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Abstract
The ability to simulate neoclassical tearing modes (NTMs) in the gyrokinetic toroidal code
(GTC) has been developed and verified, in which ions are treated with a gyrokinetic model and
electrons are treated as a resistive fluid. The simulation results demonstrate that the neoclassical
bootstrap current effect can destabilize an otherwise stable classical tearing mode. In the
cylindrical geometry, GTC simulations in the magnetohydrodynamic limit show quantitative
agreement with the modified Rutherford theory, both in terms of the scaling law in the small
island limit and in terms of the saturation level and pressure flattening effect in the large island
limit. The toroidal effects are slightly destabilizing for the NTM, while the kinetic effects of
thermal ions are stabilizing for the NTM and increase its excitation threshold.
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(Some figures may appear in colour only in the online journal)

1. Introduction

In tokamak experiments, current-driven tearing mode (TM)
due to finite resistivity can tear the magnetic surface and form
islands around a rational flux surface. This TM instability is
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determined by the classical tearing stability index ∆ ′ [1, 2].
However, the pressure profile can be flattened inside the island.
As a result, the bootstrap current inside the island vanishes,
leading to further growth of the island [3, 4]. This instabil-
ity is called the neoclassical TM (NTM). NTM islands can
limit achievable normalized plasma pressure, degrade plasma
confinement and damp plasma rotation. Most importantly,
NTMs are considered the most likely instabilities leading to
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disruption in many tokamak experiments [5, 6]. Thus, gaining
a comprehensive understanding of NTM physics remains an
important objective for tokamak research [7].

NTMs have been studied in fusion plasmas for several
decades. The modified Rutherford equation (MRE) [2, 8, 9]
including the perturbed bootstrap current term is a theory
most commonly used to describe the behavior of the NTMs.
This equation predicts that a magnetic island of finite width is
needed to excite an NTM and that the magnetic island can nat-
urally saturate at a certain width. Some NTM simulations have
been performed in the magnetichydrodynamic (MHD) frame-
work, including simulations using TM8 [10], XTOR [11],
NIMROD [12] and MDC [13], which agree well with the the-
oretical prediction. TheseMHD codes incorporate the effect of
the bootstrap current by means of an additional pressure dif-
fusion equation. However, the kinetic effects of thermal ions
can be significant for the evolution of NTM islands. On one
hand, the bootstrap current intrinsically comes from the kinetic
effects. On the other hand, the finite orbit widthmay reduce the
bootstrap current drive by partially maintaining the pressure
gradient across a small island. Thus, the simplified models in
these MHD codes limit their accuracy and reliability, which
calls for first-principle gyrokinetic simulations.

Furthermore, in high-temperature tokamak discharges,
energetic particles from auxiliary heating and fusion products
could be significant components of plasma pressures and influ-
ence the dynamics of NTM islands. Several experiments [14–
16] have demonstrated that magnetic islands can impact the
transport of fast ions, which could affect plasma heating and
heat loading on the first wall. The destabilization or stabiliza-
tion of an NTM by the redistribution of fast ions has also been
reported [17]. Despite the progress made to several aforemen-
tioned MHD codes to incorporate the kinetic effects of ener-
getic particles and reproduce experimental observations [18],
the interaction between fast particles and NTM islands has
not been well understood. Therefore, a self-consistent study
of the interaction between NTMs and energetic particles also
requires gyrokinetic simulations.

For the above reasons, we have further developed the
gyrokinetic toroidal code (GTC) [19] for first-principle sim-
ulations of NTMs. GTC has been extensively applied to
study neoclassical and turbulent transport [20, 21], energetic
particles [22] and Alfven eigenmodes [23–25]. In previous
work, the implementation of equilibrium current [26] enables
simulations of current-driven instabilities in the toroidal geo-
metry with kinetic effects, including the kink modes [27, 28],
resistive TMs [29], collisionless TMs [30] and drift TMs [31].

As the first step attempting to simulate the NTM via a
first-principle approach, we will not attempt to cover all neo-
classical effects in this study, but instead focus on the most
important one, i.e. the bootstrap current effect with finite
parallel thermal diffusivity. To capture this effect, we have
extended the GTC formulations [26, 32] to simulate NTMs
in fusion plasmas by adding the bootstrap current effect in
Ohm’s law via standard neoclassical model and an additional
pressure evolution equation based on a diffusion model. This

NTM simulation model is first verified in cylindrical geometry
simulations in the MHD limit. Our results demonstrate that,
the neoclassical bootstrap current effect can destabilize an oth-
erwise stable classical TM. Simulations in the small island
limit show a linear increase in the NTM growth rate with
poloidal beta, in quantitative agreement with the modified
Rutherford theory. Nonlinear simulations of the NTM evolu-
tion also show good agreement with the MRE in terms of sat-
uration level and maximum growth. We have also performed
simulations in a toroidal geometry and found that toroidal geo-
metry can have a destabilizing effect on NTMs. Gyrokinetic
simulations in the toroidal geometry show that the kinetic
effects of thermal ions can significantly reduce the NTM
growth rate for the small island width, despite the destabil-
izing effect of the toroidicity. These findings suggest that the
kinetic effects of thermal ions play a vital role in determining
the threshold for the NTM excitation [9, 33, 34].

This paper is organized as follows. In section 2, the NTM
simulation model is formulated. We first derive our NTM sim-
ulation model with gyrokinetic ions and fluid electrons and
then simplify it to a reducedMHDdescription. In section 3, the
NTM simulations in the MHD limit are described and verified
against the MRE. The toroidal effects and thermal ion kinetic
effects on the NTM stability are discussed in sections 4 and 5,
respectively. Finally, the summary and conclusions are presen-
ted in section 6.

2. Gyrokinetic model for NTM simulation

Prior research [26, 29, 31, 35] has established a gyrokin-
etic model suitable for classical TMs. This model treats ions
with gyrokinetics, while electrons are modeled as a massless
fluid. For the present work on NTM simulations, we have
extended this model by incorporating the bootstrap current
effect into Ohm’s law and using an additional pressure trans-
port equation. By combining this with Ampere’s law and the
Poisson equation, we have established a comprehensive elec-
tromagnetic system that is well-suited for NTM simulations.

