vdi in
the y direction, and the phase speed in the z direction is about
8.54vti=0.41Vdi near the current sheet with �z�	1.5L, and is
equal to 16.78vti=0.8Vdi in �z��1.5L outside.

Overall, our simulation shows that mode D has the fol-
lowing properties. Its wave number k��i�kz�i�1, and
k� /k��0.05�1. The real frequency 
�k�vthe, while 
 is
near the harmonic of �i, and the growth rate ���i. These
suggest a streaming-ion excitation of electrostatic ion
Bernstein/ion cyclotron instability.33 The detailed physics for
the strong guide field cases will be investigated elsewhere.

IV. SUMMARY

The instability of Harris current sheet is investigated us-
ing a linearized ��f� GKe/FKi code. The simulation is car-
ried out in the 2D plane containing a finite guide field BG

�along y� and the current sheet normal �z�, and is performed
for a broad range of BG.

It is found that for a finite BG /Bx0, three unstable modes,
i.e., modes A, B, and C, can be excited in the Harris current
sheet. In the cases with a small BG /Bx0, mode A is dominant.
They are present mainly on the edge of the current sheet. The
fluctuations are dominated by Bx, Ez and the electron density
Ne. As BG increases, mode A becomes weaker, and modes B
and/or C are excited in the current sheet. In mode C, the
perturbations of magnetic field, dominated by Bx, are ex-
tended from the current sheet center to 2–4 half-widths of the
current sheet, while those of the electric field are mainly
present on the near edge. The fluctuations in mode B, domi-
nated by By and Ez, are localized at the current sheet center.

The real frequencies of modes A, B, and C, all in the
range of the lower hybrid frequency, are in three different
branches, with mode C having the highest frequency and
mode B having the lowest. Mode A has the strongest growth
rate among the three. Modes A and C are found to be pre-
dominantly electrostatic, while in mode B the electrostatic
and electromagnetic fluctuations are of the same order. These
three modes are found to propagate in the ion drift direction
along +y. The phase speeds of modes A and B are below or
equal to the ion drift speed, while that of mode C is greater
than the ion drift speed. Mode A appears to be consistent
with the MTSI/whistler mode, while mode C may be a
higher eigenstate of mode A.

In the cases with extremely large BG /Bx0�1, the wave
modes evolve to a globally propagating instability, while
their real frequency is still around 
LH. The fluctuations are
dominated by By and Ez. The unstable modes may be the ion
Bernstein/ion cyclotron instabilities. They are found to
propagate not only in the current flow direction with phase
speed much greater than the ion drift speed, but also outward
along the current sheet normal, with speed less than the ion
drift speed.

It is believed that collisionless magnetic reconnection
requires an excitation of anomalous resistivity at the current
sheet center, or the neutral point of magnetic field. Since the
location where k ·B=0 can only be on the edge of the current
sheet or outside the sheet center, it has been argued that the
LHDI, whose maximum growth rate occurs at k ·B=0, may
not be the direct cause for the anomalous resistivity. In the
presence of a finite guide field BG, we have found the exis-
tence of an unstable mode with k ·B�0 at the center of the
current sheet. In this mode, mode B, the wave perturbation in
magnetic field is dominated by a compressional fluctuation
�By in the direction of the electron drift velocity. It is specu-
lated that mode B may contribute directly to the electron
anomalous resistivity in magnetic reconnection.

LHDI instabilities was found in the previous particle
simulations of current sheet �e.g., Daughton11�. The simula-
tion by Daughton was carried out in a tilted 2D plane such
that k ·B=0 can be achieved on the edge of one side of the
current sheet. On the other hand, our simulation is performed
in the 2D plane with a constant �guide� field along y, and the
MTSI/whistler mode with k ·B�0 can be excited in the cur-
rent sheet center where B�BG�0. In fact, any instability at
the current sheet center must have k ·B�0. Nevertheless, the
simulation by Daughton11 also indicated that in the nonlinear
stage, the LHDI waves excited on the current sheet edge can
penetrate into the center of the sheet, and contribute to the
anomalous resistivity. The nonlinear stage of evolution, how-
ever, is not included in our present simulation.

