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Abstract

Global gyrokinetic particle simulations find that electron temper-
ature gradient (ETG) instability saturates via nonlinear toroidal cou-
plings, which transfer energy successively from unstable modes to
damped modes preferably with longer poloidal wavelengths. The elec-
trostatic ETG turbulence is dominated by nonlinearly generated radial
streamers. The length of streamers scales with the device size and is
much longer than the distance between mode rational surfaces or elec-
tron radial excursions. Both fluctuation intensity and transport level
are independent of the streamer size. The nonlinear toroidal couplings
represent a new paradigm for the spectral cascade in plasma turbu-
lence.

1 Introduction

Electron temperature gradients in magnetically confined plasmas provide
expansion free energy for driving various drift-wave instabilities [1], which
may induce high level electron heat transport often observed in toroidal
experiments. Identifying the candidate instabilities and understanding the
nonlinear interactions are the first step toward modeling and controlling the
electron transport in fusion plasmas. Linear properties of the toroidal ETG



instability [2] are well understood. The gyroBohm level of the ETG elec-
tron heat conductivity X2 from a heuristic mixing length estimate [3] is
smaller than that of the ITG ion transport XZ-GB by a factor of the square-
root of ion-electron mass ratio, i.e., x¢2 ~ 1/60x¢ B for deuterium plasmas.
Since experimental measurements find, typically, xe,xi ~ XiGB , the ETG
instability has generally been discarded as a potential driver for the anoma-
lous electron transport. However, the nonlinear evolution of ETG and ITG
could be very different. Whereas a E x B nonlinearity associated with zonal
flows [4, 5, 6] dominates in the ITG turbulence, ETG turbulence is regulated
by a much weaker polarization nonlinearity [7].

The renewed interest in the electrostatic ETG instability comes from gy-
rokinetic continuum (Vlasov) simulations using the flux-tube geometry [8],
which found that elongated turbulence eddies, or radial streamers, drive a
transport level of experimental relevance. However, in these simulations the
scale length of ET'G streamers is comparable to the simulation box size. This
violates the fundamental assumption of the flux-tube simulation, which as-
sumes that the radial correlation length of turbulence eddies is much shorter
than the simulation box size and uses a periodic boundary condition in the
radial direction. Meanwhile, radially nonlocal, global simulations using fluid
models in a small tokamak [9] or a simplified equilibrium geometry [10] found
that the ETG turbulent transport is smaller than the flux-tube simulation
result by more than an order of magnitude, and concluded that ETG tur-
bulence is unlikely responsible for the electron anomalous transport.

Key results from flux-tube simulations [8] of the ETG turbulence are
that radially extended streamers form in the absence of strong zonal flows
and that electron transport up to 60x5? is driven by the electrostatic E x B
convection. However, the direct relationship between the ETG streamer size
and the electron transport, as well as the mechanism for the ETG saturation
has not been established by direct numerical simulations or by first-principles
theories. Furthermore, the substitution of the nonlinear decorrelation rate
by the linear growth rate in the condition for the flow shear suppression [11]
of ETG turbulence is questionable. We address these issues in our present
studies utilizing a well-benchmarked, massively parallel, global gyrokinetic
toroidal code (GTC) [4] to simulate the electrostatic ETG turbulence in a
realistic tokamak.

In the present study, our global gyrokinetic particle simulations find
that the ETG instability saturates via nonlinear toroidal couplings, which
transfer energy successively from unstable modes to damped modes prefer-
ably with longer poloidal wavelengths. The electrostatic ETG turbulence
is dominated by nonlinearly generated radial streamers, which have a non-



linear decorrelation rate much smaller than the linear growth rate. Both
fluctuation intensity and transport level are independent of the streamer
size, which scales with the device size and is much longer than the distance
between mode rational surfaces or electron radial excursions.