2.1. Gyrokinetic model for ions

We begin with the collisionless gyrokinetic equations with an
inhomogeneous magnetic field [36]:

d
dt fα

(
R,µ,v∥, t

)
=
(
∂
∂t + Ṙ ·∇+ v̇∥

∂
∂v∥

)
fα = 0, (1)

Ṙ= v∥b0 + v∥
δB⊥
B∗
∥

+ vE+ vg+ vc, (2)

v̇∥ =− 1
mα

B∗

B∗
∥
· (µ∇B0 + qα∇ϕ)− qα

mαc
∂A∥
∂t , (3)

where

B∗ = B0 +
B0v∥
Ωα

∇× b0 + δB⊥, B∗
∥ = B0 +

B0v∥
Ωα

b0 ·∇× b0 .
(4)
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The index α indicates different particle species (i for ions
or e for electrons). fα is the distribution function for species α.
R, µ, v∥, mα, qα and Ωα = qαB0/mαc are the particle guiding
center, magnetic moment, parallel particle velocity, particle
mass, particle charge, and cyclotron frequency, respectively.
b0 = B0/B0 is the unit vector in the magnetic direction. The
drift velocities include the electric drift velocity vE, magnetic
gradient drift velocity vg, and curvature drift velocity vc,

vE = cb0 ×∇ϕ/B∗
∥,

vg = µb0 ×∇B0/(mαΩα) ,

vc = v2∥∇× b0/Ωα.

The force in the parallel direction includes the mirror force
and the electric field force. The compressional component of
the perturbed magnetic field is neglected in this work and will
be included in future study. Assuming that there is no equi-
librium electric field, ϕ and A∥ can be replaced by their per-
turbed parts δϕ and δA∥, respectively, then δB⊥ can be written
as δB⊥ =∇× δA∥b0. We will use the magnetic flux coordin-
ates (ψ ,θ,ζ) for convenient of toroidal geometry simulations,
where ψ is the poloidal flux, θ and ζ are poloidal and toroidal
angles, respectively. Using this coordinates, the equilibrium
magnetic field can be represented in the covariant and con-
travariant form as

B0 = δ∇ψ + I∇θ+ g∇ζ (5)

= q∇ψ ×∇θ−∇ψ ×∇ζ. (6)

For noise suppression, we choose the δfmethod [37] in our
model. Equation (1) can be rewritten for the perturbed ion dis-
tribution as follows:

∗20c
dwi

dt
= (1−wi)

[
−
(
v∥

δB⊥
B∗∥

+ vE

)
·
∇f0i
f0i

+

(
µ
δB⊥
B∗∥

·∇B0 + qi
B∗

B∗∥
·∇δϕ +

qi
c

∂δA∥
∂t

)
1

mi

1

fi

∂f0i
∂v∥

]
(7)

where wi ≡ δfi/fi is the particle weight for ions and f0i is the
equilibrium distribution function for ions. Equations (2)–(7)
form the gyrokinetic model for ions.

2.2. Fluid model for electrons

In order to properly account for electron behavior at the MHD
scale, we integrate equations (1)–(3) for electrons in velocity
space to obtain the fluid equations for an NTM in the MHD
limit. In the electron fluid limit, we retain the adiabatic part
of the perturbed electron distribution. Assuming no equilib-
rium electric field and an equilibrium distribution function fe0
described by a shifted Maxwellian, we obtain the perturbed
fluid continuity equation for electrons,

∂δne
∂t

+B0 ·∇

(
n0eδu∥e
B∗
∥

)
+B0vE ·∇

(
n0e
B∗
∥

)

− n0e (δv∗e+ vE) ·
∇B0

B∗
∥

+ δB⊥ ·∇

(
n0eu∥0e
B∗
∥

)

+
c∇×B0

B∗2
∥

·
(
−∇δpe

e
+ n0e∇δϕ

)

+

[
δB⊥ ·∇

(
n0eδu∥e
B∗
∥

)
+B0vE ·∇

(
δne
B∗
∥

)

+c
δne
B∗2
∥
b0 ×∇B0 ·∇δϕ +

cδne
B∗2
∥

∇×B0 ·∇δϕ

]
NL

= 0.

(8)

The parallel vector potential equation can be derived from
electron parallel force balance,

∂δA∥

∂t
=− cb0 ·∇δϕ +

c
n0ee

b0 ·∇δpe +
c
n0ee

δB⊥

B∗
∥

·∇pe0

− νeimec
n0ee2

(
n0iqiδu∥i − n0eeδu∥e

)
, (9)

where n0e and δne, are the equilibrium and perturbed electron
density, respectively. δu∥i and δu∥e are the perturbed parallel
fluid velocity of ion and electron, respectively. δv∗e is the per-
turbed diamagnetic drift velocity for the electrons,

δv∗e =− c
n0eeB∗

∥
b0 ×∇

(
δp⊥e + δp∥e

)
,

where δp⊥e and δp∥e are the perturbed electron pressure in
the direction of perpendicular and parallel to equilibriummag-
netic field, respectively. In equation (8), the first six terms
are linear terms, and the fourth and sixth terms are geometry
related. The terms with subscript ‘NL’ in equation (8) are non-
linear terms. When deriving equation (9), the electron inertial
terms have been neglected and the collisional operators has
been applied to the right-hand side of equation (1) with νei
the electron–ion collision frequency [29]. Thus the resistivity
obeys the relation η = νeime/

(
n0ee2

)
.

The perturbed electron parallel velocity δu∥e is calculated
using the Ampere’s law,

δu∥e =
1
n0ee

(
n0iqiδu∥i +

c
4π∇

2
⊥δA∥ + δjbs

)
, (10)

where the perturbed ion parallel velocity can be obtained from
the ion perturbed distribution function,

δu∥i =
1
n0i

∫v∥δfidv.

Here we use equilibrium ion mass flow as the reference
frame so the bootstrap current is carried by electrons. The δu∥e
represents the resistive (Ohmic) current part of the electron
fluid velocity. The last term in equation (10) represents the
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crucial neoclassical effects coming from the bootstrap current,
which is implemented using the conventional formula [38],

δjbs =−1.46
√
∈

Bθ

∂δp
∂r

. (11)

Here, Bθ is the poloidal magnetic field,∈= r/R0 is the local
inverse aspect ratio, with r the local minor radius, R0 the major
radius. Without this term, the model reduces to classical TM
model, which has previously been implemented and verified
in the GTC [29]. In our simulations, this term can be switched
on and off to study the bootstrap current effect. To recover the
pressure flattening effect inside the island, a pressure diffusion
equation is included as follows:

∂δp
∂t

= χ∥∇2
∥δp+χ∥∇∥

(
δB⊥

B0
·∇p0

)
+χ⊥∇2

⊥δp

+ χ∥

[
δB⊥

B0
·∇
(
∇∥δp+

δB⊥

B0
·∇δp+ δB⊥

B0
·∇p0

)
+∇∥

(
δB⊥

B0
·∇δp

)]
NL

, (12)

where∇∥ and∇⊥ are the gradient operators defined along the
equilibrium magnetic field, and χ⊥ and χ∥ are the perpendic-
ular and parallel thermal diffusivity, respectively. Again the
last four terms with subscript ‘NL’ are the nonlinear terms.
Equations (11) and (12) constitute a rough model of the neo-
classical bootstrap current effect, and are not self-consistently
coupled with other equations. In principle, both electron and
ion contributions to the perturbed bootstrap current can be
included in equation (11), δp= δpi + δpe. However, we neg-
lect the ion contribution to the perturbed bootstrap current in
the current simulations for verification with the MHD theory
and the simulations of other MHD codes. A self-consistent
calculation of the perturbed pressure has been implemented in
GTC [39], which will be utilized in the future simulations. The
self-consistent calculations of the perturbed bootstrap current
[40] will be implemented in future study.

