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Abstract 
 
State-of-the-art deep-learning disruption prediction models based on the Fusion Recurrent Neural Network (FRNN) introduced in 
the NATURE (2019) publication have been further improved. The paper reports on new capability of the AI/DL software to 
output not only the “disruption score,” as an indicator of the probability of an imminent disruption, but also a “sensitivity score” 
in real-time to indicate the underlying reasons for the imminent disruption.  This provides valuable physics-interpretability for the 
deep-learning model results and associated guidance for control actuators when implemented into a modern Plasma Control 
System (PCS).  The advance is a significant step forward in moving from modern DL disruption prediction to real-time control 
and brings novel AI-enabled capabilities relevant for application to the future burning plasma ITER system.  Results presented 
used large amounts of data from JET and DIII-D vetted in the earlier NATURE publication. In addition to “when” a shot 
predicted to disrupt, this paper addresses reasons “why” by carrying out sensitivity studies.  FRNN is accordingly extended to use 
many more channels of information, including measured DIII-D signals such as (i) “n1rms” that is correlated with the n =1 
modes with finite frequency, including neoclassical tearing mode and sawtooth dynamics; (ii) the bolometer data indicative of 
plasma impurity content; and (iii) “q-min” – the minimum value of the safety factor relevant to the key physics of kink 
modes.  When integrated into the deep learning FRNN software, clearer identification of physics responsible for the disruption 
events was enabled with associated relevant guidance for control actuators.  In providing a “disruption score” together with a 
“sensitivity score” for each physics-connected channel, the present investigations of disruption subcategories for relevant physics 
channels can provide more precise and direct information for the control actuators in a plasma control system.  
 
1. INTRODUCTION 
 
State-of-the-art deep-learning disruption prediction models based on the Fusion Recurrent Neural Network (FRNN) 
[1] have been further improved.  Here we report the new capability of the software to output not only the “disruption 
score,” as an indicator of the probability of an imminent disruption, but also a “sensitivity score” in real-time to 
indicate the underlying reasons for the imminent disruption.  As an indicator of possible causes for future 
disruptions, the “sensitivity score” can provide valuable physics-based interpretability for the deep-learning model 
results, and more importantly, provide targeted guidance for the control actuators when implemented into any 
modern Plasma Control System (PCS).  This achievement represents a significant step forward since the 2018 IAEA 
meeting in moving from modern deep-learning disruption prediction to real-time control that brings novel AI-
enabled capabilities needed for the future burning plasma ITER system.  
 
The main findings in this paper help address the basic issue/perception that advanced Machine Learning/Deep 
learning methods are generally hard to interpret.  Results presented here are of course supportable by actual data 
from JET and DIII-D with much of such data having been previously published/vetted in the prominent deep 
learning NATURE paper [1].  Moving beyond this work on tokamak disruptions, the current paper addresses and 
answers in addition to “when” a shot is going to disrupt, some compelling reasons to explain “why” it disrupts by 
carrying out sensitivity studies  
 
A new scheme is introduced in which real-time control of actuators can be advanced by AI-enabled disruption 
predictors.  Since these deep learning capabilities were developed by using modern programming languages (i.e., 
Python) to implement the “Keras” algorithmic scheme (explained in [1]), it has become additionally necessary to 
develop a “Keras2c” converter to enable integration of the AI-based predictor into a real-time plasma control system 
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(e.g., for DIII-D) which is written in the much older C-language.  Associated details will be further explained later in 
Section 2.1 of this paper. It is important to keep in mind that the cited NATURE paper represents the first adaptable 
predictive DL software trained on leadership class supercomputing systems to deliver accurate predictions for 
disruptions across different tokamak devices (DIII-D in the US and JET in the UK).  It features the unique statistical 
capability to carry out efficient “transfer learning” via training on a large database from one experiment (i.e., DIII-
D) and be able to accurately predict disruption onset on an unseen device (i.e., JET).  In more recent advances, the 
FRNN inference engine has been deployed in a real-time plasma control system on the DIII-D tokamak facility in 
San Diego, CA.  This opens up exciting avenues for moving from passive disruption prediction to active real-time 
control with subsequent optimization for reactor scenarios.     
 
