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Sheared rotation effects on kinetic stability in enhanced confinement
tokamak plasmas, and nonlinear dynamics of fluctuations and flows
in axisymmetric plasmas *

G. Rewoldt,†,a) M. A. Beer, M. S. Chance, T. S. Hahm, Z. Lin, and W. M. Tang
Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543-0451

~Received 20 November 1997; accepted 8 January 1998!

Sheared rotation dynamics are widely believed to have significant influence on
experimentally-observed confinement transitions in advanced operating modes in major tokamak
experiments, such as the Tokamak Fusion Test Reactor~TFTR! @D. J. Grove and D. M. Meade,
Nucl. Fusion25, 1167 ~1985!#, with reversed magnetic shear regions in the plasma interior. The
high-n toroidal drift modes destabilized by the combined effects of ion temperature gradients and
trapped particles in toroidal geometry can be strongly affected by radially-sheared toroidal and
poloidal plasma rotation. In previous work with the FULL linear microinstability code, a simplified
rotation model including only toroidal rotation was employed, and results were obtained. Here, a
more complete rotation model, which includes contributions from toroidal and poloidal rotation and
the ion pressure gradient to the total radial electric field, is used for a proper self-consistent
treatment of this key problem. Relevant advanced operating mode cases for TFTR are presented. In
addition, the complementary problem of the dynamics of fluctuation-drivenE3B flow is
investigated by an integrated program of gyrokinetic simulation in annulus geometry and gyrofluid
simulation in flux tube geometry. ©1998 American Institute of Physics.
@S1070-664X~98!91705-0#
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I. INTRODUCTION

Sheared rotation dynamics are widely believed to h
significant influence on experimentally-observed confi
ment transitions in advanced operating modes in major to
mak experiments, such as the Tokamak Fusion Test Rea1

~TFTR!, with reversed magnetic shear regions in the plas
interior.2 The high-n ~toroidal mode number! toroidal drift
modes destabilized by the combined effects of ion temp
ture gradients and trapped particles in toroidal geometry
be strongly affected by radially-sheared toroidal and poloi
plasma rotation. In previous work with the FULL linear m
croinstability code,3,4 a simplified rotation model5,6 including
only toroidal rotation was employed, and results7,8 were ob-
tained. However, a more complete rotation model,9 which
includes contributions from toroidal rotation and poloidal r
tation and the ion pressure gradient to the total radial elec
field, is needed for a proper self-consistent linear treatm
of this key problem. Specifically, this new model is capa
of including effects of theE3B shearing frequency in gen
eral geometry,10 written in terms of equilibrium quantities
and evaluated at the outboard midplane,vE

52pu@(RBu)2/B#]/]C(Er /RBu)u, whereC is the poloidal
flux and Bu is measured via the Motional Stark Effe
diagnostic,2 andkr.ku has been assumed in accordance w
the results from measurements in TFTR11 and
simulations.12–15 We includevE on an equal basis with th
other rotation model terms in the linear instability calcu

*Paper kWeaI1-6 Bull Am. Soc.42, 1946~1997!.
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tion. Both rotation models result in stabilizing or destabili
ing drifts in addition to the usual magnetic drifts. All of th
rotation terms are now evaluated for a numerical
calculated flux-coordinate magnetohydrodynamic~MHD!
equilibrium with magnetic surfaces of arbitrary cros
sectional shape and aspect ratio. NeededE3B levels for lin-
ear stabilization with this approach are compared with c
responding levels from the heuristic stabilization criteri
vE;g0, whereg0 is the linear growth rate without rotatio
effects, as observed in ion temperature gradient~ITG! mode
simulations,14,16 which has sometimes shown good corre
tions with experimental transitions. Relevant advanced op
ating mode cases for TFTR will be presented.

Many magnetic confinement experiments have indica
that E3B shear can suppress turbulence and conseque
lead to significant reduction of plasma transport.17,18 It has
been also observed in gyrofluid simulations that the fluct
tion drivenE3B flow plays a dominant role in the nonlinea
saturation of ITG turbulence~both with and without trapped
electron dynamics15! which has been identified as a likel
deterrent to efficient confinement in tokamak plasmas. I
therefore of vital importance for nonlinear simulations to a
curately treat the dynamics of the fluctuation driven flo
This complementary nonlinear problem is investigated in
present work by an integrated program of gyrokinetic sim
lation in annulus geometry19 and gyrofluid simulation in flux
tube geometry.