Poisson’s equation, which includes gyrokinetic ions and
fluid electrons, takes the form(

1+
ω2

pi

Ω2
i

)
∇2

⊥δϕ = 4π (qiδni − eδne) , (13)

where ωpi = 4πn0iq2i /mi is the ion plasma frequency, and δni
is the gyro-averaged perturbed ion gyrocenter density [41, 42],

δni =
ˆ
δfidv.

Finally, equations (2)–(13) form a closed electromagnetic
system for NTM simulations that includes the kinetic effects
of ions.

2.3. Reduction to MHD limit

As the first step in verifying our NTM simulation model we
show that our gyrokinetic model in the long-wavelength limit

recovers the reduced MHDmodel. By integrating equation (7)
in velocity space, we obtain the following continuity equation
for ions:

∂δni
∂t

+B0 ·∇

(
n0iδu∥i
B∗
∥

)
+B0vE ·∇

(
n0i
B∗
∥

)

+ δB⊥ ·∇

(
n0iu∥0i
B∗
∥

)
+
c∇× b0

qi
·∇

(
δpi
B∗
∥

)

+
cb0 ×∇B0

qi
·∇

(
δpi
B∗2
∥

)
+
c∇× b0 ·∇B0

qiB∗2
∥

δpi

+
c∇× b0
B∗
∥

· n0i∇δϕ + δB⊥ ·∇

(
n0iδu∥i
B∗
∥

)
= 0. (14)

Next, we assume the ions and electrons have the same
charge, qi =−qe = e, and the equilibrium quasineutrality is
enforced, n0i = n0e = n0. We also define the perturbed charge
density, perturbed Ohmic current and the perturbed fluid
pressure as δρ≡ e(δni − δne), δj∥ohm ≡ n0e

(
δu∥i − δu∥e

)
and δp= δpi + δpe, respectively. Combining equations (8)
and (14), we obtain

∂δρ

∂t
+B0 ·∇

(
δj∥ohm
B∗
∥

)
+ δB⊥ ·∇

(
j∥ohm0

B∗
∥

)

+ c∇× b0 ·∇

(
δp
B∗
∥

)
+ cb0 ×∇B0 ·∇

(
δp

B∗2
∥

)

+
c∇× b0 ·∇B0

B∗2
∥

δp+

[
δB⊥ ·∇

(
δj∥ohm
B∗2
∥

)]
NL

= 0.

(15)

Again the last term with subscript ‘NL’ is the nonlinear
term. We ignore the ion flow in the MHD limit, i.e. this model
is performed in the plasma frame ignoring the flow shear
effects. In theMHD limit, the parallel vector potential equation
is simplified to

∂δA∥

∂t
=− cb0 ·∇δϕ +

c
n0e

b0 ·∇δpe +
c
n0e

δB⊥

B∗
∥

·∇pe0

− cηδj∥ohm. (16)

The Ampere’s law can be simplified as

δj∥ohm =− c
4π∇

2
⊥δA∥ − δjbs . (17)

The Poisson equation in the long-wavelength limit takes the
following form,

ω2
pi

Ω2
i
∇2

⊥δϕ =−4πδρ . (18)

Finally, equations (15)–(18) with (11) and (12) form a close
system for MHD simulations of NTMs.
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3. MHD simulations in a cylindrical geometry

3.1. Equilibrium settings

In tokamak discharges, the m/n= (2,1) and (3,2) TMs are
often the most dangerous macroscopic MHD instabilities,
where m and n are the poloidal and toroidal harmonics,
respectively. To validate the ability of GTC to simulate NTMs,
we choose the HL-2A discharge #11727, which is heated
by electron cyclotron resonance wave. As reported in [43],
this discharge experiences successive sawtooth crashes start-
ing from 740 ms, with m/n= (1,1) precursors coupling to
small scale m/n= (2,1) modes. This produces a seed island
for the NTM, which then nonlinearly saturates at a high level.
The magnetic surface of the HL-2A is nearly circular, so we
use this case to verify our model in a cylindrical geometry
with a circular cross-section and with an imposed neoclassical
bootstrap current defined by equation (11). Future studies will
incorporate self-consistent neoclassical effects.

Figure 1 displays the equilibrium profiles of safety factor
q and the normalized pressure, obtained from EFIT recon-
struction, for the selected HL-2A discharge. The basic para-
meters of this discharge include an on-axis toroidal magnetic
field of B0 = 1.27 T, major radius R0 = 1.65m, minor radius
a= 0.4m, the position of the qs = 2 surface at rs = 0.14R0,
and an on-axis electron density and temperature of neq (0) =
1.1× 1019m−3 and Te,eq (0) = 0.9keV, respectively, resulting
an on-axis pressure ratio β = 0.0025 and a local poloidal
beta at rs of βp ≡ 8π 2p/B2

ps = 0.172. In the MHD simula-
tions, the cold ions is employed, i.e. Ti,eq → 0. The growth
rates of TMs or NTMs is closely related to resistivity, and
for high-temperature tokamak experiment, the resistivity η
is typically less than 10−7Ω ·m. As for this equilibrium, the
classical Spitzer resistivity is ηSp ∼ 3× 10−8Ω ·m. However,
η is set to 9× 10−6Ω ·m in this work to reduce computa-
tional costs. Thermal diffusivity measurements for the cur-
rent HL-2A discharge are not available. Theoretical calcula-
tions yield classical parallel thermal diffusivity χ∥ = 5.0×
109m2 s−1 and neoclassical perpendicular thermal diffusivity
χ⊥ = 5.5× 10−2m2 s−1. However, the perpendicular diffus-
ivity measured in experiments is often dominated by turbulent
transport, which is much higher than the neoclassical trans-
port. Notably, recent high-temperature experiments conduc-
ted on JT-60U [44] and DIII-D [45] tokamaks have shown
a reduction of 1–2 orders in perpendicular thermal diffus-
ivity inside a magnetic island compared to the background
plasma transport. As a result, a perpendicular thermal con-
ductivity χ⊥ ∼ 1× 10−1m2 s−1 has been observed. While a
large thermal diffusivity ratio of χ∥/χ⊥ > 1010 may seem
appropriate, it can lead to numerical issues during simulations.
Consequently, we have opted for a more conservative ratio of
χ∥/χ⊥ ⩽ 108 in our current study, which may not be con-
sistent with the measurements of HL-2A but would be reas-
onable for Ohmically heated plasmas [46]. In future study,
these transport coefficients will be self-consistently calculated
in gyrokinetic simulations.

