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Sheared rotation dynamics are widely believed to have significant influence on
experimentally-observed confinement transitions in advanced operating modes in major tokamak
experiments, such as the Tokamak Fusion Test Re&€6FR) [D. J. Grove and D. M. Meade,

Nucl. Fusion25, 1167 (1985], with reversed magnetic shear regions in the plasma interior. The
high- toroidal drift modes destabilized by the combined effects of ion temperature gradients and
trapped particles in toroidal geometry can be strongly affected by radially-sheared toroidal and
poloidal plasma rotation. In previous work with the FULL linear microinstability code, a simplified
rotation model including only toroidal rotation was employed, and results were obtained. Here, a
more complete rotation model, which includes contributions from toroidal and poloidal rotation and
the ion pressure gradient to the total radial electric field, is used for a proper self-consistent
treatment of this key problem. Relevant advanced operating mode cases for TFTR are presented. In
addition, the complementary problem of the dynamics of fluctuation-drigesB flow is
investigated by an integrated program of gyrokinetic simulation in annulus geometry and gyrofluid
simulation in flux tube geometry. €998 American Institute of Physics.

[S1070-664X%98)91705-0

I. INTRODUCTION tion. Both rotation models result in stabilizing or destabiliz-

Sheared rotation dynamics are widely believed to havéng drifts in addition to the usual magnetic drifts. All of the
rotation terms are now evaluated for a numerically-

significant influence on experimentally-observed confine- _
ment transitions in advanced operating modes in major toka@alc_u_lat_ed flux-coordmate_ magnetohydrodyn_aijHD)

mak experiments, such as the Tokamak Fusion Test Réactdrailibrium with magnetic surfaces of arbitrary cross-
(TFTR), with reversed magnetic shear regions in the plasméecuona! §hape an.d aspect ratio. NeeledB levels for !|n—
interior2 The highn (toroidal mode numbertoroidal drift ~ €ar stabilization with this approach are compared with cor-
modes destabilized by the combined effects of ion temperar_espondlng Ievels. from Fhe heuristic stablllgat|on Crltgrlon
ture gradients and trapped particles in toroidal geometry caffe ™~ Yo, Wherey, is the linear growth rate without rotation
be strongly affected by radially-sheared toroidal and poloidafffects, as 04blserv1_ed in fon temperature grad{en®) mode
plasma rotation. In previous work with the FULL linear mi- Simulations;**® which has sometimes shown good correla-
croinstability codé;* a simplified rotation mod&f including tions with experimental transitions. Relevant advanced oper-
only toroidal rotation was employed, and resUftsvere ob-  ating mode cases for TFTR will be presented.

tained. However, a more complete rotation mddethich Many magnetic confinement experiments have indicated
includes contributions from toroidal rotation and poloidal ro- that EXB shear can suppress turbulence and consequently
tation and the ion pressure gradient to the total radial electritéad to significant reduction of plasma transpdrt! It has
field, is needed for a proper self-consistent linear treatmerf€en also observed in gyrofluid simulations that the fluctua-
of this key prob|em_ Speciﬁca”y' this new model is Capab|eti0n drivenExB flow plays a dominant role in the nonlinear
of including effects of theE xB shearing frequency in gen- saturation of ITG turbulencéoth with and without trapped—
eral geometry? written in terms of equilibrium quantities, €lectron dynamics) which has been identified as a likely
and evaluated at the outboard midplanewg deterrent to efficient confinement in tokamak plasmas. It is
=27|[(RB,)?/B]dl3¥ (E,/RB,)|, where¥ is the poloidal therefore of vital importance for nonlinear simulations to ac-
flux and B, is measured via the Motional Stark Effect curately treat the dynamics of the fluctuation driven flow.
diagnostic? andk, =k, has been assumed in accordance withThis complementary nonlinear problem is investigated in the
the results from measurements in TFFR and present work by an integrated program of gyrokinetic simu-
simulationst*5We includewg on an equal basis with the lation in annulus geomettyand gyrofluid simulation in flux

other rotation model terms in the linear instability calcula-tube geometry.
The new linear rotation model implemented in the FULL