The workflow for the FRNN software can be readily extended to explore the use of many more channels of 
information.  For example, DIII-D signals that are known to be highly relevant physics-based channels are: (i) 
“n1rms” – a signal correlated with the activities of the n =1 modes with finite frequency, including the neoclassical 
tearing modes (NTMs) and sawtooth;  (ii) the bolometer data that reflects the impurity content of the plasma; and 
(iii) “q-min” – the minimum value of the safety factor which directly relates to important physics such as the kink 
modes. These considerations have motivated including the associated channels directly into the deep learning 
workflow with the goal of clearer identification of the physics most responsible for the dangerous disruption events 
with associated guidance for the control actuators.  The potential for significant improvement over existing 
traditional algorithms targeting these signals for plasma condition and disruption control comes from the fact that 
our AI/deep-learning models are set up for carrying out supercomputing-enabled hyperparemter tuning 
enhancements of satistical accuracy for complex physical systems with huge feature size without the necessity of 
“feature engineering.”  This enables the capability to deliver predictions for unseen conditions, such as new plasma 
parameters associated with projected larger devices. Moreover, as an indicator of possible causes for future 
disruptions, the distribution of the “sensitivity score” can provide valuable physics-based interpretability for the 
deep-learning model results, and more importantly, provide targeted guidance for the control actuators when 
implemented into any modern PCS.  Progress toward this goal represents a significant step forward in moving from 
modern deep-learning disruption prediction to real-time control that brings novel AI-enabled capabilities with 
significant beneficial features for deployment in the future on the burning plasma ITER system. Results indicate, for 
example, that the core radiation power and the familiar MHD safety factor at the radial location near the plasma 
periphery (q-95) can represent sensitive channels responsible for associated disruption prediction for specific cases 
of interest. 
 
This paper emphasizes that the FRNN software can be readily extended to using many more channels of 
information.  In particular, there are DIII-D signals that are known to be highly relevant physics-based channels, which 
include:  (i)  “n1rms” – a signal correlated with the activities of the n =1 modes with finite frequency, including the 
neoclassical tearing modes (NTM’s) and MHD sawtooth dynamics;  (ii) the bolometer data that reflects the impurity 
content of the plasma; and (iii) “qmin” – the minimum value of the safety factor which directly relates to important 
physics such as the kink modes. These considerations have strongly motivated the inclusion of associated channels 
directly into the improved performance development of the deep learning FRNN software with the goal of clearer 
identification of the physics most likely responsible for the dangerous disruption events with associated guidance for 
the control actuators. The potential for significant improvement over existing traditional algorithms targeting these 
signals for plasma condition and disruption control comes from the fact that AI/deep-learning models have the distinct 
advantage of being able to greatly enhance the predictive accuracy via modern hyperparameter tuning with associated 
training carried out on path-to-exascale supercomputers at HPC facilities such as ORNL, ANL, and LBNL in the 
US.  This enables the capability to deliver predictions for as-yet-unseen conditions that can arise, such as new plasma 
parameters including new DIII-D experiments and those associated with future larger devices such as ITER.  
 
Overall, the key point made in this paper is that when more physics related channels are included, key insights can 
be gained on the mechanisms contributing to disruptions.  Accordingly, in addition to providing a “disruption 
score,” the present studies compute a “sensitivity score” for each physics-connected channel (as illustrated in Fig. 2). 
In addition to studying the physics in subcategories of disruptions, these “sensitivity scores” for each channel can in 
turn provide guidance to the PCS with more precise and direct information for the control actuators.  Moreover, 
another key advantage of deep-learning enabled predictive capabilities is the ability to carry out forecasts 
significantly earlier in the evolution of the plasma state under consideration.  For example, in exploratory studies 
carried out here with the “n1rms” signal information included, the alarm time for FRNN disruption prediction can be 
estimated around 100 ms as compared to the 30 ms estimates noted in the cited Nature paper.  
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As background for the present studies, we note that in toroidal plasma devices, disruptions are large-scale plasma 
instabilities that release the plasma stored energy and diminish the plasma current within a very short time-scale [7].  
The large energy and particle flux involved can seriously damage the experimental devices, especially when stored 
energy increases in high-performance plasma experiments (shots) in modern tokamaks such as DIII-D [8] and JET 
[9], and future tokamak devices such as ITER [10]. In addressing this long-standing challenge, neural networks have 
been considered for decades [11].  More recently, deep learning models based on the Long-Short Term Memory 
(LSTM) recurrent neural network (RNN) have achieved breakthrough results [1], for cross-machine predictions with 
the aid of modern High-Performance-Computing (HPC) capabilities [12-13]. 