The new linear rotation model implemented in the FUL
code is worked out in Sec. II, and results for several TF
cases are presented and compared in Sec. III. In Sec.
results from three dimensional global gyrokinetic simu
5 © 1998 American Institute of Physics
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tions are used to investigate the validity regimes of estima
of poloidal rotation damping and the residual level. Resu
for the dynamics of turbulence-driven fluctuatingE3B flows
from nonlinear flux-tube gyrofluid simulations are presen
and discussed in Sec. V. Conclusions are given in Sec.

II. LINEAR ROTATION MODEL

We will implement a linearized version of the rotatio
model described in Ref. 9, and solve the corresponding
rokinetic equation by an extension of the method descri
in Ref. 3. While it was shown in Refs. 20 and 21 that t
ballooning representation22 breaks down for substantial va
ues of the Mach number, it was also shown in Refs. 20
23 that this representation is still usable for small values
the Mach number, and we will thus continue to employ
here. A prescription for the ballooning parameter22 u0 is
needed, in addition to the rotation model itself. The simpl
choice,u050, which is the usual choice in the absence
rotation, is employed here. An alternative would be to av
age the eigenfrequency over 0<u0<2p, as specified in Ref
21. However, a better prescription could in principle be d
termined as follows: One-dimensional~ballooning represen
tation! and two-dimensional calculations for toroidal dr
modes have been compared for the older rotation mode
Refs. 5 and 6 in Ref. 8, and a way of modeling one of
missing two-dimensional effects in the one-dimensional c
culation was found there. This was the effect of ‘eigenfun
tion shearing,’ in which the individual eddies in the tw
dimensional eigenfunction twist as the Mach numb
increases, and the value ofkr at u50 increases. By making
u0 ~which enters the ballooning representation expression
kr) an explicit, fitted function of the local Mach numbe
reasonable quantitative agreement was obtained for
growth rates between the one-dimensional and tw
dimensional calculations. This procedure is not carried
for the new rotation model presented in this section, bu
principal it could be. A related comparison was made in R
24.

We employ the PEST-I flux coordinate system describ
in more detail in Ref. 3, in whichz is the toroidal angle,u is
a poloidal angle variable, andc is a radial coordinate relate
to the poloidal fluxC by dC52pB0F(c)dc, where the
functionF(c) is calculated as part of the MHD equilibrium
solution. Also, the collision operator discussed in Refs. 4 a
25 is used. The gyrocenter velocity is given by Eq.~15! of
Ref. 9, but for the unperturbed orbit, to lowest order inr j /L,
where r j[(2Tj /mj )

1/2/(ejB0 /mjc) is the gyroradius for
speciesj and L is an equilibrium radial length scale, it be
comes

dR̄

dt
5v ib1uE1

1

ejB
b3@m¹B1mj~v ib1uE!

•¹~v ib1uE!#. ~1!

Here,b[B/B, uE[b3¹F/B, and we will neglect any po-
loidal angle dependence of the equilibrium electrostatic
tentialF to this order, for the reasons given in Ref. 9, so th
F depends only onc. Note that in Eq.~1! there are both
s
s
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linear terms and quadratic terms with respect touE , and that
some of the terms are proportional to¹uE , and thus involve
F9 ~and thereforeEr8). In the Maxwellian equilibrium
distribution functionF j , we include a parallel shift byuz j

~also referred to asVf), so that F j}exp(2E/Tj) and
¹ ln Fj 5 ¹ ln nj @11hj (E/Tj23/2)# 1 (mj /Tj ) (v i2uz)¹uz j

2(m/Tj )¹B, whereE[(mj /2)(v i2uz j )
21mB. Then, after

some algebra, the linearized gyrokinetic equation can
written in the ballooning representation in the form

]ĥs j

]t
1 ik•

dR̄

dt
ĥs j1n f j ĥs j

52 i H v2k–uE2kiuz j2v* jF11h j S E

Tj
2

3

2D
1

mj

Tj
uz j~v i2uz j !

r n j

r uz j
G J ej

Tj
F j f̂~u!J0 , ~2!

in standard notation. Equation~2! is written in the electro-
static limit, but the generalization to the electromagnetic c
is straightforward, as shown in Refs. 3 and 4.