“Paper kWeal1-6 Bull Am. Sod2, 1946(1997 code is worked out in Sec. I, and results for several TFTR
"Invited speaker. ' ' ' cases are presented and compared in Sec. lll. In Sec. IV,
dElectronic mail: grewoldt@pppl.gov results from three dimensional global gyrokinetic simula-
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tions are used to investigate the validity regimes of estimategnear terms and quadratic terms with respeat¢o and that

of poloidal rotation damping and the residual level. Resultssome of the terms are proportional¥aiz, and thus involve

for the dynamics of turbulence-driven fluctuatiBx B flows  &” (and thereforeE,s). In the Maxwellian equilibrium

from nonlinear flux-tube gyrofluid simulations are presenteddistribution functionF;, we include a parallel shift by,

and discussed in Sec. V. Conclusions are given in Sec. Vl.(also referred to asV,), so that Fjxexp(—~E/T;) and

Vin Fj =ViIn nj [1+ 7]J(E/TJ_3/2)] + (m /TJ) (U||_U§)VU{]‘

—(u/T;)VB, whereE=(m;/2)(v,—u,)“+ uB. Then, after

some algebra, the linearized gyrokinetic equation can be
We will implement a linearized version of the rotation written in the ballooning representation in the form

model described in Ref. 9, and solve the corresponding gy- . _

rokinetic equation by an extension of the method describedNoi ik. d_Rﬁ b

in Ref. 3. While it was shown in Refs. 20 and 21 that the dt dt o' “fitlel

ballooning representatiéhbreaks down for substantial val-

Il. LINEAR ROTATION MODEL

ues of the Mach number, it was also shown in Refs. 20 and  _ _ ;! | k.uc— kiU — w. | 1+ 7 E_ §
. T @~ K-Ue = KUg— @y T "2
23 that this representation is still usable for small values of j
the Mach number, and we will thus continue to employ it
.. . . m] rnj ej ~
here. A prescription for the ballooning paraméted, is + = Ug(vy—Ug)— = F;$(0)Jg, 2
needed, in addition to the rotation model itself. The simplest T; ugil) T

choice, §,=0, which is the usual choice in the absence ofin standard notation. Equatiof2) is written in the electro-
rotation, is employed here. An alternative would be to averstatic limit, but the generalization to the electromagnetic case
age the eigenfrequency overl,=2, as specified in Ref. s straightforward, as shown in Refs. 3 and 4.

21. However, a better prescription could in principle be de-  on poth sides of Eq(2), the quantityk-ug appears.
termined as follows: One-dimensiondallooning represen- — with the ballooning representation in our coordinate system,
tation) and two-dimensional calculations for toroidal drift this become-uz=—nd’ ()/BoF(#), which can be Tay-
modes have been compared for the older rotation model qbr expanded about?, the orbit time-average value of,
Refs. 5 and 6 in Ref. 8, and a way of modeling one of thegs  k.ug=(—n/By)[®' (H )/ F( )+ (y— JO)(D"IF
missing two-dimensional effects in the one-dimensional Ca'-_q)’f’/]:'z”w(o)]. The first term in the Taylor series is the

culation was found there. This was the effect of ‘eigenfunc-usua| Doppler shift term, and the second tefrm(d/aW)
tion shearing,” in which the individual eddies in the two- X (E, IRB,)] contains théExB shearing frequencywe

. . . . . r .
Q|men3|onal eigenfunction tw'it as the Mach nu,mberThus,wE enters the linear calculation through this term in
Increases, and the value qugt =0 Increases. By maklng Eq. (2), and will therefore appear in the final mode equation.
0o (which enters the ballooning representation expression fc”I('he constancy of the toroidal canonical angular momentum

ki) an explicit, fitted function of the local Mach number, .., e ysed to obtain a computationally useful relation for
reasonable quantitative agreement was obtained for th@valuating this second term, which isy— @

growth rates between the one-dimensional and tWOL(mJ-c/BOJ—'ej)[RvH—(Rv”)(o)].