Figure 1. Radial profiles of the equilibrium safety factor q and
normalized pressure. Also shown is the q = 2 flux surface position.

According to eigenvalue analysis [31], the classical TM sta-
bility index for this equilibrium profile,

rs∆ ′ ≡ 1
δψ

∂δψ
∂r

∣∣∣rs+
rs−

≈−0.54 . (19)

The effect of the second radial derivative of the current
density at the resonant surfacewas also included for improving
its accuracy [47]. The cylindrical geometry was employed to
compute∆′, so the toroidicity effect was neglected in view of
the large aspect ratio of the equilibrium under study [48]. The
negative value of ∆ ′ indicates the intrinsically stable nature
of the classical (2,1) TM for this equilibrium, resulting in a
theoretical growth rate of τRdlnw/dt=−44.3. Here w is the
island width, and τR = 4π r2s/η is the resistive diffusion time.

3.2. Verification against MRE in the small island limit

We first verify the MHD model, i.e. equations (15)–(18)
with (11) and (12) by switching off and on the bootstrap cur-
rent term in our simulations. The perpendicular thermal trans-
port coefficient χ⊥ is set to 1m2 s−1, and the parallel thermal
transport coefficient χ∥ is set to 1× 108m2 s−1, resulting the
scale island width [46], wd = 0.128rs. In GTC simulations, we
do not directly simulate the evolution of the island width w.
Rather, it is reflected by the perturbed parallel vector potential
δA∥, which can be related to the island width,

w= 4
√

R0qs
B0ss

∣∣δA∥
∣∣, (20)

with ss = rs(q ′/q)s the local magnetic shear on the rational
flux surface. We perform simulations by applying a small per-
turbation to δA∥, resulting in a small island width of w=
0.01rs ≪ wd. The growth rate of the island width is meas-
ured once a stable mode structure is obtained. We retain only
the lowest 5 harmonics (m= 0, 1, 2, 3, 4;n= 0, 2, 4, 6, 8) in
our simulations, as higher harmonics have been found to

5
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Figure 2. Snapshots of (a) δA∥, (b) δϕ , and (c) δp mode structures of an NTM from the GTC MHD simulation, with the dashed line
marking q = 2 surface position.

have smaller amplitudes. When the bootstrap current is not
included, the simulated classical TM growth rates is

τRdlnw/dt=−45.8,

in excellent agreement with the theoretical result of 44.3. In
contrast, when the bootstrap current is included in the simula-
tion, the growth rate is

τRdlnw/dt= 15.0.

This positive growth rate indicates that the presence of the
bootstrap current effect renders the mode unstable. To the best
of the author’s knowledge, this is the first reported simulation
in which an inherently stable TM is used to verify the NTM
model. Figure 2 displays the simulated NTM poloidal mode
structure of δA∥, δϕ , and δp, revealing a distinct m= 2 mode
structure.

Next we verify the simulation model against the modified
Rutherford theory in the small island limit. The growth of the
NTM island width w is described by MRE, expressed as [46]

I1
τR
rs

dw
dt = rs∆ ′ (w)+ 4.63

√
∈sβp

Lq
Lp

rsw
w2+w2

d
, (21)

where the first term represents the classical TM contribu-
tion, the second term describes the neoclassical bootstrap cur-
rent drive, I1 = 0.8227 is a constant, and Lq and Lp denote
the gradient scale lengths of the q profile and pressure pro-

file, respectively. wd ∝
(
χ⊥/χ∥

)1/4
is anti-proportional to

the degree of pressure flattening inside the island. This MRE
model is simplified, as several contributions from curvature
effects, polarization current effects, and finite Larmor radius
(FLR) effects have been neglected. The curvature effects
[48–50] arising from toroidicity are neglected here because
the aspect ratio is sufficiently large, and we aim to verify
the model’s accuracy for MRE in the cylindrical geometry.
Furthermore, the polarization current effects and FLR effects
[51–53] are ignored since we are assessing our simulation res-
ults using the MHD model. In small island limit of w≪ wd,
equation (21) reduces to [46, 54]

I1
τR
rs

dw
dt = rs∆ ′ w

δ + 4.63
√
∈sβp

Lq
Lp

rsw
w2
d
, (22)

Figure 3. Dependence of the NTM growth rate in the small island
limit on βp. The black lines are calculated using equation (22).

where δ ∝ η2/5. Substituting this scaling of δ into
equation (22) gives the scaling of the dispersion relation
τRdlnw/dt∝

(
c1η3/5 + c2βpη

)
, where c1 and c2 are constants

depending only on the equilibrium quantities. The classical
(2,1) TM growth rate has been verified to scale as η3/5 in
previous studies [29, 31]. The growth rate of NTM island
τRdlnw/dt should be proportional to βp, which determines the
ratio of the bootstrap current to the total current. As the boot-
strap current increases, the q-profile may change. However,
considering a fixed q-profile is reasonable in order to under-
stand the stability of an NTM against βp and to benchmark the
results of GTC with the theory. This linear dependence of the
growth rate τRdlnw/dt on βp is valid as long as the profile of
the safety factor q and the normalized profile of the pressure
remain unchanged.

The theoretical scaling and simulation results are presented
in figure 3. The βp is increased by folding the central electron
density neq (0) while keeping the radial profiles of q, n/neq (0)
and Te/Teq (0) fixed in these cases. The theoretical lines are
obtained from equation (22) using the∆ ′ from equation (19),
and all growth rates are normalized with respect to τ−1

R . The
GTC results reproduce the scaling between τRdlnw/dt and βp
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Figure 4. Radial mode structures of (a) δA∥, (b) δϕ , and (c) δp for different βp from GTC simulations of NTM for various plasma pressures.