In the purely electrostatic limit, the results from our par-
ticle simulation model have been found to highly agree with
an electrostatic local theory of Harris current sheet with a
finite guide field.32 We are, however, not aware of the exis-
tence of any nonlocal, electromagnetic theory of current
sheet with a large guide field for comparison with the results
shown in this paper. Finally, it should be noted that the phys-
ics of current sheet instability is a three-dimensional prob-
lem. In the presence of the finite BG, it is expected that not
only ky, but kx should also play an important role in the wave
instability. Any 2D model can only address partial aspects of
the evolution of current sheet.
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APPENDIX: GK ELECTRON EQUILIBRIUM
DISTRIBUTION FUNCTION

The electron distribution in the velocity space can be
written as

fe = fe��,px,py� , �A1�

where �=mv2 /2, px=mvx+qAx�z�, py =mvy +qAy�z�. In the
Harris current sheet with magnetic field B=BGŷ+Bx�z�x̂, the
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equilibrium electron distribution function can be written as

fHe =
nh0

�2�Te/me�3/2e−�/TeeVdepy/Te

=
nh0

�2�Te/me�3/2e−�me/2Te��vx
2+vz

2�

· e−�me/2Te��vy − Vde�2
· eVdeqeAy/Te+�1/2�meVde

2 /Te, �A2�

where Vde is the electron drift speed in the y direction.
In the gyrocenter phase space, the guiding center elec-

tron distribution is represented as Fg=Fg�� ,v� ,Z�, where
Z= ẑ ·X=z+� · ẑ, and �=v�b /�. Expanding to order �� /L�2,
where L is the half-width of the current sheet, and realizing
py =v�BG /B�z�+Ay�z�, the guiding center electron distribu-
tion function in the Harris sheet can be obtained as

FHe,G =
nh0

�2�Te/me�3/2e−�/TeeVde�mev�BG/B+qeAy�z��/Te �A3�

=
nh0

�2�Te/me�3/2e−�B/Tee−�1/2�me�v� − VdeBG/B�2/Te · eqeVdeAy�z�/Te · e�1/2�me�V0BG/B�2/Te �A4�

=
nh0

�2�Te/me�3/2e−�1/2Te��2�B+me�v� − VdeBG/B�2� · e−�BG
2 /B2��meVde

2 /2Te� · eqeVdeAy�z�/Te, �A5�

where �= ��B�z�+mev�
2� /2, and v� is the parallel velocity of

particles.
The density n�Z� obtained by integration of FHe,G, how-

ever, only corresponds to the guide center coordinates. But
the charge neutrality requires ne�z�=ni�z�, where ne�z� is the
electron density corresponding to the fully kinetic distribu-
tion. In order to calculate ne�z�, we need to do an inverse
transformation from the guiding center coordinates back to
the six-dimensional �x ,v� space. Noting that Z=z+ �v
�b /�� · ẑ=z− �m /eB�v�, b= �1 /B��BGŷ+Bxx̂�, �̂=b� ẑ, v�

=vyBG /B−vxBx /B, and v�=vxBG /B−vyBx /B, for the elec-
tron distribution in Harris current sheet in the �x ,v� space,

fHe =
nh0

�2�Te/me�3/2e−�me/2Te���vx
2+vz

2�+�vy − Vde�2�e−�Vdeqe/Te�Ay�z�,

�A6�

the inverse transformation34 leads to

T g
−1FHe,G = fHe · e−�Vdeqe/Te�Ay��z�·�1/2��me/qeB�2v�

2
� FHe�1 − ��� ,

�A7�

where

�� =
V0ee

Te
Ay�

1

2
� m

eB
	2

v�
2.