dimensional calculations. This procedure is not carried out The additional rotational terms on the left hand side of
principal  could be. A related comparison was made in Refty 2. et han the Dopplershift term, can be combined
P P : P with the magnetic gradient and curvature drift terms to give

24, ; . :
n extended drift frequency. After considerable algebra, it
We employ the PEST-I flux coordinate system describeci1 d y g

) e ] s - ) an be evaluated in the PEST-I flux coordinates as
in more detail in Ref. 3, in whiclf is the toroidal angled is

a poloidal angle variable, angdlis a radial coordinate related 24
to the poloidal fluxW by dW=2=7ByF()dy, where the @gj(0)=—
function F(¢) is calculated as part of the MHD equilibrium

cT;

(;24‘1;%)['(14‘(0_ o) k2]

J

solution. Also, the collision operator discussed in Refs. 4 and 028 dg 1
25 is used. The gyrocenter velocity is given by Etp) of 0 P —[ K3+ (60— 6) k4]
Ref. 9, but for the unperturbed orbit, to lowest ordepjiL, 4mrB2dY
where p;=(2T;/m;)*%(e;By/m;c) is the gyroradius for . , L
speciesj andL is an equilibrium radial length scale, it be- " ﬂ[K (60— Bo)ke] |~ nmc (‘1_ o' F )
comes b2 O BZRe\ F R
drR 1 X[Rv;—(Rv) @], 3
Gt~V g bX VB Mo b+ [Roy=(Rey)™] ®

Wherev]-E(ZTj /mj)llz, l,}EU/Uj , l’}HEUH/Uj s l;lEUL /Uj ,
V(v b+ug)]. (1) Ug=uy /v, and the six’s can be expressed in terms of the

Here,b=B/B, ug=bxV®/B, and we will neglect any po- PEST-I eqwllbrlum and mappll?g metric quantities.

loidal angle dependence of the equilibrium electrostatic po- ~We define a scaled Jacobidh=J/ByF such thato-V

tential @ to this order, for the reasons given in Ref. 9, so that= (1/B:7)(ﬁ/(99), acting only on<}5(0), so that our linearized
@ depends only onj. Note that in Eqg.(1) there are both gyrokinetic equatior(2) becomes
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J0)B(g) 96 o 1.2 4 |

—i{w+w1+aw2(0)+iu§jb-V—w*j

rnj,\ ~ ~
+2_r UQ(U”_UQ)
ugj

X
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where w;=n®’'/ByF is the Doppler shift frequency and

1+77J T—J_E

x%Fj[ﬁ(a)Jo(e), 4
J

v (10° sec™)

0.2

(0

exper.
w,(0) = (nmyc/BEFey) (B"1F— &' 1 72)| Roy— (Ro) )| |value
«wg. Note thatwy; as given by Eq(3) contains both even
terms and odd terms ia= sign(v,), unlike the usual mag-
netic drift frequency, which contains only even terms; we
separatewy; into even and odd partswgj=wg;+ 0wy .
Then, we can solve Eq4) for ﬁ(,j by a straightforward
extension of the method of Ref. 3. The solution for circulat-
ing particles is the same as that in Ref. 3 with the substitution
of  {wtwi+owy(0)+iusb-V—ow,;[1+7,(E/T;—3/2)
+2(rnj /T ugi)Ugj(vy—Ug) 1} for (o—w, ;). The trapped-
particle solution is the same as that in Ref. 3, with the cor- g
responding substitution, and with additional terms due to
ng. Employing the results foﬁ,,j(e) in the quasineutrality
condition gives us the eigenmode integral equation. The per
turbed electrostatic potenti&l(e) is then expanded in terms
of chosen basis function&lermite function$ so that the in-
tegral equation is converted into a matrix equation, which is
solved by standard methods. The solution procedure, and th
electromagnetic generalization, are described in detail in
Refs. 3 and 4.
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FIG. 1. () Linear growth ratey and(b) real frequencyw, for TFTR ERS
discharge 84011 dt=2.70 s, for the electrostatic toroidal drift mode with

