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Linear comparison of gyrokinetic codes with trapped electrons
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Abstract

Three codes that solve the gyrokinetic equation in toroidal geometry are compared in the linear limit for the growth rates and real frequencies
of the ion temperature gradient (ITG) mode and the trapped electron mode (TEM). The three codes are the gyrokinetic toroidal code (GTC) and
GT3D, both of which are radially-global particle-in-cell initial-value codes, and FULL, which is a radially-local continuum eigenvalue code. With
the same standard input parameters on a reference magnetic surface, the three codes give good agreement for the linear eigenfrequencies, both
without (i.e. with adiabatic electron response) and with trapped electrons, as the perpendicular wavenumber and the ion temperature gradient input
parameters are varied.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Here we compare results in the linear limit from three dis-
tinct codes that solve the gyrokinetic equation, the gyroki-
netic toroidal code (GTC) [1], the GT3D code [2], and the
FULL code [3,4]. The GTC and GT3D codes are radially-
global, linear or nonlinear, particle-in-cell initial-value codes,
while the FULL code is a radially-local linear continuum eigen-
value code which employs the ballooning representation [5].
The GTC code as described in Ref. [1] and the GT3D code as
described in Ref. [2] had purely adiabatic electron response,
ne = −(en0/Te)(Φ − 〈Φ〉), where Φ is the electrostatic po-
tential and 〈. . .〉 denotes a flux-surface average. Extensions of
GTC and GT3D to include effects of trapped electrons will be
described here. The FULL code has always included the com-
plete electron response, which is described in Refs. [3] and [4],
including the effects of trapped electrons. The linear eigenfre-
quency results from the FULL code have previously been com-
pared several times with those from a corresponding radially-
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local initial-value code, with good agreement [6–8]. The GTC
code uses a local Maxwellian equilibrium distribution function
for both linear and nonlinear simulations when using uniform
marker particles, while the GT3D code uses a local Maxwellian
equilibrium distribution function for linear simulations but uses
a canonical Maxwellian equilibrium distribution function for
nonlinear simulations [2]. The FULL code also uses a local
Maxwellian equilibrium distribution function.

An extension of the GTC code to include trapped electron
effects is described in Section 2, as well as a corresponding
extension of the GT3D code. The case used for this comparison
is described in Section 3. Results in the adiabatic electron limit
and results with trapped electrons are presented in Section 4.
Conclusions are given in Section 5.

2. Trapped-electron extensions for GTC and GT3D codes

GTC is a full torus, particle-in-cell code for simulating low
frequency turbulence in fusion plasmas. The guiding center
equations of motion are derived from a Hamiltonian formula-
tion [9]. The gyrokinetic Poisson Equation [10] is solved using
an iterative solver [11] in real space, which could be imple-
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mented with good accuracy for arbitrary wavelengths of interest
(modes with kθρi ∼ 1.5 are resolved in simulations reported
in this paper). A global field-aligned mesh in magnetic coordi-
nates is constructed without any approximations in the geome-
try or the physics model.

Electron dynamics is implemented in the GTC code using
an electrostatic version of a fluid-kinetic hybrid electron model
[10] with an expansion of the electron response based on a
smallness parameter of the ratio of the sound speed to the elec-
tron thermal speed, i.e. the square-root of electron-to-ion mass
ratio. This hybrid model circumvents the electron Courant con-
dition and removes the high frequency ωH mode [10]. In the
lowest order, electron response is adiabatic. Linear and nonlin-
ear kinetic effects of electrons are retained in higher orders in
the expansion. While the first order in the expansion accurately
reproduces both linear and nonlinear Landau resonances in slab
geometry, the second order in the expansion is needed to accu-
rately describe the response of magnetically trapped particles
in toroidal geometry [12]. In the linear simulations reported in
this paper, the response of passing particles is mostly adiabatic.