The nonlinear toroidal couplings found in this study is a novel nonlinear
interaction underlying the ETG poloidal spectral cascade. In this nonlinear
mode coupling processes, two unstable high-n pump toroidal eigenmodes
with toroidal mode numbers ng > 1 first drive a low-n quasi-mode with
ny ~ n(l)/ 2 Next, the scattering of the pump modes on the quasi-mode cre-
ates secondary high-n eigenmodes with mode number ny = ng — n;. This
nonlinear process proceeds until all n-matching modes are populated, and
results in a down-shift of the poloidal spectrum from linearly most unsta-
ble modes to nonlinearly dominant modes with longer poloidal wavelengths.
This nonlocal interaction in the wavevector space is much like the Compton
scattering with quasi-modes playing the role of quasi-particles. Three-mode
resonant coupling is not operative due to the frequency mismatch. Moreover,
similar poloidal spectral cascade occurs in the ITG/TEM turbulence [12].
Although zonal flows play a dominant role in saturating the ITG/TEM
instability, the poloidal spectrum can not be determined [13] by interac-
tions between ITG/TEM turbulence and zonal flows. Therefore, poloidal
spectra of any toroidal drift wave turbulence are ultimately determined by
drift wave-drift wave interactions. Recognizing this universal role, nonlin-
ear toroidal couplings represent a new paradigm for plasma turbulence in
toroidal geometry.

Our GTC simulation results have important implications on plasma tur-
bulence studies. First, particle dynamics must be treated on the same foot-
ing as fluid nonlinearity. ETG radial streamers, which represent the E x B
velocity field, are generated by nonlinear toroidal couplings. Linear wave-
particle resonance can then be destroyed nonlinearly. Consequently, electron
radial excursions are diffusive and much shorter than the streamers size, i.e.,
particles and fluid elements do not move together due to the parallel free
streaming motion. While wave-wave couplings determine fluctuation charac-
teristics, transport is driven by wave-particle interactions. This is a crucial
difference between plasma turbulences and fluid turbulences, where fluid ele-
ments move together with the velocity field. Therefore, fluid concepts, such
as mixing length rule, eddy turnover time, etc, do not correctly describe
transport processes in plasma turbulences.

Secondly, toroidal geometry must be treated rigorously in studying
toroidal drift wave turbulences. The nonlinear toroidal couplings are strictly



geometry-specific effects. There is no such counterparts in the slab geometry,
where two parallel streamers can not interact since the wavevectors satisfy
ki x kg = 0. All eigenmodes participate in nonlinear toroidal couplings,
and therefore, the saturation amplitude may not be predicted accurately
in nonlinear simulations using a small number of modes [14]. Furthermore,
the radial variations of the safety factor ¢ need to be retained in nonlinear
simulations to properly account for the nonlinear wave-particle interactions.
The parallel wavelength, which determines the resonant condition, varies
over a radial scale length on the order of the distance between mode ratio-
nal surfaces, which is only a few electron gyroradii in the ETG turbulence.
Therefore, important kinetic effects may not be treated correctly when a
uniform ¢ is used in nonlinear flux-tube simulations even if the simulation
box size is much shorter than the magnetic shear scale length. Note that
q is treated as a constant in the linear simulation or local ballooning mode
theory [15] because of the radial translational symmetry, which can be non-
linearly broken.

Finally, the contradictory results from ETG turbulence simulations be-
tween flux-tube codes and global codes are presumably consequences of dif-
ferences in the respective geometry representations. While the toroidal ge-
ometry is treated rigorously in global codes, flux-tube codes make key ap-
proximations, the validity regime of which remains dubious for nonlinear
simulations involving fluctuations with low toroidal mode numbers. There-
fore, the flux-tube simulation is a reduced model, and its validity rests on
the ability to recover results of more general global simulations in appropri-
ate asymptotic regimes. This reasonable requirement has actually been at
the center of recent debates arising from criticisms of GTC global simulation
results. These criticisms are based on a practice of designing [14] global code
results to “match those obtained with flux tubes”.

2 ETG Saturation via Nonlinear Toroidal Cou-
pling

The linear toroidal ETG eigenmodes can be described by three degrees of
freedom: a toroidal eigenmode number n assuming axisymmetry, a parallel
mode structure determined by the radial width of the poloidal mode number
m, and a ballooning angle 6, representing the radial envelope of the linearly
coupled m harmonics. Consequently, nonlinear interactions can take the
following three forms: a nonlinear mode coupling between two n toroidal
eigenmodes, a modification of the parallel mode structure, and a modula-



tion of the radial envelope. The envelope modulation, i.e., the generation
of zonal lfows, dominates in the ITG turbulence. In the ETG turbulence,
all these interactions are formally on the same order. We study all these
interactions and find that the coupling between two n eigenmodes, labeled
as nonlinear toroidal coupling, is the dominant nonlinear interaction in the
ETG turbulence. All simulations use a tokamak size a = 1000p, and diag-
nostics at a reference minor radius r = 0.5a with a safety factor ¢ = 1.4 and
a magnetic shear § = 0.78.