. . . . carbon and a slowing-down beam, fiola=0.200,n=21, k,p;=0.88, and
To Investigate the effects of rotation, we start with a CaSQ/QSMM. Here, curve(i) corresponds to th&, rotation model with thew,

that was investigated in Ref. 8 using the ol ;" rotation andw,(6) terms only, curveii) to the E, model with all terms, and curve
model of Refs. 5 and 6, and recalculate the linear growtHiii) to theV, rotation model.
ratesy and the real frequencies, using our new ‘E,”
rotation model as described in the previous section. This is a
case with experimentally-derived density and temperaturéively. Curve(i) shows the effect of this artificial variation of
profiles and a numerically-calculated MHD equilibrium for M, keeping the first and second terms in our Taylor series
the TFTR “enhanced reversed sheafERS discharge expansion ok-ug [the w; and w,(6) terms in Eq.(4) and
84011, at=2.70 s, just before the ERS confinement transi-the last term inwy;(#) in Eq. (3)] as the only rotational
tion time. We do the calculation for the electrostatic toroidalterms. We see that these terms can decrease the growth rate
drift mode, including a carbon impurity species and a hotsubstantially, but do not give complete stabilization at any
beam species with a slowing-down equilibrium distributionrelevant value oM. For curve(ii), we add in the rest of the
function. For this case we will use tHg, profile obtained terms for theE, rotation mode[the x5, k4, k5, andxg terms
from E,=VyB,—VB,+(llecnc)dpc/dr, with all the in wg;(6) in Eg. (3)]; we see that the mode can be almost
guantities on the right hand side being experimentally detereompletely stabilized, but only at values BF that are sev-
mined, except that fol, we useV}®°, the neoclassical eral times higher than the experimental value. Cufiie
estimaté® for V,. We define the local Mach numbév shows the corresponding results obtained with the \ojd
=|vg|/v;, and we will varyM artificially by multiplying the  model, and these are seen to be roughly similar to those with
entire ® profile by a constant, and we will multiply thé¢,  the newE, model, at least in this case, despite the differ-
profile by the same constant. ences in the two models.

Results fory and w, versusM for r/a=0.2 for this Another point to notice in Fig. 1 is that the experimental
TFTR ERS case witm=21, k,p;=0.88, and ballooning value ofM falls short by a factor of several from that needed
paramete” 6,=0 are shown in Figs.(®) and 1b), respec- to completely stabilize the mode. Also, the neededB

Ill. LINEAR ROTATION RESULTS



1818 Phys. Plasmas, Vol. 5, No. 5, May 1998

Rewoldt et al.
3 : : : :
- —— - — — (a)
"o 2.5 . (iii) 1
7] \,
5 24 \ i
b
1.5+ A=l _ () +
ex
1 'b((’)E) P T
057 exper. (ii) T )
value r’a
0 t ; t t FIG. 3. Radial profiles oE,(V}®%) andE,(V}'*®) for TFTR ERS discharge
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20 ' : ' ' (with a ‘flat spot), but the correspondinil.,;; values for
. (b) marginal stability are almost the same. Also, for this radius,
o0 electr_on di_amag. di_l’. Yo/ (wg)®*P is almost exactly equal tV i /Meyp. In this
3 ion diamag. dir. sense, theée, rotation model and the heuristic criterion for
ey 290 - 1 stabilizationwg~ 7y, are in nearly exact agreement for this
= case, if theE, level were to be scaled up. The real frequen-
s cies, shown in Fig. @), are again almost linear, as expected.
-40 A T Another TFTR ERS case of interest is for discharge
N 103794, att=2.0 s, which is the time when the measured
-60 - N T value ofV, reaches its maximum magnitude. We will com-
(i) pare three different sets of input data for fheradial profile:
80+ exper ‘\ (i) 4 E,=0, corresponding to an _ absen.ce of ro.tatiOE,
Tvalue. NN =E,(V§°9), where the neochssmaI estim&tef V,, is gsed
-100 : : : \= to calculateE, from the radial force balance relatios,
0 02 0.4 0.6 08 1 =VyB,—V,B,+(llecnc)dpe/dr, and E=E (V§®®)
M (r/a=0.3)