On both sides of Eq.~2!, the quantityk–uE appears.
With the ballooning representation in our coordinate syste
this becomesk–uE52nF8(c)/B0F(c), which can be Tay-
lor expanded aboutc (0), the orbit time-average value ofc,
as k–uE.(2n/B0)@F8(c (0))/F(c (0))1(c2c (0))(F9/F
2F8F8/F2)uc(0)

#. The first term in the Taylor series is th
usual Doppler shift term, and the second term@}(]/]C)
3(Er /RBu)# contains theE3B shearing frequency,vE .
Thus, vE enters the linear calculation through this term
Eq. ~2!, and will therefore appear in the final mode equatio
The constancy of the toroidal canonical angular moment
can be used to obtain a computationally useful relation
evaluating this second term, which isc2c (0)

.(mjc/B0Fej )@Rv i2(Rv i)(0)#.
The additional rotational terms on the left hand side

Eq. ~2!, other than the Doppler shift term, can be combin
with the magnetic gradient and curvature drift terms to g
an extended drift frequency. After considerable algebra
can be evaluated in the PEST-I flux coordinates as

vd j~u!52
2pncTj

ej
F ~ v̂21 v̂ i

2!@k11~u2u0!k2#

2
v̂'

2 B0

4pFB2

db

dc
1

1

v j
2 @k31~u2u0!k4#

1
v̂ i

v j
2 @k51~u2u0!k6#G2

nmjc

B0
2Fej

S F9

F 2
F8F8

F2 D
3@Rv i2~Rv i!

~0!#, ~3!

where v j[(2Tj /mj )
1/2, v̂[v/v j , v̂ i[v i /v j , v̂'[v' /v j ,

ûz j[uz j /v j , and the sixk ’s can be expressed in terms of th
PEST-I equilibrium and mapping metric quantities.

We define a scaled JacobianĴ[J/B0F such thatb•¹

5(1/BĴ )(]/]u), acting only onf̂(u), so that our linearized
gyrokinetic equation~2! becomes
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v i~u!

Ĵ~u!B~u!

]

]u
ĥs j2 i @v1v11 in f j2vd j~u!#ĥs j~u!

52 i H v1v11sv2~u!1 iuz jb•¹2v* j

3F11h j S E

Tj
2

3

2D12
r n j

r uz j
ûz j~ v̂ i2ûz j ! D J

3
ej

Tj
F j f̂~u!J0~u!, ~4!

where v1[nF8/B0F is the Doppler shift frequency an
v2(u) [ (nmjc/B0

2Fej ) (F9/F2 F8F8/F2)u Rv i2(Rv i)(0)u
}vE . Note thatvd j as given by Eq.~3! contains both even
terms and odd terms ins[ sign(v i), unlike the usual mag-
netic drift frequency, which contains only even terms; w
separatevd j into even and odd parts,vd j5vd j

e 1svd j
o .

Then, we can solve Eq.~4! for ĥs j by a straightforward
extension of the method of Ref. 3. The solution for circul
ing particles is the same as that in Ref. 3 with the substitu
of $v1v11sv2(u)1 iuz jb•¹2v* j@11h j (E/Tj23/2)
12(r n j /r uz j )ûz j ( v̂ i2ûz j )#% for (v2v

* j
T ). The trapped-

particle solution is the same as that in Ref. 3, with the c
responding substitution, and with additional terms due
vd j

o . Employing the results forĥs j (u) in the quasineutrality
condition gives us the eigenmode integral equation. The
turbed electrostatic potentialf̂(u) is then expanded in term
of chosen basis functions~Hermite functions! so that the in-
tegral equation is converted into a matrix equation, which
solved by standard methods. The solution procedure, and
electromagnetic generalization, are described in detai
Refs. 3 and 4.