It has been suggested that ETG instability saturates when the linear
growth of the primary ETG instability is balanced by a slab-like secondary
Kelvin-Helmholtz (KH) instability [8]. In this process the linear streamer
of a single toroidal eigenmode is broken up by the KH instability. To test
this hypothesis, we first study the nonlinear saturation of a single toroidal
eigenmode of ny = 110 with kgp. = 0.31. In this test case, we initially
only allow the ng = 110 mode to grow from very small random noise, i.e.,
only the electric field associated with this mode is used in the calculation
of particle orbits. The poloidal contour plot of density perturbation shows
that the mode is dominated by a linear toroidal eigenmode with a ballooning
angle 8y = 0. The linear streamers are formed by linear toroidal couplings,
where many poloidal m harmonics are linearly coupled in a single toroidal n
eigenmode because of the magnetic field dependence on the poloidal angle.
At 7 = 0.5a, the dominant m harmonic is mg = gng = 154. When the
amplitude of this mode is much higher than any other mode, all n modes are
allowed to grow. Since the primary ny = 110 mode, the pump eigenmode,
has the maximal linear growth rate, the amplitude of the pump continues
to be much higher than other modes. After saturation of the n = 110 mode,
the linear streamer is well preserved. Therefore, we do not find signature
of the secondary KH instability. This is in contrast to the ITG case where
zonal flows, generated through a modulational instability, break up linear
ITG streamers [4].

At the saturation of the pump eigenmode, two most significant secondary
modes at 7 = 0.5a are that of n = 0, m = £1, or (0,1) mode, and n = 2ny =
220,m = 2mo £ 1 = 307,309, or (2ng,2my £ 1) mode. They are evidently
generated by the following mode coupling process:

(no, mo) + (no, mo £1) = (0,%£1), (2n0,2mo £ 1)

Each m harmonic peaks at the mode rational surface where m = gng and de-
crease to very low amplitudes at neighboring mode rational surfaces for m+1
harmonics. The radial width of m harmonics represents the parallel mode



wavevector k. The wider radial width corresponds to the larger k). The
radial profile of the m harmonics after nonlinear saturation clearly shown
a widening of the m harmonics, i.e., an increase in k). Landau damping
is then enhanced since the ETG linear frequency is larger than the transit
frequency of thermal electrons. Therefore, the single-n ETG eigenmode sat-
urates through the modification of the parallel mode structure. The coupling
to the (0,1) mode is of particular interest since all linearly unstable modes
contribute to it in the fully nonlinear simulations discussed in the previous
Section. The radial scale length of the (0, 1) mode is similar to the distance
between mode rational surfaces of the high-n pump mode. Therefore, the
assumption of an adiabatic ion response is valid even for this n = 0 mode.
Meanwhile, the zonal flow, or (0,0) mode, is generated through modulation
of the radial envelope. However, the amplitude of zonal flow is low and it
does not breakup the linear ETG streamer.

We now study the nonlinear interaction between two n eigenmodes by
adding more pump modes to the simulation. We find that the saturation
amplitude of a single-n ETG mode is much higher than that in the presence
of another eigenmode with a similar amplitude, suggesting that the non-
linear coupling between two eigenmodes is the dominant process in ETG
saturation.

A conceptual difficulty we must first address regarding nonlinear mode
coupling is whether two toroidal eigenmodes with k. = 0 can nonlinearly
interact. This is not so obvious since two streamers in a slab geometry
with parallel wavevectors ki |ke would not nonlinearly interact due to the
fact that ki x ko = 0. This concept of slab streamers has perhaps misled
the previous studies of toroidal drift wave turbulences, including both ITG
and ETG. In fact, the situation is quite different for toroidal eigenmodes.
Although toroidal streamers have an envelope k, = 0, there is a “hidden”
k. ~ 8ky due to the localization of each rm harmonics near the mode ra-
tional surface. Therefore, two toroidal eigenmodes can nonlinearly interact
because of the unique ballooning mode structure. We note that this nonlin-
ear mode coupling is strictly toroidal geometry specific since there is no slab
counterpart of such streamer interactions. We thus call nonlinear couplings
between two n modes as nonlinear toroidal couplings.