GT3D solves the gyrokinetic Vlasov–Poisson system based
on the Hamiltonian formalism [13]. In principle, kinetic elec-
trons can be described by taking the drift-kinetic limit of the
gyrokinetic equation. However, a full drift-kinetic model in-
volves a high frequency mode (the kinetic Alfvén wave in the
electrostatic limit) with ωH = √

mi/me(k‖/k⊥)Ωi [14], and it
is an expensive model for the TEM, which is a low frequency
mode excited by toroidal precession of trapped electrons. To
avoid the high frequency mode, we have implemented a drift-
kinetic trapped electron model with adiabatic passing electron
response. The limitation on the time step in the drift-kinetic
trapped electron model, �t < ω−1

be , is an order of magnitude
longer than that in the full drift-kinetic model, �t < ω−1

H , and
the computational cost is significantly reduced, where ωbe is
the trapped electron bounce frequency. From linear test calcula-
tions, we have confirmed that both models give almost the same
real frequency and growth rate spectra for the ITG and TEM
modes, indicating that passing electrons respond almost adia-
batically to the TEM, at least in the linear regime. Therefore,
in the present linear benchmark calculations, the drift-kinetic
trapped electron model is used. Recently, the model has been
improved based on a bounce-averaged kinetic equation [15],
in which the fast electron bounce motion is averaged out un-
der the bounce-kinetic ordering ω/ωbe 	 1. In the bounce-
averaged trapped electron model, the limitation on the time
step is further relaxed to be comparable to that in the ITG
turbulence simulation, and also the convergence is improved
due to the absence of the ballistic noise coming from elec-
tron bounce motion. In Ref. [16], linear benchmark calculations
showed good agreement for the ITG-TEM spectra obtained by
the drift-kinetic and bounce-averaged trapped electron mod-
els.

Another extension of the code for TEM calculations is the
treatment of the ion polarization density, 1 − I0(b)e−b , in the
gyrokinetic Poisson equation, where I0 is the 0-th order modi-
fied Bessel function, b = k2⊥ρ2

i , and ρi ≡ √
Ti/mi/(eB0/mic).

For the ITG modes with adiabatic electrons, which are un-
stable for kθρi < 0.6, a Taylor expansion model with b 	 1,
1 − I0(b)e−b ∼ b, is a relatively good approximation. On the
other hand, in analyzing the ITG-TEM modes, which have
a broad unstable spectrum up to a short wavelength region
with kθρi � 0.6, we use a Pade approximation model, 1 −
I0(b)e−b ∼ b/(1 + b) [17]. In Refs. [16,18], these two mod-
els were implemented for a global gyrokinetic Poisson solver
based on a finite element approximation, and the applicability
of the model was discussed.

3. Case for comparison

All of the codes for the present comparison are in the
collisionless, electrostatic limit, and employ a model toroidal
geometry with circular, concentric magnetic surfaces. On a ref-
erence magnetic surface at radius r = r0 = 0.5a, where a is
the plasma boundary radius, all three codes use identical local
parameters called the “Cyclone parameters”, originally given
in Ref. [19]. On this surface, in standard notation, they are:
r/R = 0.18, q = 1.4, ŝ = q ′r/q = 0.776, Te/Ti = 1.0, R/Ln

= R/Lne = R/Lni = 2.22, where Lnj ≡ −(d lnnj/dr)−1,
R/LT e = R/LT i = 6.92, where LTj ≡ −(d lnTj/dr)−1 [so
that ηe = ηi = 3.114, where ηj ≡ (d lnTj/dr)/(d lnnj/dr)],
and kθρi = 0.335, where kθ ≡ nq/r , and n is the toroidal mode
number. Starting from this initial set of parameters, we will
vary kθρi (evaluated at the reference surface), with adiabatic
electrons and with trapped electrons, and also R/LT i (and thus
ηi ) (evaluated at the reference surface), with trapped electrons,
and compare the linear eigenfrequency results for the ITG root
and the TEM root. The units for the growth rates and real fre-
quencies are cs/Ln (evaluated at the reference surface), where
cs ≡ √

Te/mi .
The three codes differ away from this reference magnetic

surface. The FULL code is radially local; thus, it only knows
about the density and temperature values and gradients on the
reference surface with r = r0 = 0.5a. The GT3D code uses the
density profiles ne(r) = ni(r) = n0 exp{−(�r/Ln) tanh[(r −
r0)/�r ]} and the temperature profiles Tj (r) = T0j exp{−(�rj /