III. LINEAR ROTATION RESULTS

To investigate the effects of rotation, we start with a ca
that was investigated in Ref. 8 using the old ‘‘Vf’’ rotation
model of Refs. 5 and 6, and recalculate the linear gro
ratesg and the real frequenciesv r using our new ‘‘Er ’’
rotation model as described in the previous section. This
case with experimentally-derived density and tempera
profiles and a numerically-calculated MHD equilibrium f
the TFTR ‘‘enhanced reversed shear’’~ERS! discharge
84011, att52.70 s, just before the ERS confinement tran
tion time. We do the calculation for the electrostatic toroid
drift mode, including a carbon impurity species and a h
beam species with a slowing-down equilibrium distributi
function. For this case we will use theEr profile obtained
from Er5VfBu2VuBf1(1/eCnC)dpC /dr, with all the
quantities on the right hand side being experimentally de
mined, except that forVu we useVu

neo, the neoclassica
estimate26 for Vu . We define the local Mach numberM
[uvEu/v i , and we will varyM artificially by multiplying the
entireF profile by a constant, and we will multiply theVf

profile by the same constant.
Results forg and v r versusM for r /a50.2 for this

TFTR ERS case withn521, kur i50.88, and ballooning
parameter22 u050 are shown in Figs. 1~a! and 1~b!, respec-
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tively. Curve~i! shows the effect of this artificial variation o
M , keeping the first and second terms in our Taylor ser
expansion ofk–uE @the v1 and v2(u) terms in Eq.~4! and
the last term invd j(u) in Eq. ~3!# as the only rotational
terms. We see that these terms can decrease the growth
substantially, but do not give complete stabilization at a
relevant value ofM . For curve~ii !, we add in the rest of the
terms for theEr rotation model@thek3, k4, k5, andk6 terms
in vd j(u) in Eq. ~3!#; we see that the mode can be almo
completely stabilized, but only at values ofM that are sev-
eral times higher than the experimental value. Curve~iii !
shows the corresponding results obtained with the oldVf

model, and these are seen to be roughly similar to those
the newEr model, at least in this case, despite the diffe
ences in the two models.

Another point to notice in Fig. 1 is that the experimen
value ofM falls short by a factor of several from that need
to completely stabilize the mode. Also, the neededE3B

FIG. 1. ~a! Linear growth rateg and ~b! real frequencyv r for TFTR ERS
discharge 84011 att52.70 s, for the electrostatic toroidal drift mode wit
carbon and a slowing-down beam, forr /a50.200,n521, kur i50.88, and
Vf}M . Here, curve~i! corresponds to theEr rotation model with thev1

andv2(u) terms only, curve~ii ! to theEr model with all terms, and curve
~iii ! to theVf rotation model.
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level for linear stabilization from the heuristic stabilizatio
criterion vE;g0, observed in ITG mode simulations,14,16

whereg0 is the linear growth rate without rotation effect
would say that the mode should not be stabilized here,
cause (vE)exp falls short ofg0 by a factor of several also
The two shortfall factors differ by a factor of two or mor
but we have at least rough qualitative agreement between
two stabilization criteria, ifEr were to be scaled up to thos
levels. However, theEr rotation model variation ofg with
M is not linear for this case! The results from theEr model
in general show both linear and quadratic behavior, as w
as ‘flat spots’ and ‘tails’, for different cases in differe
ranges ofM .

The corresponding results for this TFTR ERS case
r /a50.3 are shown in Fig. 2 forn541 andkur i50.79. The
linear growth rates in Fig. 2~a! are shown in curve~i! with
only the first and second Taylor series terms as the rotati
terms, and again these are only partially stabilizing. With
the terms in theEr model, as shown in curve~ii !, g is almost
linear in M , with one ‘flat spot’. Curve~iii !, for the oldVf

model, is at first almost flat and then quadratic asM in-
creases, whereas curve~ii ! for the Er model is almost linear

FIG. 2. As in Fig. 1, except withr /a50.300,n541, andkur i50.79.
e-

he

ll

r

al
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~with a ‘flat spot’!, but the correspondingMcrit values for
marginal stability are almost the same. Also, for this radi
g0 /(vE)exp is almost exactly equal toMcrit /Mexp. In this
sense, theEr rotation model and the heuristic criterion fo
stabilizationvE;g0 are in nearly exact agreement for th
case, if theEr level were to be scaled up. The real freque
cies, shown in Fig. 2~b!, are again almost linear, as expecte