 
In this paper, we present the first results of the real-time implementation of a FRNN LSTM-based deep-learning 
model into the DIII-D PCS. The real-time computation performance of the FRNN inference engine during DIII-D 
start-up runs is proven to be compatible with the PCS requirements, which demonstrates that FRNN deep-learning 
models are entirely capable of real-time disruption prediction tasks to aid disruption control. We also highlight here 
some recent off-line FRNN results, including a new training scheme with more physics-based signals to improve 
FRNN disruption prediction capabilities and a new FRNN software suite to compute real-time “sensitivity-scores” 
for the interpretation and of FRNN deep-learning model disruption predictions. The remainder of the paper is 
organized as follows: in section 2, we provide details of the implementation of the FRNN deep-learning based 
model into the DIII-D PCS; in section 3, we discuss new FRNN training and disruption prediction results when new 
physics related signals are included as inputs; in section 4, we introduce the design and output of the “sensitivity 
scores”, and in section 5, we summarize the recent advances and planned future developments of the FRNN 
software suite. 
 
2.0 IMPLEMENTATION OF FRNN DEEP-LEARNING-BASED MODEL INTO DIII-D PCS   
 
The DIII-D tokamak uses a general real-time plasma control system framework (PCS) created at General Atomics 
(GA) and shared with multiple other facilities, including the international long-pulse tokamaks KSTAR in Korea 
and EAST in China – as well as the spherical torus experiments NSTX-U in the US and MAST-U in the UK.  This 
framework enables running feedback control algorithms on microsecond timescales in a highly deterministic 
fashion, complete with documented information on configuration, archival data, introspection, and other important 
capabilities [14].  The AI/deep learning FRNN software has now been integrated into this framework as a new 
category of algorithms.  It has demonstrated successful operation encompassing a significant number of DIII-D 
shots in the past year.  This implementation consists of four parts: (i) pre-shot configuration; (ii) real-time data 
collection; (iii) processing through a Keras2c interpreter (see Section 2.1 below); and (iv) collection of results with 
associated documentation/publication.  The PCS includes a complete user interface allowing an operator to easily 
choose configuration parameters specific to an algorithm.  In the case of FRNN, the required configuration is a list 
of normalizing factors to apply to each input.  These factors are set before the shot and applied during the real-time 
data collection phase. In particular, this phase amalgamates heterogenous data from multiple sources during each 
real-time cycle that includes diagnostics, sensor measurements, and internal calculations from other 
algorithms.  Those values can then be adjusted/manipulated in various ways, including the application of pre-shot 
normalizing factors to match the offline functions used when training the model.  It is important to note here that 
functional parity is critical to ensure that the values submitted during real-time correlate to values trained 
offline.  Finally, the collection of data inputs are inserted into a predefined Keras2c input data format for use in the 
generic Keras processor shared by multiple algorithms.  The Keras processor produces a predictive result which is 
then stored post-shot and published in real-time for any interested consumer.  More specifically, "Keras2c” is a 
python/C library for converting complex Keras/Tensorflow neural networks such as the AI/deep learning FRNN 
software to real-time compatible C code.  A python script parses the trained neural network to extract the necessary 
parameters and determine the connectivity between layers and nodes.  It generates a custom C function to duplicate 
the forward pass through the neural network.  The generated C code makes use of a small C-backend that re-
implements the core functionality of Keras/Tensorflow in a real-time safe manner that allows ease of deployment 
into complex control systems such as the DIII-D PCS.  “Keras2c” also automatically tests and verifies the 
correctness of the generated code. The conversion and testing process of “Keras2c” is fully automated, providing a 
significant advantage over previous attempts to use neural networks within demanding control applications.  This 
advance enables avoiding the need to either use large non-deterministic software libraries or to code the entire 
network by hand, and thereby avoiding generating code that proves to be difficult to verify and  
maintain [3]. 
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2.1 Current progress in real-time performance of FRNN  
 
The AI/DL FRNN software has successfully initiated real-time runs on the DIII-D PCS, including establishing its 
own dedicated category to avoid potential conflicts with other algorithms.  It has now demonstrated reproducible 
timing for representative real-time shots on the order of 1ms.  Moreover, the “Keras2c” infrastructure has now been 
further upgraded to enable sharing the implementation across multiple algorithms (i.e., as many as four) to provide 
flexibility to address/remediate a number of integration issues that can arise within the PCS.  Finally, it is significant 
to note that with respect keeping pace with attractive emerging technological advances, this AI/DL project has 
recently leveraged engagement with industry (NVIDIA and Concurrent) to build a unique real-time system using a 
new NVIDIA A100 GPU that has now been integrated into the DIII-D PCS.  This can be expected in the near future 
to enable quicker and more efficient examination of potential benefits of deploying our current as well as possible 
new AI/DL algorithms. 
 