LTj ) tanh[(r − r0)/�rj ]}, with the density and temperature
gradients being obtained from these expressions, and with
a/ρi � 150. The q-profile is given by q(r) = q0 + q2(r/a)2,
with q0 = 0.854 and q2 = 2.184. The GTC code uses the
density gradient parameter profile κn(r) ≡ −(Rd lnn/dr) =
κn0 exp{−[(r − r0)/δr ]6} and the temperature gradient pa-
rameter profile κTj (r) ≡ −(Rd lnTj/dr) = κTj0 exp{−[(r −
r0)/δr ]6} for the radially-varying density and temperature gra-
dients, with the same q(r) profile as for GT3D, and with
a/ρi � 125. However, the GTC code, unlike the GT3D code,
takes the density and temperature values (but not the gradients)
to be constant in radius, so that, in particular, the ion gyro-
radius is constant in radius. Both codes use marker particle
distributions given by a local Maxwellian distribution. It will
be seen that the results from the GT3D and GTC are in accept-
able agreement despite these differences in the input density
and temperature profile shapes.
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Fig. 1. Results for varying kθ ρi ∝ n at fixed R/LT i = R/LT e = 6.92,
R/Ln = 2.22 (on reference surface) with adiabatic electron response.

4. Results

For the parameters listed in Section 3, first in the adia-
batic electron limit, for which only the ion temperature gradient
(ITG) mode is obtained, kθρi ∝ n is varied. The results from
the three codes are shown in Fig. 1. There is good agreement
among the three codes. The ITG mode linear growth rate γ has
a maximum around kθρi = 0.3 for this case. The real frequency
ωr increases monotonically with kθρi and is in the ion diamag-
netic direction (negative in this sign convention), as expected
for the ITG mode.

The corresponding results for varying kθρi including the ef-
fects of trapped electrons are shown in Fig. 2(a) for γ and in
Fig. 2(b) for ωr . When trapped electron effects are included for
this case, there are two roots, one corresponding to the trapped-
electron mode and one to the ion temperature gradient mode.
The ITG root has the higher growth rate at smaller values of
kθρi , and the TEM root has the higher growth rate at larger
values of kθρi . The FULL code, as an eigenvalue code, can find
any unstable root, even when the root in question is not the most
unstable root. The GTC and GT3D codes, on the other hand,
as initial-value codes always find the most unstable root. Thus,
when the growth rate curves for the two roots cross, these two
codes will jump from one root to the other, with a corresponding
jump in the real frequency. For the FULL code, then, there are
two curves over the entire range in kθρi , corresponding to the
two roots, in each of these figures, with the growth rate curves
crossing at about kθρi = 0.6. For the GTC and GT3D codes,
on the other hand, there is a single composite growth rate curve
for each code with a change in slope at about this kθρi value,
and two segments of the real frequency curve for each code,
corresponding to the two roots. The ITG root has a real fre-
quency in the ion diamagnetic direction and the TEM root has
a real frequency in the electron diamagnetic direction (positive
in this sign convention). The ITG growth rate curve again has a
maximum for kθρi � 0.3 for all three codes, whereas the TEM
growth rate curve almost plateaus after an initial increase. The
real frequency curves again monotonically increase in magni-
tude with kθρi . The agreement among the three codes for γ

and ωr is acceptable. Also, note that the maximum (over kθρi )
growth rate for the ITG root almost doubles due to the addition
of trapped electron effects to the previous adiabatic electron re-
sponse.

A corresponding scan over kθρi for R/LT i = 2.22 (ηi =
1.0), again for R/LT e = 6.92 and R/Ln = 2.22, is shown in
Fig. 3 (a) and (b) for γ and ωr , respectively. For this case, only
the TEM root is unstable since ηi = 1.0 is below the critical
value of ηi for the ITG root to be unstable. Again, the agree-
ment among the three codes is satisfactory.

The variations of γ and ωr with R/LT i , at fixed R/LT e =
6.92, R/Ln = 2.22, and kθρi = 0.335, are shown in Fig. 4 (a)
and (b), respectively. Again, the FULL code can track the TEM
root and the ITG root separately over their respective unstable
ranges in R/LT i , and they are shown as separate curves in the
figures. The GTC and GT3D codes again automatically find the
most unstable root for a given value of R/LT i , and there is thus
a change of slope in their growth rate curves and a jump in their
real frequency curves where the growth rate curves for the two
roots cross, near R/LT i = 5.5 (ηi = 2.5). Keeping this in mind,
the agreement in the eigenfrequencies among the three codes is
again acceptable.