Figure 5. (a) Island width w grows history during the whole nonlinear simulation; (b) nonlinear growth dw/dt versus the island width for
χ∥/χ⊥ = 1× 108, 3× 107, respectively. The theoretical results from equation (21) are also shown in solid lines.

in the small βp limit, demonstrating a quantitative agreement
between the simulations and the modified Rutherford theory.
However, as βp increases, the simulation results yield a smal-
ler growth rate than that predicted by the MRE. The discrep-
ancy between the simulations and the theoretical predictions
at large βp arises because the stabilizing effect of field line
curvature from cylindrical geometry becomes non-negligible
as βp increases from 0.172 to 0.860 [55]. For the case of βp =
0.172, the plasma pressure ratio β = 0.0025. The simulated
island growth rate is measured at w/rs = 0.01≫ β, where the
stabilizing effect of field line curvature of cylindrical geometry
is negligible. On the other hand, for the case of βp = 0.860,
the plasma pressure ratio β = 0.0125. The simulated island
growth rate is also measured at w/rs = 0.01∼ β, where the
stabilizing effect of field line curvature of cylindrical geometry
becomes non-negligible. However, we use a value of∆ ′ from
equation (19) that accounts for the curvature effect of field line
from cylindrical geometry for all βp cases when plotting the
theoretical scaling law according to equation (22).

Figure 4 shows the radial mode structures of δA∥, δϕ and δp
in small island limits for these different βp cases. Every curve
in figure 4 is measured at an island width of w≈ 0.01rs and
is normalized to its maximum value. As shown in figures 4(a)
and (c), the radial mode structures of the parallel vector poten-
tial δA∥ and pressure perturbation δp change very little as βp
increases. However, in figure 4(b), the radial mode structure of
the electrostatic potential δϕ changes significantly. First, the

mode structure becomes broader as βp increases. Second, the
peak of the δϕ profile gradually moves inward. In addition,
δϕ tends to be more negative outside the rational surface for
a higher poloidal beta βp. These features coincide with those
reported by Sato and Wakatani [56].

3.3. Nonlinear evolution of NTM islands

As shown in equation (21), the destabilizing effect of bootstrap
current term initially increases with island width, reaching
a maximum value at w∼= wd, and then starts to decrease.
Additionally, the classical term has a quasilinear depend-
ence on the island width given by ∆ ′ (w) = ∆ ′ −αw, where
α is a parameter determined by the mode number and the
equilibrium current density profile [57]. These two effects
together lead to a finite saturated width of the NTM island.
To save computational costs, we choose the case with βp =
0.860 as an example, which has the largest growth rate in the
small island limit. Figure 5(a) shows the evolution of island
width w during the entire nonlinear simulation for two cases,
χ∥/χ⊥ = 1× 108 and 3× 107, respectively. The NTM island
grows to a saturation level of 0.3rs and 0.24rs, respectively.
The dependence of the island growth, dw/dt, on the island
size w for these two cases is shown in figure 5(b). The the-
oretical result from equation (21) is also plotted for com-
parison with the quasilinear dependence of ∆ ′ on the island
width,∆ ′ (w) = ∆ ′ −αw [57]. Although themaximum island
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Figure 6. Contours at ζ = 0 poloidal plane (a)–(c) and radial profiles at low field side (d)–(f) of the helical flux, normalized pressure, and
perturbed bootstrap current when w= 0.25rs for the χ∥/χ⊥ = 1× 108 case. (a) ψ he; (b) normalized pressure p/peq (0); (c) normalized
perturbed bootstrap current δjbs/jbs,eq; (d) radial profile of the equilibrium and perturbed ψ he; (e) radial profile of the normalized pressure
p/peq (0); (f) radial profile of the perturbed part of bootstrap current δjbs/jbs,eq. The thin black dashed line represents q= 2 surface for all
panels. The shadowed region bounded by red dashed lines shows the island separatrix for panels (d)–(f).

growth of our result is almost twice of the MRE prediction
for the χ∥/χ⊥ = 1× 108 case, the final saturated island width
between GTC and MRE agrees well. For the χ∥/χ⊥ = 3×
107 case, a good agreement between GTC and MRE can be
found for both the maximum growth and saturation level.

Now we show the pressure gradient flattening effects at
large island. Figure 6 shows the contours at ζ = 0 poloidal
plane and radial profiles at low field side of the helical
flux surfaces, normalized pressure and perturbed bootstrap
current when the island width reaches w= 0.25rs for the
χ∥/χ⊥ = 1× 108 case. The helical flux surfaces are calcu-
lated as follows,

ψ he = ψ − ψ t
qs

− gδA∥,

with ψ and ψ t the poloidal and toroidal flux, respectively. In
figure 6(a), we observe a clear (2,1) island from the contours
of ψ he at the poloidal plan ζ = 0. The island separatrix is
identified based on the radial profiles passing through the O
point (θ = 0) and X point (θ = π/2) and is depicted as a shad-
owed region in figures 6(d)–(f). The contours and radial pro-
files of normalized pressure p/peq (0) are shown in figures 6(b)
and (e). As anticipated, the pressure profile near the q= 2
surface is flattened inside the island, with a significantly flat-
tening observed across the O point while remaining present
across the X point. This pressure flattening effects also lead
to the vanishing of bootstrap current within the island and
its accumulation along the separatrix, which can be seen in
figures 6(c) and (f).

4. Toroidal geometry simulations in the small
island limit using MHD model

Implementing the MHD model in the toroidal geometry, we
can investigate the behavior of NTM in the realistic tokamak
geometry. As a verification of the code capability, we con-
sider the simplest concentric tokamak for the MHD simula-
tion of the (2,1) NTM. By using the same parameters as those
in the cylindrical geometry and keeping the toroidal mag-
netic field curvature and gradient, we obtain the mode struc-
ture of the (2,1) NTM in figure 7 from the tokamak simu-
lation. A comparison with the counterpart in the cylindrical
geometry shown in figure 2 reveals that the mode structures
of perturbed δA∥, δϕ,δp in tokamak geometry exhibit a slight
‘squeezing’ towards the high-field-side (left side). The small
breaking of left-right symmetry can be attributed to the relative
large aspect ratio in our case, R0/ rs = 7.18.