We now proceed to examine the nonlinear toroidal coupling of two n
modes. In such a simulation, two toroidal eigenmodes, ng = 110 and n; =
95, are allowed to grow first, i.e., only these two pump waves feed back to
the particle dynamics. When the amplitudes of these two modes are much
higher than any other mode, all toroidal modes are allowed to grow, i.e.,
the electric field from all modes is used for calculating the particle motion.
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Figure 1: Radial profiles for the amplitude of (n,m) harmonics of pump toroidal
eigenmodes n = 110 (Panel a, e¢/T, x 10) and n = 95 (Panel b, e¢/T, x 10°) in
linear phase, and of driven mode n = 15 (Panel c, e¢/T, x 10°) before saturation.
Each solid or dashed line describes a (n,m) harmonics with m = ¢n at mode
rational surface. Safety factor ¢(r) is used as the radial coordinate.



The radial profiles of these two eigenmode in linear phase are shown in the
upper two panels of Fig. 1. Each mg harmonic of the ny mode, in addition
to the coupling to the my £ 1 harmonics of the ny mode itself, interact
most strongly with one m; harmonic of the n;y mode, where m( and m; are
the harmonics whose mode rational surfaces sit close to each other. The
coupling proceeds as:

(no,mo) + (nl,ml) = (’n() +ny,mox ml).

This coupling produces both a very high-n mode, n, = 205, and a low-n
mode, n; = 15. The amplitude of the very high-n mode is much smaller
since the coupling coefficients to the very high-n mode is much weaker than
that to the low-n mode. This is because the intrinsic frequency, i.e., the
inertia, of the very high-n mode is much higher than that of the low-n
mode, and, furthermore, because the interacting wavevectors of the two
pump eigenmodes are almost parallel in the coupling to the very high-n
mode, whereas they are almost perpendicular in the coupling to the low-n
mode. The low-n mode is a forced oscillation, i.e., a quasi-mode, since its
intrinsic frequency is much smaller than the frequency difference between
the two pump eigenmodes, which is on the order of their linear growth
rates. Each m harmonic of the low-n quasi-mode is localized near its own
mode rational surface, as shown in the lower panel of Fig. 1, which also shows
that the radial scale length of the low-n quasi-mode is similar to the distance
between the mode rational surfaces of the pump modes, which is the radial
width of the interactions between m-harmonics. This is also confirmed in a
poloidal contour plot of this quasi-mode, which shows that the radial eddy
size is very small. Near mode rational surface, the low-n quasi-mode has a
very long parallel wavelength, i.e., k| ~ 0. Therefore, the low-n quasi-mode
does not possess the ballooning mode structure.

The generation of the low-n quasi-mode, n; = ny — n; = 15, by the two
high-n pump modes, ng = 110 and n; = 95, is simply the first step of the
nonlinear toroidal coupling. Once generated, the quasi-mode n; couples back
to the two pump modes and generates secondary ny modes, n; — n; = 80,
and ng+mn; = 125, as shown in the upper panel of Fig. 2 just before the sat-
uration of the pump modes. In turn, each secondary ns mode couples with
the far-side pump mode to generate another quasi-mode n; = 30. Again, the
coupling between the low-n quasi-mode n; = 30 with the pump modes gen-
erates further secondary modes no = 65, and 140. These successive coupling
processes proceed until all n-modes that satisfy the n-matching condition
are populated with either a quasi-mode or a secondary mode, as shown in
the middle panel of Fig. 2 after the saturation of the pump modes. The



amplitude of the higher-n secondary modes, no = 125,140, ---, is always
smaller than the lower-n secondary modes, no = 80,65, ---. This indicates
that the energy cascades preferably to lower-n secondary modes. Note that
each coupling always involves a quasi-mode, a secondary ballooning mode,
and a pump ballooning mode. The low-n quasi-modes do not contain much
energy, nor do they drive much transport. Rather, they act as mediators
that facilitates the transfer of energy from pump modes to secondary modes.
Therefore, the nonlinear toroidal coupling can be viewed as a two-step pro-
cess, first the generation of the low-n quasi-mode, and the subsequent energy
transfer from the pump modes to the lower-n secondary modes. The second
step is similar to the Compton Scattering [16] with the quasi-mode playing
the role of the quasi-particle.