The corresponding eigenfunctions for some of these cases
are shown in Figs. 5, 6 and 7, for R/Ln = 2.22, R/LT e = 6.92,
and kθρi = 0.335. The eigenfunctions from the FULL code are
plotted in Fig. 5 versus the non-periodic ballooning representa-
tion variable θ , which shows the variation along the equilibrium
magnetic field lines. Both eigenfunctions are localized around
θ = 0, but the TEM root eigenfunction in Fig. 5(a), for ηi =
1.00 (R/LT i = 6.66) is somewhat more localized than that for
the ITG root eigenfunction in Fig. 5(b), for ηi = 3.00 (R/LT i =
6.66). The GTC code eigenfunctions for the individual poloidal
harmonics, versus r/a, are shown in Fig. 6(a) for the TEM root
for ηi = 1.00 (R/LT i = 2.22), and in Fig. 6(b) for the ITG root
for ηi = 3.12 (R/LT i = 6.92). The individual poloidal harmon-
ics are centered on their respective mode-rational surfaces at
rmn, where q(rmn) = m/n, with roughly comparable widths for
each poloidal harmonic. However, the overall radial envelope
for the ITG root at ηi = 3.12 is substantially broader than that
for the TEM root at ηi = 1.00. The GT3D code eigenfunctions
for the individual poloidal harmonics, versus r/a, are shown in
Fig. 7(a) for the TEM root for ηi = 1.00 (R/LT i = 2.22), and in
Fig. 7(b) for the ITG root for ηi = 3.00 (R/LT i = 6.66). Again,
the individual poloidal harmonics are centered on their respec-
tive mode-rational surfaces at rmn, with roughly comparable
widths for each poloidal harmonic, which are also compara-
ble to those for GTC. For GT3D, the overall radial envelope for
the ITG root for ηi = 3.00 is slightly broader than that for the
TEM root at ηi = 1.00. The radial envelopes for the GTC eigen-
functions are shifted outward somewhat relative to the GT3D
envelopes, due to the differences in the density and tempera-
ture value and gradient profile shapes, as described previously.
The actual values of the toroidal and poloidal harmonic num-
bers are also different between GTC and GT3D, due to the use
of different reference temperature values, so as to have the same
reference kθρi values.
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Fig. 2. Results for varying kθ ρi ∝ n at fixed R/LT i = R/LT e = 6.92, R/Ln = 2.22 (on reference surface), including trapped electron response.

Fig. 3. Results for varying kθ ρi ∝ n at fixed R/LT i = 2.22, R/LT e = 6.92, R/Ln = 2.22 (on reference surface), including trapped electron response.

Fig. 4. Results for varying R/LT i at fixed R/LT e = 6.92, R/Ln = 2.22 and kθ ρi = 0.335 (on reference surface), including trapped electron response.
5. Conclusions

The GT3D and GTC codes now include trapped-electron
effects, while the FULL code has included trapped-electron
effects since the beginning. Adding these effects introduces
a new unstable root, the TEM root, in addition to increas-
ing the growth rate of the previous root, the ITG root. For
the present parameters, these two roots remain separate, while
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Fig. 5. Eigenfunctions from FULL code versus θ (nonperiodic variable along field line) for: (a) TEM root with ηi = 1.00 (R/LT i = 2.22) and (b) ITG root with
ηi = 3.00 (R/LT i = 6.66).

Fig. 6. Eigenfunctions from GTC code versus r/a for: (a) TEM root with ηi = 1.00 (R/LT i = 2.22) and (b) ITG root with ηi = 3.12 (R/LT i = 6.92) for individual
poloidal harmonics.

Fig. 7. Eigenfunctions from GT3D code versus r/a for: (a) TEM root with ηi = 1.00 (R/LT i = 2.22) and (b) ITG root with ηi = 3.00 (R/LT i = 6.66) for individual
poloidal harmonics.
for other parameters the two roots can “hybridize” to form
a single ITG-TEM root [20]. These trapped-electron desta-
bilization effects arise mainly due to the resonant collision-
less trapped-electron mode destabilization mechanism, due
to resonances between the mode eigenfrequency and the
orbit-time-average magnetic drift frequency (precession fre-
quency) [3].

Scans over R/LT i (ηi ) and kθρi show reasonably good
agreement on the linear growth rates and real frequencies for
both the ITG root and the TEM root among the GTC, GT3D,
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and FULL codes. This is true despite some differences among
the three codes in the radial variation (away from the reference
surface) of the input density and temperature values and gradi-
ents.

The present comparison is only for linear growth rates and
real frequencies and linear eigenfunctions. A task for the future
is extending the comparison among nonlinear gyrokinetic codes
to the nonlinear levels of particle and energy transport.
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