In order to investigate the influence of toroidal effects on
the growth rate of NTM at different pressure ratios, we re-
simulated the cases shown in figure 3 under tokamak con-
figuration using the same MHD model. The results in toka-
mak geometry are shown in figure 8. These growth rates are
measured at an island width of w≈ 0.01rs. The growth rate
in tokamak geometry is slightly higher that in the cylindrical
geometry, indicating a destabilizing effect of the toroidal geo-
metry on the NTM. This appears to contradict the well-known
GGJ effect [48, 49, 58]. This is probably because of the geo-
metric modification of equilibrium magnetic field strength.
The second order correction term of the magnetic field in the
toroidal geometry is retained in our simulations:
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Figure 7. Snapshots of (a) δA∥, (b) δϕ , and (c) δp mode structures of an NTM from the GTC fluid simulation in a tokamak geometry, with
the dashed line marking q= 2 surface position.

Figure 8. Comparison of the dependence of the NTM growth rate
in the small island limit on βp between cylindrical and tokamak
geometry.

Bζ =

[
1− r

R0
cosθ+

(
r
R0

)2
cos2θ

]
Bζ0. (23)

This correctionwould lead to an increase of the radial deriv-
ative of equilibrium poloidal fieldBp, and therefore an increase
of the free energy for driving the classical TMs.

5. Gyrokinetic simulations in a toroidal geometry

The impact of thermal ion kinetic effects on the NTM sta-
bility threshold is well-established. Firstly, the FLR effect
of thermal ions sets the length scale where the polarization
current becomes relevant. When the island width w is com-
parable to the ion Larmor radius, ρLi, the different responses
of ions and electrons to the rotating island give rise to an elec-
trostatic potential, which could induce a polarization current
contributing to the island evolution through the MRE [52,53].
Secondly, the finite banana-orbit width of trapped ions in tor-
oidal geometry would also contribute to a net current, i.e. the
neoclassical polarization current [59–61], that can affect the
evolution of island when w is comparable to the ion banana
width ρbi. Recently, Imada et al demonstrated that the pressure

gradient can be maintained across the NTM island when w is
comparable to the ion poloidal Larmor radius ρθi, suppressing
the bootstrap current drive for the NTM growth [33, 62].

A global gyrokinetic particle simulation approach for
NTMs has been implemented in the GTC. By incorporat-
ing the perturbed distribution function of the kinetic ions, we
can obtain the charge and current densities that arise due to
thermal ions, which are then coupled into the Poisson equation
and Ampere’s law. Thus the thermal ion kinetic effects are
incorporated into our NTM simulation model, as described by
equations (2)–(13).

In order to quantify the kinetic effects of thermal ions, we
perform gyrokinetic simulations using the same equilibrium
parameters as in the MHD cases, while keeping the total pres-
sure unchanged by setting the electron and ion temperature
to Te,eq (0) = 850eV,Ti,eq (0) = 50eV. The more realistic ion
temperature will be simulated in the future study. These sim-
ulations are performed in the small island limit of the tor-
oidal geometry, as well. Figure 8 also displays the growth
rates obtained from these simulations, which are measured
at an island width of w≈ 0.01rs. The results demonstrates
that the kinetic effects of thermal ions significantly reduce
the NTM growth rates, indicating a stabilizing effect on the
NTM stability. In fact, this effect is much stronger than the
destabilizing effect of the toroidicity. For instance, in the case
of βp = 0.172, the NTM changes from unstable to margin-
ally stable due to the thermal ion kinetic effects. This sug-
gests that these effects can increase the beta threshold for NTM
excitation, thus improving the stability of tokamak plasmas.
The main reason for the reduction of NTM growth rates is
additional damping due to thermal ion kinetic effects includ-
ing radiative damping and ion Landau damping arising from
the finite parallel electric field. The decrease of the equilib-
rium electron pressure, which reduces the pressure gradient
drive in equation (12), also partially contribute to the reduc-
tion of NTM growth rates. Although the large banana orbit
width of thermal ions, ρbi, could contribute to a neoclassical
polarization current when ρbi ≳ w, especially for these cases
ρbi = 0.027rs, this effect does not dominate the stabilizing
regime because the ion parallel streaming frequency around
the island is about ω ∼= 8.4× 104rads−1, much larger than the
island rotation frequency. Moreover, the FLR effect of thermal
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ions does not contribute significantly to the stabilization of
NTMs, since the ion Larmor radius ρLi ≪ w at such small
Ti, as confirmed by our drift-kinetic ion simulation, although
these results are not presented here.

The mode structures exhibit no significant change between
the resistive MHD and the gyrokinetic simulations, except for
a rotation in the ion diamagnetic direction in the gyrokinetic
cases. However, it should be noted thatquantitative comparison
between the simulated and experimental rotation frequencies
is not meaningful due to the parameters (like the resistiv-
ity, the temperature and thermal diffusivities) used in the
simulations for computational convenience, which may not
accurately reflect the experimental conditions. Additionally,
the application of a ECRH system in the HL-2A discharge
may also contribute to mode rotation. Thus, we did not com-
pare the simulated rotation frequency with experimental data.
Further investigation is needed to fully understand the impact
of kinetic effects of thermal ions on the NTM island evolu-
tion dynamics and saturation level. In earlier GTC simulations
[63], we have observed turbulence reduction at the O-point for
static magnetic islands. However, the interaction between tur-
bulence and NTM islands is beyond the scope of this work.

6. Summary and conclusions

In this work, we have developed a gyrokinetic simulation
model within the GTC framework that incorporates gyrokin-
etic ions and fluid electrons for the study of NTMs in a tor-
oidal geometry. The neoclassical bootstrap current is intro-
duced via a standard neoclassical model, and the pressure
transport equation based on a diffusion model is included
to close the system. We have verified our NTM simulation
model by performing cylindrical geometry simulations in the
MHD limit. Our results reveal that the neoclassical bootstrap
current effect can destabilize an otherwise stable classical
TM. Moreover, we have demonstrated that the NTM growth
rate linearly increases with the poloidal beta βp in the small
island limit, in agreement with the modified Rutherford the-
ory. Additionally, we observed good agreement with the mod-
ified Rutherford theory in terms of the saturation level and the
maximum growth of the NTM island width during the non-
linear evolution dynamics. We also performed simulations in
a toroidal geometry and found that toroidal effects can have
a destabilizing effect on NTMs. Gyrokinetic simulations of
NTMs in toroidal geometry show that the ions’ kinetic effects
can effectively reduce the NTM growth rate even with the
destabilizing effect of toroidicity, underscoring the importance
of thermal ions’ kinetic effects in determining the threshold for
NTM excitation.