Noticing Ay�=�Ay /�z=−Bx, Ay�=−�Bx /�z=−Bx�, �� can be ex-
pressed as

�� = −
meVde

Te

Bx�

B
� me

qeB
	v�

2. �A8�

Therefore, this �� leads to error in ne�z� if the guiding center
distribution FHG is used to obtain the electron density. In the
gyrokinetic approximation, we must include the effects of

gyrophase averaging. The error in the GK approximation is
then

� d�

2�
�� = −

1

2

meVde

Te

Bx�

B

1

�e
v�

2 = −
meVde

Te

Bx�

�e
� . �A9�

To offset this factor, the guiding center distribution function
in Eq. �A5� must be modified as

FHe,g =
nh0

�2�Te/me�3/2e−�1/2Te��2�B+me�v� − VdeBG/B�2�

· e−�Bx
2/B2��meVde

2 /2Te�

· eqeVdeAy�z�/Te
1 −
meVde

Te�e

dBx

dz
� . �A10�

Compared with Eq. �16� and considering Vde /Te=−Vdi /Ti,
the GK electron distribution function in the Harris sheet can
be written as

F̄He,g =
nih0�Z�

�2�Te/me�3/2e−�Bx
2/B2��meVde

2 /2Te��1 −
meVde

Te�e

dBx

dz
�	

�e−�1/2Te��2�B+me�v� − VdeBG/B�2�. �A11�

1J. W. Dungey, Phys. Rev. Lett. 6, 47 �1961�.
2N. A. Krall and M. N. Rosenbluth, Phys. Fluids 5, 1435 �1962�.
3T. A. Carter, M. Yamada, H. Ji, R. M. Kulsrud, and F. Trintchouk, Phys.
Plasmas 9, 3272 �2002�.

4R. C. Davidson, N. T. Gladd, C. S. Wu, and J. D. Huba, Phys. Fluids 20,
301 �1977�.

5N. T. Gladd, Plasma Phys. 18, 27 �1976�.
6C. S. Wu, Y. M. Zhou, S. T. Tsai, and S. C. Gao, Phys. Fluids 26, 1259
�1983�.

7H. Sanuki, T. Watanabe, and M. Watanabe, Phys. Fluids 23, 158 �1980�.
8D. W. Ross and S. M. Mahajan, Phys. Rev. Lett. 40, 324 �1978�.
9J. D. Huba, J. F. Drake, and N. T. Gladd, Phys. Fluids 23, 552 �1980�.

10W. Daughton, Phys. Plasmas 6, 1329 �1999�.
11W. Daughton, Phys. Plasmas 10, 3103 �2003�.

072103-12 Wang et al. Phys. Plasmas 15, 072103 �2008�

Downloaded 08 Jul 2008 to 128.200.29.247. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp

http://dx.doi.org/10.1103/PhysRevLett.6.47
http://dx.doi.org/10.1063/1.1706542
http://dx.doi.org/10.1063/1.1494433
http://dx.doi.org/10.1063/1.1494433
http://dx.doi.org/10.1063/1.861867
http://dx.doi.org/10.1088/0032-1028/18/1/002
http://dx.doi.org/10.1063/1.864285
http://dx.doi.org/10.1063/1.862834
http://dx.doi.org/10.1103/PhysRevLett.40.324
http://dx.doi.org/10.1063/1.863003
http://dx.doi.org/10.1063/1.873374
http://dx.doi.org/10.1063/1.1594724


12D. Winske, Phys. Fluids 24, 1069 �1981�.
13M. Ozaki, T. Sato, R. Horiuchi, and C. S. Group, Phys. Plasmas 3, 2265

�1996�.
14R. Horiuchi and T. Sato, Phys. Plasmas 6, 4565 �1999�.
15T. Moritaka, R. Horiuchi and H. Ohtani, Phys. Plasmas 14, 102109

�2007�.
16W. Daughton, G. Lapenta, and P. Ricci, Phys. Rev. Lett. 93, 105004

�2004�.
17P. Ricci, J. U. Brackbill, W. Doughton, and G. Lapenta, Phys. Plasmas 12,

055901 �2005�.
18P. Ricci, J. U. Brackbill, W. Doughton, and G. Lapenta, Phys. Plasmas 12,