The parallel mode structure of the pump modes is also modified at sat-
uration through coupling to the (0,1) harmonic (middle panel of Fig. 2).
However, its amplitude decreases quickly due to Landau damping (lower
panel of Fig. 2). The amplitude of the zonal flow, (0,0) mode shown in
Fig. 2, is always very small in consistent with the fact that the envelope
modulation is insignificant in this spectral cascade process. At the steady
state, the ETG turbulence is dominated by nonlinearly-generated lower-n
secondary mode streamers, which have longer intrinsic characteristic time
scales and could be prone to the shearing effects of the equilibrium and zonal
flows. Steady state is achieved both via modification by the (0,1) mode of
the parallel mode structure of linearly unstable modes, which enhances Lan-
dau damping, and via energy transfer to low-n and high-n damped modes.

In summary, we find that the toroidal ETG instability saturates via non-
linear toroidal couplings, i.e., nonlinear interactions between two toroidal
eigenmodes. Parallel mode wavevector also increases through coupling to
the (0,1) mode, which is a weaker nonlinear interaction due to Landau
damping of the (0,1) mode. Finally, the generation of the zonal flow is the
weakest nonlinear interaction because the amplitude of the sidebands with
0y # 0 is much smaller than the pump eigenmodes. The radial extension
of the nonlinearly generated radial streamers is essentially determined by
linear toroidal couplings, since the amplitude of the (0,1) mode after satu-
ration is small compared with toroidal equilibrium variations in the poloidal
direction.
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Figure 2: Toroidal mode number n spectra before and after saturation of the pump
modes at 7 = 0.5a. Solid line represents the harmonics of m = gn; m = gn + 1 for
dashed line.



3 Discussion and Conclusion

We note that there are accumulating evidences from first principles turbu-
lence simulations that contradict the heuristic mixing length rule, which un-
derlies most of the existing transport models. We have reported earlier [12]
a gradual transition from Bohm to gyroBohm scaling for the ion transport
driven by the ITG turbulence although the ITG eddies are isotropic. In
this paper, we further demonstrate that the scaling of electron transport
driven by the ETG turbulence is gyroBohm even though the size of ETG
streamers scales with the device size. Given the characteristics of respec-
tive turbulence eddies, the mixing length rule would predict that the ITG
transport scaling is gyroBohm and that the ETG transport scaling is Bohm.
The key to reconciling the obvious contradiction is that transport is diffu-
sive and driven by the local fluctuation intensity, rather than the eddy size.
The deviation from the gyroBohm scaling in ITG transport comes from the
fact that the fluctuation intensity is driven by nonlocal effects such as the
turbulence spreading [12, 17, 18]. Meanwhile, the ETG fluctuation intensity
is determined by the nonlinear toroidal coupling, which does not depend
on the streamer (or system) size. Therefore, it is important to delineate
mechanisms that determine the fluctuation intensity and the transport.

The crucial role of low-n quasi-modes as mediators in nonlinear toroidal
couplings is a possible explanation of the big difference in saturation levels
and transport between flux-tube and global simulations. In fact, the mode
number of low-n quasi-mode is ~ n'/2. Thus, proper radial resolution to
describe their dependence imposes that the radial box size scales as ~ n'/2p,.
If quasi-mode dynamics is suppressed, then only parallel mode structure
modification via the (0,1) mode and zonal flow dynamics can set the (much
higher) saturation level of ETG turbulence. Meanwhile, the transport could
be further enhanced due to the uniform safety factor ¢ used in flux-tube
simulations. Finally, since all unstable eigenmodes participate in nonlinear
toroidal couplings, using a small number of toroidal eigenmodes in nonlinear
simulations [8, 14] may not accurately predict the saturation amplitude.

In conclusion, global gyrokinetic particle simulations find that ETG in-
stability saturates via nonlinear toroidal couplings, which transfer energy
successively from unstable modes to damped modes preferably with longer
poloidal wavelengths. The electrostatic ETG turbulence is dominated by
nonlinearly generated radial streamers. The length of streamers scales with
the device size and is much longer than the distance between mode ratio-
nal surfaces or electron radial excursions. Both fluctuation intensity and
transport level are independent of the streamer size.
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