This study presents an initial progress towards the
first-principle kinetic simulations of NTMs in tokamaks.
Nevertheless, the current model is limited by the absence
of self-consistent treatment of certain neoclassical effects,
as well as some key parameters such as turbulent thermal
diffusivities, whichmay limit the generalizability of the results
to tokamak discharges. To address these limitations, future

research will aim to enhance the capabilities of the GTC code
by implementing a comprehensive electron model, such as
the conservative nonlinear electromagnetic simulation model
[64, 65], to achieve self-consistent computation of the neoclas-
sical bootstrap current and diffusivities driven by microturbu-
lence, and thereby enable more accurate determination of the
NTM threshold.
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[16] García-Mũoz M et al 2009 Nucl. Fusion 49 085014
[17] Li E et al 2016 Plasma Phys. Control. Fusion 58 045012
[18] Takahashi R, Brennan D P and Kim C C 2009 Phys. Rev. Lett.

102 135001
[19] Lin Z, Hahm T S, Lee W W, Tang W M and White R B 1998

Science 281 1835–7
[20] Lin Z, Tang W M and Lee W W 1997 Phys. Rev. Lett.

78 456–9
[21] Lin Z, Holod I, Chen L, Diamond P H, Hahm T S and Ethier S

2007 Phys. Rev. Lett. 99 265003
[22] Zhang W, Lin Z and Chen L 2008 Phys. Rev. Lett. 101 095001
[23] Zhang H S, Lin Z and Holod I 2012 Phys. Rev. Lett.

109 025001
[24] Wang Z, Lin Z, Holod I, Heidbrink W W, Tobias B, Van

Zeeland M and Austin M E 2013 Phys. Rev. Lett.
111 145003

[25] Liu P, Wei X, Lin Z, Brochard G, Choi G J, Heidbrink W W,
Nicolau J H and McKee G R 2022 Phys. Rev. Lett.
128 185001

[26] Deng W, Lin Z and Holod I 2012 Nucl. Fusion 52 023005
[27] McClenaghan J, Lin Z, Holod I, Deng W and Wang Z 2014

Phys. Plasmas 21 122519
[28] Brochard G et al 2022 Nucl. Fusion 62 036021
[29] Liu D, Zhang W, McClenaghan J, Wang J and Lin Z 2014

Phys. Plasmas 21 122520
[30] Liu D, Bao J, Han T, Wang J and Lin Z 2016 Phys. Plasmas

23 022502
[31] Shi H, Zhang W, Feng H, Lin Z, Dong C, Bao J and Li D 2019

Phys. Plasmas 26 092512
[32] Holod I, Zhang W L, Xiao Y and Lin Z 2009 Phys. Plasmas

16 122307
[33] Imada K, Wilson H R, Connor J W, Dudkovskaia A V and

Hill P 2018 Phys. Rev. Lett. 121 175001
[34] Dudkovskaia A V, Bardoczi L, Connor J W, Dickinson D,

Hill P, Imada K, Leigh S, Richner N, Shi T and Wilson H R
2023 Nucl. Fusion 63 016020

[35] Feng H, Zhang W, Dong C, Cao J and Li D 2017 Phys.
Plasmas 24 102125

[36] Brizard A J and Hahm T S 2007 Rev. Mod. Phys. 79 421–68
[37] Parker S E and Lee W W 1993 Phys. Fluids B: Plasma Phys.

5 77–86
[38] Hinton F L and Hazeltine R D 1976 Rev. Mod. Phys.

48 239–308
[39] Liu P, Wei X, Lin Z, Brochard G, Choi G J and Nicolau J H

2023 Rev. Mod. Plasma Phys. 7 15
[40] Dong G and Lin Z 2017 Nucl. Fusion 57 036009
[41] Lee W W 1987 J. Comput. Phys. 72 243–69
[42] Xiao Y, Holod I, Wang Z, Lin Z and Zhang T 2015 Phys.

Plasmas 22 022516
[43] Ji X-Q, Yang Q-W, Liu Y, Zhou J, Feng B-B and Yuan B-S

2010 Chin. Phys. Lett. 27 065202
[44] Ida K, Kamiya K, Isayama A and Sakamoto Y 2012 Phys. Rev.

Lett. 109 065001
[45] Bardóczi L, Rhodes T L, Carter T A, Crocker N A,

Peebles W A and Grierson B A 2016 Phys. Plasmas
23 052507

[46] Fitzpatrick R 1995 Phys. Plasmas 2 825–38
[47] Militello F and Porcelli F 2004 Phys. Plasmas 11 L13–16
[48] Kotschenreuther M, Hazeltine R D and Morrison P J 1985

Phys. Fluids
28 294–302

[49] Glasser A H, Greene J M and Johnson J L 1975 Phys. Fluids
18 875

[50] Lütjens H, Luciani J-F and Garbet X 2001 Phys. Plasmas
8 4267–70

[51] Smolyakov A I 1989 Sov. J. Plasma Phys. 15 667
[52] Waelbroeck F L, Connor J W and Wilson H R 2001 Phys. Rev.

Lett. 87 215003
[53] Connor J W, Waelbroeck F L and Wilson H R 2001 Phys.

Plasmas 8 2835–48
[54] Lütjens H and Luciani J-F 2002 Phys. Plasmas 9 4837–40
[55] Biskamp D 1997 Nonlinear Magnetohydrodynamics

(Cambridge University Press)
[56] Sato M and Wakatani M 2005 Nucl. Fusion 45 143–9
[57] White R B, Monticello D A, Rosenbluth M N and

Waddell B V 1977 Phys. Fluids 20 800–5
[58] Glasser A H, Greene J M and Johnson J L 1976 Phys. Fluids

19 567
[59] Poli E, Bergmann A and Peeters A G 2005 Phys. Rev. Lett.

94 205001
[60] Poli E, Bottino A, Hornsby W A, Peeters A G, Ribeiro T,

Scott B D and Siccinio M 2010 Plasma Phys. Control.
Fusion 52 124021

[61] Hornsby W A, Migliano P, Buchholz R, Kroenert L, Weikl A,
Peeters A G, Zarzoso D, Poli E and Casson F J 2015 Phys.
Plasmas 22 022118

[62] Imada K, Wilson H R, Connor J W, Dudkovskaia A V and
Hill P 2019 Nucl. Fusion 59 046016

[63] Fang K S and Lin Z 2019 Phys. Plasmas 26 052510
[64] Bao J, Liu D and Lin Z 2017 Phys. Plasmas 24 102516
[65] Bao J, Lin Z and Lu Z X 2018 Phys. Plasmas 25 022515