055901 �2005�.
19J. F. Drake, R. G. Kleva, and M. E. Mandt, Phys. Rev. Lett. 73, 1251

�1994�.
20J. F. Drake, D. Biskamp, and A. Zeiler, Geophys. Res. Lett. 24, 2921,

DOI: 10.1029/97GL52961 �1997�.
21P. Ricci, J. U. Brackbill, W. Doughton, and G. Lapenta, Phys. Plasmas 11,

4102 �2004�.
22C. A. Cattelll and F. S. Mozer, Geophys. Res. Lett. 13, 221, DOI:

10.1029/GL013i003p00221 �1986�.
23C. A. Cattelll and F. S. Mozer, in Magnetotail Physics, edited by A. T. Y.

Lui �Johns Hopkins University Press, Baltimore, 1987�, p. 119.
24I. Shinohara, T. Nagai, M. Fujimoto, T. Terasawa, T. Mukai, K. Tsuruda,

T. Yamamoto, and J. Ricci, J. Geophys. Res. 103, 20365, DOI: 10.1029/
98JA01104 �1998�.

25T. A. Carter, H. Ji, F. Trintchouk, M. Yamada, and R. M. Kulsurud, Phys.
Rev. Lett. 88, 015001 �2002�.

26S. D. Bale, F. S. Mozer, and T. Phan, Geophys. Res. Lett. 29, 2180, DOI:
10.1029/2002GL016113 �2002�.

27X. H. Wei, J. B. Cao, G. Z. C. Zhou, O. Santolik, H. Reme, I. Dandouras,
N. Cornilleau, E. Lucek, C. M. Carr, and A. Fazakerley, J. Geophys. Res.
89, 2673, DOI: 10.1029/JA089iA05p02673 �1984�.

28H. Ji, S. Terry, M. Yamada, R. Kulsrud, A. Kuritsyn, and Y. Ren, Phys.
Rev. Lett. 92, 115001 �2004�.

29X. H. Deng and H. Matsumoto, Nature �London� 410, 557 �2001�.
30Y. Lin, X. Y. Wang, Z. Lin, and L. Chen, Plasma Phys. Controlled Fusion

47, 657 �2005�.
31S. E. Parker and W. W. Lee, Phys. Fluids B 5, 77 �1993�.
32P. H. Yoon, Y. Lin, X. Y. Wang, and A. T. Y. Lui, “Lower-hybrid drift

instability for current sheet equilibrium with guide field”, J. Geophys. Res.
�unpublished�.

33T. H. Stix, Waves in Plasmas �American Institute of Physics, Melville, NY,
1992�.

34L. Chen, Waves and Instabilities in Plasmas �World Scientific, Singapore,
1987�.

072103-13 A particle simulation of current sheet… Phys. Plasmas 15, 072103 �2008�

Downloaded 08 Jul 2008 to 128.200.29.247. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp

http://dx.doi.org/10.1063/1.863485
http://dx.doi.org/10.1063/1.871908
http://dx.doi.org/10.1063/1.873744
http://dx.doi.org/10.1063/1.2767623
http://dx.doi.org/10.1103/PhysRevLett.93.105004
http://dx.doi.org/10.1063/1.1885002
http://dx.doi.org/10.1063/1.1885002
http://dx.doi.org/10.1103/PhysRevLett.73.1251
http://dx.doi.org/10.1029/97GL52961
http://dx.doi.org/10.1063/1.1768552
http://dx.doi.org/10.1029/GL013i003p00221
http://dx.doi.org/10.1029/98JA01104
http://dx.doi.org/10.1103/PhysRevLett.88.015001
http://dx.doi.org/10.1103/PhysRevLett.88.015001
http://dx.doi.org/10.1029/2002GL016113
http://dx.doi.org/10.1029/JA089iA05p02673
http://dx.doi.org/10.1103/PhysRevLett.92.115001
http://dx.doi.org/10.1103/PhysRevLett.92.115001
http://dx.doi.org/10.1038/35069018
http://dx.doi.org/10.1088/0741-3335/47/4/006
http://dx.doi.org/10.1063/1.860870