Another TFTR ERS case of interest is for dischar
103794, att52.0 s, which is the time when the measur
value ofVu reaches its maximum magnitude. We will com
pare three different sets of input data for theEr radial profile:
Er50, corresponding to an absence of rotation,Er

5Er(Vu
neo), where the neoclassical estimate26 of Vu is used

to calculateEr from the radial force balance relationEr

5VfBu2VuBf1(1/eCnC)dpC /dr, and Er5Er(Vu
meas)

where the spectroscopically measured profile27 of Vu is used
in the same relation. The radial profiles forVu

neo andVu
meas

can be substantially different, by an order of magnitude
more, at localized times and places in the discharge. Co
spondingly, the associated profiles forEr , shown in Fig. 3,
and of the radial derivative ofEr , are drastically different in
the inner half of the cross-section, though roughly com
rable in the outer half. The corresponding results for
linear growth rates of the electrostatic toroidal drift mode,
kur i50.81 andu050, are shown in Fig. 4 for the thre

FIG. 3. Radial profiles ofEr(Vu
neo) andEr(Vu

meas) for TFTR ERS discharge
103794 att52.0 s.

FIG. 4. Radial profile forg for TFTR ERS discharge 103794 att52.0 s, for
the electrostatic toroidal drift mode with carbon and a slowing-down be
with Er50, Er(Vu

neo), andEr(Vu
meas).
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choices forEr . The mode is stable forr /a.0.3 due to a flat
spot there in the pressure profile. Forr /a.0.3, the~outer!
growth rate profiles are almost identical forEr50 and for
Er(Vu

neo), while the growth rate profile forEr(Vu
meas) is

somewhat narrowed and is lowered by;30%. For 0.1
,r /a,0.3, the mode is unstable forEr50, but this~inner!
growth rate profile is lowered by;40% and narrowed to
0.2,r /a,0.3 for Er(Vu

neo). However, forEr5Er(Vu
meas),

the mode is completely stabilized in this inner region. In fa
even forEr50.13Er(Vu

meas), the mode would still be com
pletely stabilized, so that it is likely that this linear stabiliz
tion would actually occur at an earlier time, whenVu

meas is
not as large.

The corresponding experimental profile forvE(Vu
meas) is

shown in Fig. 5, along with the growth rate curves from F
4. Comparing thevE(Vu

meas) curve with theEr50 growth
rate curve, which is the curve for the growth rateg0 without
rotation, the heuristic criterion would say that for the inn
region 0.15,r /a,0.3 the mode should be stable, sincevE

.g0 there, and the result with the new rotation model us
Er(Vu

meas) also is that the mode is stable there. For 0
,r /a,0.42,vE,g0, so the heuristic criterion says that th
mode should be unstable in that region. In fact, the n
rotation model calculation withEr(Vu

meas) gives a slightly
wider region of instability, 0.32,r /a,0.45, but this extent
is reasonably close. Thus, the FULL code calculation w
the Er rotation model can give comparable results to
heuristic criterion, though we saw for the previous cases
they are often similar only within a factor of two or so on th
necessary stabilizing level ofEr . Once linear stabilization is
achieved in this inner region, so that the anomalous trans
is suppressed there, nonlinear processes of the sort desc
by Diamondet al.28 and Newmanet al.29 and others can ac
so as propagate this region of suppression outward.

IV. STUDY OF FLUCTUATION-GENERATED FLOW IN
GYROKINETIC SIMULATIONS

Recent results from TFTR,27 of the sort shown in Fig. 3
indicate that significant, radially localizedE3B flow can be
generated in the core by some mechanism which canno
described by the present neoclassical theory. While ther

FIG. 5. As in Fig. 4, but with a different vertical scale, and showing a
vE(Vu

meas).
,
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no quantitative theoretical prediction to date which can
compared to the experimental data directly, it has been
served in many simulations that fluctuations can gene
E3B flow. In particular, the dominant role of th
fluctuation-generated small scaleE3B flow in the nonlinear
saturation of toroidal ITG turbulence,30,13,14 including the
case with trapped electron dynamics,15 has been observed i
gyrofluid flux-tube simulations. Its importance has been a
observed in gyrofluid simulations in sheared slab geometr31

and in gyrokinetic flux-tube32 and annulus19 simulations. It is
therefore of vital importance for realistic nonlinear simul
tions to accurately treat the dynamics of the fluctuatio
generatedE3B flow, as emphasized in Ref. 33.