11

https://doi.org/10.1088/0029-5515/51/5/053018
https://doi.org/10.1088/0029-5515/51/5/053018
https://doi.org/10.1088/0741-3335/42/12B/306
https://doi.org/10.1088/0741-3335/42/12B/306
https://doi.org/10.1063/1.2180747
https://doi.org/10.1063/1.2180747
https://doi.org/10.13182/FST06-A1115
https://doi.org/10.13182/FST06-A1115
https://doi.org/10.1063/1.873112
https://doi.org/10.1063/1.873112
https://doi.org/10.1088/0741-3335/43/12A/326
https://doi.org/10.1088/0741-3335/43/12A/326
https://doi.org/10.1063/1.1424924
https://doi.org/10.1063/1.1424924
https://doi.org/10.1088/0029-5515/54/4/043015
https://doi.org/10.1088/0029-5515/54/4/043015
https://doi.org/10.1088/0029-5515/39/9Y/308
https://doi.org/10.1088/0029-5515/39/9Y/308
https://doi.org/10.1063/1.2890771
https://doi.org/10.1063/1.2890771
https://doi.org/10.1088/0029-5515/49/8/085014
https://doi.org/10.1088/0029-5515/49/8/085014
https://doi.org/10.1088/0741-3335/58/4/045012
https://doi.org/10.1088/0741-3335/58/4/045012
https://doi.org/10.1103/PhysRevLett.102.135001
https://doi.org/10.1103/PhysRevLett.102.135001
https://doi.org/10.1126/science.281.5384.1835
https://doi.org/10.1126/science.281.5384.1835
https://doi.org/10.1103/PhysRevLett.78.456
https://doi.org/10.1103/PhysRevLett.78.456
https://doi.org/10.1103/PhysRevLett.99.265003
https://doi.org/10.1103/PhysRevLett.99.265003
https://doi.org/10.1103/PhysRevLett.101.095001
https://doi.org/10.1103/PhysRevLett.101.095001
https://doi.org/10.1103/PhysRevLett.109.025001
https://doi.org/10.1103/PhysRevLett.109.025001
https://doi.org/10.1103/PhysRevLett.111.145003
https://doi.org/10.1103/PhysRevLett.111.145003
https://doi.org/10.1103/PhysRevLett.128.185001
https://doi.org/10.1103/PhysRevLett.128.185001
https://doi.org/10.1088/0029-5515/52/2/023005
https://doi.org/10.1088/0029-5515/52/2/023005
https://doi.org/10.1063/1.4905073
https://doi.org/10.1063/1.4905073
https://doi.org/10.1088/1741-4326/ac48a6
https://doi.org/10.1088/1741-4326/ac48a6
https://doi.org/10.1063/1.4905074
https://doi.org/10.1063/1.4905074
https://doi.org/10.1063/1.4941094
https://doi.org/10.1063/1.4941094
https://doi.org/10.1063/1.5116332
https://doi.org/10.1063/1.5116332
https://doi.org/10.1063/1.3273070
https://doi.org/10.1063/1.3273070
https://doi.org/10.1103/PhysRevLett.121.175001
https://doi.org/10.1103/PhysRevLett.121.175001
https://doi.org/10.1088/1741-4326/aca48d
https://doi.org/10.1088/1741-4326/aca48d
https://doi.org/10.1063/1.4999166
https://doi.org/10.1063/1.4999166
https://doi.org/10.1103/RevModPhys.79.421
https://doi.org/10.1103/RevModPhys.79.421
https://doi.org/10.1063/1.860870
https://doi.org/10.1063/1.860870
https://doi.org/10.1103/RevModPhys.48.239
https://doi.org/10.1103/RevModPhys.48.239
https://doi.org/10.1007/s41614-023-00117-4
https://doi.org/10.1007/s41614-023-00117-4
https://doi.org/10.1088/1741-4326/57/3/036009
https://doi.org/10.1088/1741-4326/57/3/036009
https://doi.org/10.1016/0021-9991(87)90080-5
https://doi.org/10.1016/0021-9991(87)90080-5
https://doi.org/10.1063/1.4908275
https://doi.org/10.1063/1.4908275
https://doi.org/10.1088/0256-307X/27/6/065202
https://doi.org/10.1088/0256-307X/27/6/065202
https://doi.org/10.1103/PhysRevLett.109.065001
https://doi.org/10.1103/PhysRevLett.109.065001
https://doi.org/10.1063/1.4948560
https://doi.org/10.1063/1.4948560
https://doi.org/10.1063/1.871434
https://doi.org/10.1063/1.871434
https://doi.org/10.1063/1.1677089
https://doi.org/10.1063/1.1677089
https://doi.org/10.1063/1.865200
https://doi.org/10.1063/1.865200
https://doi.org/10.1063/1.861224
https://doi.org/10.1063/1.861224
https://doi.org/10.1063/1.1399056
https://doi.org/10.1063/1.1399056
https://doi.org/10.1103/PhysRevLett.87.215003
https://doi.org/10.1103/PhysRevLett.87.215003
https://doi.org/10.1063/1.1370062
https://doi.org/10.1063/1.1370062
https://doi.org/10.1063/1.1521717
https://doi.org/10.1063/1.1521717
https://doi.org/10.1088/0029-5515/45/2/008
https://doi.org/10.1088/0029-5515/45/2/008
https://doi.org/10.1063/1.861939
https://doi.org/10.1063/1.861939
https://doi.org/10.1063/1.861490
https://doi.org/10.1063/1.861490
https://doi.org/10.1103/PhysRevLett.94.205001
https://doi.org/10.1103/PhysRevLett.94.205001
https://doi.org/10.1088/0741-3335/52/12/124021
https://doi.org/10.1088/0741-3335/52/12/124021
https://doi.org/10.1063/1.4907900
https://doi.org/10.1063/1.4907900
https://doi.org/10.1088/1741-4326/ab00ba
https://doi.org/10.1088/1741-4326/ab00ba
https://doi.org/10.1063/1.5096962
https://doi.org/10.1063/1.5096962
https://doi.org/10.1063/1.4995455
https://doi.org/10.1063/1.4995455
https://doi.org/10.1063/1.5016432
https://doi.org/10.1063/1.5016432

	Verification of gyrokinetic particle simulations of neoclassical tearing modes in fusion plasmas
	1. Introduction
	2. Gyrokinetic model for NTM simulation
	2.1. Gyrokinetic model for ions
	2.2. Fluid model for electrons
	2.3. Reduction to MHD limit

	3. MHD simulations in a cylindrical geometry
	3.1. Equilibrium settings
	3.2. Verification against MRE in the small island limit
	3.3. Nonlinear evolution of NTM islands

	4. Toroidal geometry simulations in the small island limit using MHD model
	5. Gyrokinetic simulations in a toroidal geometry
	6. Summary and conclusions
	References