FIG. 2. As in Fig. 1, except witlh/a=0.300,n=41, andk,p;=0.79.

where the spectroscopically measured préfité V, is used
in the same relation. The radial profiles fg}°° and V§¢?°
can be substantially different, by an order of magnitude or

more, at localized times and places in the discharge. Corre-
spondingly, the associated profiles 6y, shown in Fig. 3,

level for linear stabilization from the heuristic stabilization @nd of the radial derivative df, , are drastically different in
criterion wg~ o, observed in ITG mode simulatioh$1®

the inner half of the cross-section, though roughly compa-
where y, is the linear growth rate without rotation effects, rable in the outer half. The corresponding results for the

would say that the mode should not be stabilized here, bdin€ar growth rates of the electrostatic toroidal drift mode, for
cause (g)®*P falls short of vy by a factor of several also.

opi=0.81 and =0, are shown in Fig. 4 for the three
The two shortfall factors differ by a factor of two or more,

but we have at least rough qualitative agreement between the
two stabilization criteria, ife, were to be scaled up to those

2 . r r r
levels. However, théE, rotation model variation ofy with E. (V,"°%)
M is not linear for this case! The results from tEe model —~ 1.5} E ' .
in general show both linear and quadratic behavior, as well ‘v P A
as ‘flat spots’ and ‘tails’, for different cases in different ‘& 1L E (v neo J 3 ]
ranges ofM. - (Vg .

The corresponding results for this TFTR ERS case for < ; \
r/a=0.3 are shown in Fig. 2 fan=41 andkp;=0.79. The 05} i R
linear growth rates in Fig.(2) are shown in curvei) with , ! ".‘
only the first and second Taylor series terms as the rotational 0 / A7 L4
terms, and again these are only partially stabilizing. With all 0 0.1 02 0.3 04 0.5
the terms in thée, model, as shown in curv@), y is almost r/a
linear in M, with one ‘flat spot’. Curveiii), for the oldV

. . : . FIG. 4. Radial profile fory for TFTR ERS discharge 103794tat 2.0 s, for
model, is at first almost flat and then quadratic Msin-
creases, whereas curi€) for the E, model is almost linear

the electrostatic toroidal drift mode with carbon and a slowing-down beam,
with E,=0, E,(V}®9, andE,(V}©%9.
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5 no quantitative theoretical prediction to date which can be
I A ] compared to the experimental data directly, it has been ob-
4L ] 1 served in many simulations that fluctuations can generate
= Lo (V™) ] ExB flow. In particular, the dominant role of the
"0 3L [ A fluctuation-generated small scdtex B flow in the nonlinear
kS o Py E, (V,°%) ] saturation of toroidal ITG turbulenc®;!®* including the
= 2L % oo : ] case with trapped electron dynamidas been observed in
[ E v door E_-'r =0 ] gyrofluid flux-tube simulations. Its importance has been also
1t Vo) 7N o observed in gyrofluid simulations in sheared slab geontétry,
: N emeed 4 \ ] and in gyrokinetic flux-tub® and annulu® simulations. It is
0. T 0N ' .. 2 N therefore of vital importance for realistic nonlinear simula-
0 0.1 0.2 03 04 05 tions to accurately treat the dynamics of the fluctuation-
r/a generatedE X B flow, as emphasized in Ref. 33.

- , . . . We also note that such flows with wider radial scales on

FIG. 5. As in Fig. 4, but with a different vertical scale, and showing also . .

0 (V33 the order pf a frgctlon of t_he syst_em size have been often
observed in previous nonlinear simulations. These include
particle simulations of electron drift wavé$,gyrokinetic

choices forE, . The mode is stable fara=0.3 due to a flat Simulations of ITG instabilitie¥ in slab geometry, fluid

spot there in the pressure profile. Figa>0.3, the(outey ~ Simulations of dissipative drift wave turbulence modéls,
growth rate profiles are almost identical fBf=0 and for ~and fluid simulations of pressure gradient driven

E,(V5®9), while the growth rate profile foE, (V5°2y is turbulence’’ Theoretical discussions regarding the flow gen-

somewhat narrowed and is lowered by30%. For 0.1 eration mechanism via Reynolds’ stress and its potential im-