We also note that such flows with wider radial scales
the order of a fraction of the system size have been o
observed in previous nonlinear simulations. These inclu
particle simulations of electron drift waves,34 gyrokinetic
simulations of ITG instabilities35 in slab geometry, fluid
simulations of dissipative drift wave turbulence models36

and fluid simulations of pressure gradient driv
turbulence.37 Theoretical discussions regarding the flow ge
eration mechanism via Reynolds’ stress and its potential
portance in enhancing confinement can be found in Ref.
A simple dynamic model based on this mechanism indica
that the poloidal flow shear excursion is usually of limite
duration.39 Finally, there is experimental evidence o
fluctuation-generated small scaleE3B flow from the DIII-D
edge as well.40

A new toroidal gyrokinetic particle code has been dev
oped using magnetic coordinates and Hamiltonian guid
center equations of motion. By utilizing a non-spectral Po
son solver,41 the new turbulence code can efficiently hand
general geometry and realistic equilibrium profiles. The d
namics of fluctuation-driven poloidalE3B flow is studied in
this section using both global and annular simulations wit
variety of boundary conditions. The residual poloidal flow
response to an initial perturbation which is constant on
magnetic surface has been calculated by an initial va
approach.33 Here, we solve the following gyrokinetic equa
tion with an initial sourced f 00 through gyrokinetic simula-
tions,

F ]

]t
1~v ib̂1vd1uE!•

]

]x
2b̂* •“~mB1F!

]

]v i
G f

5d f 00d~ t !,

where b̂* 5b̂1(v i /V)b̂3(b̂•“b̂). In the simulations, the
poloidal flow is initialized att50 and its steady state valu
is measured after a few bounce times. The residual level
poloidal flow in the simulations, as shown in Fig. 6, agr
well with the theoretical results of Ref. 33 in the high aspe
ratio limit where the theory is valid. We note that simila
results have also been obtained in flux-tube gyrokine
simulations.42

The relaxation of the initial poloidal flow in Fig. 6 oc
curs via damped oscillations with a characteristic freque
corresponding to that of the geodesic acoustic mo
~GAM!.43 In these processes, them51 harmonic can be ex
cited by toroidal coupling to them50 harmonic. To be con-
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sistent with the analytic theory, themÞ0 harmonics are sup
pressed in the simulations on the ground that they
Landau damped. However, when the safety factorq is large,
the resonant particles move out to the Maxwellian tails a
the m51 harmonic becomes undamped. As a result, the
cillations of residual poloidal flow persist.

Since the microturbulence in tokamaks typically has
ballooning structure, it is important to be able to model t
generation of poloidal flows fromm51 sources. This cou
pling of m51 sources to them50 harmonic is predomi-
nantly due to trapped particle effects. Because of the
down symmetry of the equilibrium magnetic field, only th
part of them51 harmonic that is even inu can generate
poloidal flow. This has been verified by the simulation r
sults, which show that the time asymptotic poloidal flow
finite for a u-even source and zero for au-odd source.

Gyrokinetic simulation results in this section show th
there is a significant enhancement ofE3B flow generation
with a non-zerom component of the drive. We also note th
in a generally shaped, finite aspect ratio tokamak, theE3B
shearing rate can also have strongu-dependence even whe
F is a flux function.10 In-out asymmetry of the fluctuation
suppression behavior in DIII-D, measured via heterody
microwave scattering,44 is in qualitative agreement with
prediction based on this observation.45

V. DYNAMICS OF TURBULENCE DRIVEN
FLUCTUATING E3B FLOWS FROM GYROFLUID
SIMULATION

In gyrofluid flux-tube simulations, fluctuations in th
electrostatic potential are nonlinearly driven by the turb
lence, leading to radially sheared poloidalE3B flows. These
‘‘radial’’ modes are roughly constant on a flux surface, b
have small radial scales, on the order of the turbulent s
size.