3.0 PHYSICS-BASED SIGNALS FOR IMPROVING DISRUPTION PREDICTION 
 
As mentioned in the previous section, we studied the effects of including more physics-based signals as inputs to our 
deep learning based models, and found that they can improve predictive capabilities. For example, the finite 
frequency n=1 mode amplitude is an important physical quantity, where n is the toroidal mode number.  We note 
here that although “n1rms”— as well as “n2rms” and “n3rms”— are post-processed non-causal data, we use 
“n1rms” to demonstrate the importance of including these instability-related signals in deep-learning based models 
by shifting the “n1rms” signal input in time by 20 ms to prevent the model from seeing any future information about 
the plasma.  In the future, our FRNN database can easily be extended to include additional physics information of 
interest contained in real-time signals à for example the outputs from rtNewSpec algorithms [5].  Nevertheless, 
“n1rms” can be useful for indicating the stability properties of various important plasma instabilities, including the 
kink-like modes and neoclassical tearing modes – that can eventually “lock” to the inner wall of the device and lead 
to disruptions.  
 
When the n=1 finite frequency mode amplitude is included as an input channel in FRNN, the disruption prediction 
results can be improved significantly at both the low false positive rate regime and the high false positive regime, as 
shown in Fig. 1.  We performed hyperparameter tuning, as introduced in [1], for FRNN models that are trained with 
and without the “n1rms” signal and reported the performance of the models that achieved the highest area under the 
ROC curve on the validation set respectively. 

 
FIG. 1. Comparison of the ROC curve with and without the n=1 finite frequency mode amplitude (“n1rms”) 
 
More importantly, at the optimal alarm thresholds as indicated by the solid dots in Figure 3, the model trained with 
n=1 finite frequency mode signal can raise earlier disruption alarms than the model trained without the n=1 finite 
frequency signal. Both mean and median of the alarm time are increased by more than 100 ms. To demonstrate that 
the neural network can effectively learn information from the n=1 finite frequency mode signal and thus provide 
earlier disruption alarm, an example shot from DIII-D (shot #161362) is shown in the upper panel in Figure 4.  At 
around 1.9s, the FRNN model with “n1rms” as an input channel raised the disruption alarm following the onset of 
the n=1 mode.  Before 2s, the “n1rms” signal diminishes while the locked mode amplitude rises up.  During this 
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time, the FRNN model trained with the “n1rms” signal provides continuous outputs of disruption alarms.  The 
FRNN model trained without the n=1 mode signal raises a disruption alarm here around 40 ms before the actual 
disruption, around 200 ms later than the model trained with the n=1 mode signal.  
 
With the other basic plasma quantities as input, the n=1 finite frequency signal usually does not confuse the model 
when the mode is not leading to disruptions.  For example, in shot #170239, as shown in the lower panel of Fig. 2, 
although the neoclassical tearing mode appears at 2-3s, the FRNN output remains at a constant low level. 
  

 
 
FIG. 2. DIII-D shot number 161362 in the left panel and DIII- shot number 170239 in the right panel.  In each 
panel, the upper 4 subpanels show measured signals as FRNN input, and the bottom subpanel show FRNN model 
outputs 
 
4.0   REAL-TIME SENSITIVITY STUDIES  
 
To interpret the disruption predictive capabilities of the deep-learning-based model, we have developed sensitivity 
study schemes for individual test shots. These schemes can be implemented in real-time along with the regular 
FRNN model inference engine as introduced in Sec. 2.  For each shot, the sensitivity study helps answer the 
question of ‘why the neural network outputs a high disruption score and raises a disruption alarm at a given time?’  
More importantly, the results from the sensitivity study scheme can provide detailed indications of which physical 
quantities can provide relevant proximity guidance for disruptive scenarios, and this information may directly aid 
real-time control efforts. 
 