<r/a<0.3, the mode is unstable f&. =0, but this(innen portance in enhancing confinement can be found in Ref. 38.

growth rate profile is lowered by-40% and narrowed to A simple dynamic model based on this mechanism indicates

0.2<r/a<0.3 for E;(V}®9. However, forE,=E,(V]®?y, that the poloidal flow shear excursion is usually of limited

the mode is completely stabilized in this inner region. In factduration® Finally, there is experimental evidence of
even forE,=0.1X E,(VT®39, the mode would still be com- fluctuation-generated small scate<B flow from the DIII-D
pletely stabilized, so that it is likely that this linear stabiliza- €dge as welf?
tion would actually occur at an earlier time, whef®2Sis A new toroidal gyrokinetic particle code has been devel-
not as large. oped using magnetic coordinates and Hamiltonian guiding
The corresponding experimental profile fog(V7®29 is ~ center equations of motion. By utilizing a non-spectral Pois-
shown in Fig. 5, along with the growth rate curves from Fig.SON solvef’! the new turbulence code can efficiently handle
4. Comparing thewg(VT®®9 curve with theE, =0 growth gene_ral geometry and realistic gquilibrium p_rofiles._ Thg dy-
rate curve, which is the curve for the growth raigwithout ~ namics of fluctuation-driven poloid&XxB flow is studied in
rotation, the heuristic criterion would say that for the innerthis section using both global and annular simulations with a
region 0.15<r/a<0.3 the mode should be stable, singe  Variety of boundary conditions. The residual poloidal flow in
> v, there, and the result with the new rotation model using®SPONse to an initial perturbation which is constant on a
E.(V7%y also is that the mode is stable there. For 0.34magnetic 3surface has been calculated by an initial value
<r/a<0.42, wg<y,, so the heuristic criterion says that the a_lpproc’_;\cl‘?. Here, we solve the following gyrokinetic equa-
mode should be unstable in that region. In fact, the newion with an initial sourcesf o through gyrokinetic simula-
rotation model calculation wittE, (V}®y gives a slightly ~ tons,
wider region of instability, 0.3 r/a<0.45, but this extent R PR 9
is reasonably close. Thus, the FULL code calculation witj—+(v|,b+vd+ Ug)- 5—b* 'V(,LLB'F(I))E f
the E, rotation model can give comparable results to th I
heuristic criterion, though we saw for the previous cases that = §f ,,5(t),
they are often similar only within a factor of two or so on the A A
necessary stabilizing level & . Once linear stabilization is Where b* =b+(v;/Q)bx(b-Vb). In the simulations, the
achieved in this inner region, so that the anomalous transpoRoloidal flow is initialized at=0 and its steady state value
is suppressed there, nonlinear processes of the sort describédneasured after a few bounce times. The residual levels of
by Diamondet al?® and Newmaret al?° and others can act poloidal flow in the simulations, as shown in Fig. 6, agree
SO as propagate this region of Suppression outward. well with the theoretical results of Ref. 33 in the hlgh aspect
ratio limit where the theory is valid. We note that similar
results have also been obtained in flux-tube gyrokinetic
simulations®?
The relaxation of the initial poloidal flow in Fig. 6 oc-
Recent results from TFTR, of the sort shown in Fig. 3, curs via damped oscillations with a characteristic frequency
indicate that significant, radially localizeéeix B flow can be corresponding to that of the geodesic acoustic mode
generated in the core by some mechanism which cannot HEAM).*® In these processes, the=1 harmonic can be ex-
described by the present neoclassical theory. While there isited by toroidal coupling to thex=0 harmonic. To be con-

IV. STUDY OF FLUCTUATION-GENERATED FLOW IN
GYROKINETIC SIMULATIONS
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FIG. 6. Linear flow damping for gyrofluidsolid) and gyrokinetic(dashed
simulations for(1) initializing perpendicular flow onlyg(r). Also shown
are gyrofluid result$2) initializing perpendicular flow with a small parallel
flow (dotted.