The linear damping of these poloidalE3B flows was
shown to be crucial and was investigated in Ref. 15. T
nonlinear drive of the flows is balanced by linear damp
and nonlinear damping. We first investigate the linear dam
ing of the flows by initializing a perturbation and solving th

FIG. 6. Linear flow damping for gyrofluid~solid! and gyrokinetic~dashed!
simulations for~1! initializing perpendicular flow only,F(r ). Also shown
are gyrofluid results~2! initializing perpendicular flow with a small paralle
flow ~dotted!.
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linearized gyrofluid equations46 forward in time. This flow
will initially experience fast collisionless damping, as show
in Fig. 6 for krr i /A250.2. Here, two different initial condi-
tions are used:~1! perpendicular flow only, by initializing
only F(r ), and~2! perpendicular flow with a small paralle
flow. Both initializations show a damping rate on the ord
of a few transit times. Results from gyrokinetic partic
simulations are also shown for case~1!, as discussed in Sec
IV. The gyrofluid and gyrokinetic results agree very well
the fast linear damping phase. Later in time, there is
smaller residual linearly undamped component, depend
on the initial conditions, as emphasized by Rosenbluth
Hinton.33 The present gyrofluid equations do not recover t
small residual flow component with much accuracy,
trapped particle effects are important. For this residual fl
to be significant nonlinearly, the nonlinear damping of t
flows would have to be weak, so that the linear details co
dominate. From the time history of thekrr i /A250.2 com-
ponent of the potential over the saturated phase of a non
ear gyrofluid simulation, its correlation function can be o
tained, as shown in Fig. 7. Since the correlation time of
flow is on the order of the fast linear damping rate, the flo
does not have time to relax to the residual flow compon
before nonlinear effects break it up. This correlation time
also on the order of the turbulent decorrelation time of
turbulence. When the nonlinear effects are strong enough
in this case, the short correlation time indicates that non
ear damping is saturating this component. Also, modify
the gyrofluid equations to change the linear level of resid
flow does not seem to change the heat flux as long as the
linear damping is retained, and the turbulence is not v
weak.

VI. CONCLUSIONS

An improved linear rotation model and its implement
tion in the FULL code linear eigenfrequency–eigenfuncti
calculation have been described. This ‘Er ’ model is formu-
lated in terms of the radial electric field,Er5VfBu2VuBf

1(1/eCnC)dpC /dr, and thus contains rotational contribu
tions fromVf , Vu , anddp/dr, whereas the older ‘Vf’ ro-
tation model only contains the contribution ofVf . Also, the

FIG. 7. Correlation function of thekur i /A250.2 component of the flow
from a nonlinear gyrofluid simulation.
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newEr model includes terms proportional to theE3B shear-
ing frequency~in flux coordinates! in the final mode equa
tion. Several TFTR ERS cases were presented, in which
old and new rotation models were compared, and show
give roughly comparable Mach numbers for complete sta
lization of the electrostatic toroidal drift mode. Compariso
are also made with the heuristic criterion,vE;g0, for com-
plete stabilization, and the neededEr values are seen to b
similar within factors of two or so. Finally, a comparison
results using the neoclassically estimated profile ofVu and
the much larger experimentally measured profile show
Vu

meas is sufficient to give complete stabilization in the inn
unstable region of one TFTR ERS discharge, whileVu

neo is
not. Of course, the sometimes bursty fluctuation le
changes47 and the confinement transitions and their propa
tion in tokamaks such as TFTR are really nonlinear pheno
ena, but nonlinear studies such as those in Refs. 28 an
indicate that some localized weakening of the underly
linear instability is needed for initiation of the transitio
Weakening due to negative magnetic shear and evolutio
the density and temperature profiles was considered in
8. Here, the weakening effects of shearedE3B rotation have
been investigated.

Analytic calculations33 of the residual flows have bee
substantiated by gyrokinetic simulations. These results s
that theu dependence of the turbulent source has a sign
cant impact on the flow generation and evolution. Nonlin
gyrofluid simulations find that the correlation time of th
flows is on the order of the fast linear damping time, in
cating that nonlinear damping effects may be playing a s
nificant role in the long time evolution of the flows, at lea
in the strongly turbulent parameter regimes that we h
studied. The residual flow level may be more important
weakly turbulent regimes near marginal stability. Go
agreement is found between the fast linear damping of
loidal flows in gyrofluid and gyrokinetic simulations.
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