4.1 Calculation of the sensitivity score 
 
In Ref. [1], the authors provided results from studies examining the importance of a signal to illustrate the 
contribution of each such physical signal to the test results of the entire test database.  In these signal importance 
studies, the model is re-trained for a “c” number of times with each physical signal excluded from the training and 
test database, where “c” is the number of physical signals, and the test result is reported in comparison with the 
baseline where all signals are included.  In the present paper, we have included all signals during training.  In the 
course of testing for each shot, we have performed inference “c” times in parallel – such that at each time, one 
physical signal is suppressed to output a “c” number of disruption scores.  The sensitivity score of each signal is 
defined as the absolute difference between the baseline output (where full input is used) and the output where the 
signal of interest is suppressed in the test data.  For the standard trained models, we suppress a signal by replacing 
that signal with a fixed typical value from non-disruptive shots.  For noise-aware models which are trained with 
dropped out signals [5], and are ‘familiar’ with all-zeroes-signals, we suppress a signal by directly replacing with 
zeros. The outputs of these two schemes are generally qualitatively consistent, showing the robustness of the 
sensitivity study results with respect to the replacement values. 
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FIG 3. Evolution of the sensitivity score of the shot #164582 
 

 
FIG 4. Evolution of each normalized physical signals for DIII-D shot #164582 in the upper 4 panels. The bottom 
panel shows the time history of the FRNN output 
 
Fig. 3 shows an example of the sensitivity study result of DIII-D shot #164582, where the evolutions of the 
sensitivity scores of each signal are plotted as a function of time.  At around 2 to 2.7 seconds, the disruption score 
slowly rise up, as shown in the last panel in Figure 6, and the plasma density is shown as the most sensitive channel. 
Experimentally during this time, the plasma density gradually rises due to impurity influxes, as shown in the first 
panel as a black line in Fig. 4. The influx of impurities is followed by the rise of the core radiation, which lead to 
disruption alarm at around 3s.  At the disruption alarm time, the channels with the highest sensitivity scores are core 
radiation and q95.  At round 3.5s, a large tearing mode starts to develop, possibly due to the high impurity level.  
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This in turn leads to mode locking as shown by the onset of the locked mode amplitude in the first panel of Fig. 3. 
Around this time, every channel becomes sensitive, and the sensitivity scores begin to change rapidly as the plasma 
current error rise up.  
 
4.2 Sensitivity score from “Zero-value Replacement Procedure” for “noise-aware” models 
 
In Fig. 5 we show the sensitivity study result for DIII-D shot #162975, using the “zero-value replacement 
procedure” for individual channels during inference studies using noise-aware models. It is illustrated that after 1.5 
seconds, the disruption score begins to increase and raised a disruption alarm.  The sensitivity score of different 
signals at the alarm time is shown in the lower panel of this figure as an indication of their contributions to the 
disruption alarm.  The internal conductivity, q95, and plasma density are all sensitive channels that can indicate a 
general deterioration of plasma shape and plasma control. This interpretation is qualitatively consistent with the 
observation of experimental characteristics.  At around 1.3 s, the plasma shape begins to become altered as the X 
point moves off-target.  At 1. 45s, the tearing mode begins to develop -- which plausibly evolves into the locked 
mode at round 1.6-1.7s when the disruption alarm rises.  In this shot, the locked mode amplitude is contaminated by 
stron5g noise from the extra “i-coil waveform.” 
 
It is important and significant to highlight the fact that in both of the shots that we have analyzed as examples here 
that although tearing modes which finally locked are important causes for plasma disruptions, the actual locked 
mode amplitude is not a sensitive signal for both of these shots.  Since we did not use the “n1rms” signals as input 
for these studies, our results indicate that the deep neural network can process the basic plasma information 
effectively and that the interpretation of the outputs in the form of a real-time sensitivity study can provide early 
diagnostic information with associated guidance for plasma control and detailed disruption proximity analysis.  
Accordingly, such sensitivity studies are indeed potentially capable of contributing significantly to real-time 
disruption mitigation and avoidance investigations. 

 
 
FIG. 5. DIII-D shot #162975. The upper panel shows the evolution of the plasma current (red line) and the FRNN 
output of the disruption score (blue line) 
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5.0  SUMMARY & ASSOCIATED FUTURE INVESTIGATIONS  
 
In the present paper we have explained and provided details of the implementation of our AI/deep learning based 
models into the DIII-D plasma control system (PCS). This has included the introduction of a new method of 
interpreting results from deep neural networks using a sensitivity study methodology,  The associated significance 
and implications for future plasma control systems have been carefully articulated.  In ongoing and future 
investigations, we plan to extend and interconnect both aspects of this work by connecting the deep learning based 
model with inference engine implemented to an advanced workflow that integrates real-time sensitivity studies 
output to the proximity control architecture designed for handling major disruption causes in the DIII-D plasma 
control system [6] 
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