FIG. 7. Correlation function of thép;/\2=0.2 component of the flow
from a nonlinear gyrofluid simulation.

linearized gyrofluid equatiof% forward in time. This flow

sistent with the analytic theory, te+0 harmonics are sup- Will initially experience fast collisionless damping, as shown
pressed in the simulations on the ground that they aré Fig. 6 fork,p;/\2=0.2. Here, two different initial condi-
Landau damped. However, when the safety faqtes large,  tions are used(1) perpendicular flow only, by initializing
the resonant particles move out to the Maxwellian tails and®Pnly ®(r), and(2) perpendicular flow with a small parallel
the m=1 harmonic becomes undamped_ As a resu]t’ the OstOW. Both initializations show a damplng rate on the order
cillations of residual poloidal flow persist. of a few transit times. Results from gyrokinetic particle

Since the microturbulence in tokamaks typically has aSimulations are also shown for casg, as discussed in Sec.
ballooning structure, it is important to be able to model thelV. The gyrofiuid and gyrokinetic results agree very well in
generation of poloidal flows froom=1 sources. This cou- the fast linear damping phase. Later in time, there is a
pling of m=1 sources to then=0 harmonic is predomi- smaller residual linearly undamped component, depending
nanﬂy due to trapped partic|e effects. Because of the upon the initial Conditions, as emphaSized by Rosenbluth and
down symmetry of the equilibrium magnetic field, only the Hinton* The present gyrofiuid equations do not recover this
part of them=1 harmonic that is even iM can generate Small residual flow component with much accuracy, as
poloidal flow. This has been verified by the simulation re-trapped particle effects are important. For this residual flow
sults, which show that the time asymptotic poloidal flow isto be significant nonlinearly, the nonlinear damping of the
finite for a #-even source and zero for@&aodd source. flows would have to be Weak, so that the linear details could

Gyrokinetic simulation results in this section show thatdominate. From the time history of tHgp;/2=0.2 com-
there is a significant enhancement®%B flow generation Ponent of the potential over the saturated phase of a nonlin-
with a non-zeram component of the drive. We also note that €ar gerfIUId simulation, its correlation function can be ob-
ina genera”y Shaped, finite aspect ratio tokamak,BExB tained, as shown in Flg 7. Since the correlation time of the
shearing rate can also have stromglependence even when flow is on the order of the fast linear damping rate, the flow
® is a flux function? In-out asymmetry of the fluctuation does not have time to relax to the residual flow component
suppression behavior in DIII-D, measured via heterodyndefore nonlinear effects break it up. This correlation time is
microwave scatteringf is in qualitative agreement with a also on the order of the turbulent decorrelation time of the

prediction based on this observatitn. turbulence. When the nonlinear effects are strong enough, as
in this case, the short correlation time indicates that nonlin-
V. DYNAMICS OF TURBULENCE DRIVEN ear damping is saturating this component. Also, modifying
FLUCTUATING E xB FLOWS FROM GYROFELUID the gyrofluid equations to change the linear level of residual
SIMULATION flow does not seem to change the heat flux as long as the fast

. . . _ ) linear damping is retained, and the turbulence is not ver
In gyrofluid flux-tube simulations, fluctuations in the pIng y

electrostatic potential are nonlinearly driven by the turbu-
lence, leading to radially sheared poloidzk B flows. These
“radial” modes are roughly constant on a flux surface, but
have small radial scales, on the order of the turbulent scale An improved linear rotation model and its implementa-
size. tion in the FULL code linear eigenfrequency—eigenfunction
The linear damping of these poloid&ixB flows was calculation have been described. Thig* model is formu-
shown to be crucial and was investigated in Ref. 15. Thdated in terms of the radial electric fiel&, =V B,— V4B,
nonlinear drive of the flows is balanced by linear damping+ (1/ecnc)dpc/dr, and thus contains rotational contribu-
and nonlinear damping. We first investigate the linear damptions fromV,, V,, anddp/dr, whereas the oldeV,’ ro-
ing of the flows by initializing a perturbation and solving the tation model only contains the contribution df; . Also, the

VI. CONCLUSIONS
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