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The finite Larmor radius �FLR� effects play an important role in determining the threshold and the
growth rate of the mirror instability. In this study, a general dispersion relation of the mirror mode
with FLR effects is derived by using gyrokinetic theory. It shows that both the FLR effects and the
coupling to the slow sound wave are stabilizing. A gyrokinetic particle simulation code has been
developed for simulation of compressible magnetic turbulence driven by the mirror instability.
Results of the linear simulation of mirror mode agree well with the analytic dispersion relation.
© 2007 American Institute of Physics. �DOI: 10.1063/1.2721074�

I. INTRODUCTION

The mirror instability is a low frequency electromagnetic
mode destabilized by pressure anisotropy in plasmas with
high-�, the ratio between plasma and magnetic pressure. It
has long been interesting in space plasmas, such as planetary
and cometary magnetosheaths where collisions occur very
rarely, in which the velocity distribution of charged particles
can deviate substantially from the canonical Maxwellian dis-
tribution. In such environments, the pressure anisotropy can
give rise to the excitation of collective modes. Particularly,
when the perpendicular temperature exceeds the parallel
temperature i.e., T��T�, a magnetic mirror instability at
very low frequencies ��k�vi,� �vi,� is the parallel ion thermal
velocity and k� is the wave vector parallel to the magnetic
field� can occur. This instability has attracted considerable
interest because of its probable importance in contribution to
low-frequency magnetic turbulence in magnetized plasma.

Much attention has been paid to the theoretical analysis
of the mirror mode under various different conditions. It was
first identified theoretically by Rudakov and Sagdeev,1 and
Thompson2 as a feature of high-� magnetohydrodynamics
caused by the velocity space anisotropy. This study exam-
ined the mirror instability under long wavelength limit �i.e.,
k��i�1, where k� is the wave vector perpendicular to the
magnetic field and �i is the ion Larmor radius� and correctly
predicted the threshold of excitation. However, in 1967,
Tajiri3 derived a kinetic description which shows that the
mode cannot be simply described as a fluid instability. In
1969, Hasegawa4 put forward a so-called drift-mirror mode
theory. In his paper, the effects of nonuniform plasma and
finite Larmor radius were considered. In 1993, a discussion
of the physical mechanism of the linear mirror instability in
the cold electron temperature limit was offered by South-
wood and Kivelson.5 These authors showed that the mirror
instability results from the resonant interaction between ions
with small parallel velocities and low frequency electromag-
netic fluctuations. Besides, other work on the mirror instabil-

ity had been done.6–13 These studies addressed the plasma
inhomogeneity, warm electron effects, and arbitrary velocity
distributions. The attempts to qualitatively include the non-
linear evolution of the mirror instability were studied by Kiv-
elson, Southwood14 and Pantellini.15 More importantly, the
linear theories assuming the long wavelength limit find that
the linear growth rate of mirror instability increases with k�.
Therefore, it is obvious that the finite Larmor radius �FLR�
effects can play an important role when the perpendicular
wavelength becomes comparable to the ion gyroradius. In
fact, some observations in Earth’s magnetosphere16–22 and
Jovian magnetosheath23,24 revealed evidence for the presence
of such short perpendicular wavelengths. Thus, in the papers
of Hasegawa,4 Pokhotelov,13 Gary,25 and Johnson,26 the FLR
effects on the mirror mode were considered. Nonetheless, it
is desirable to develop a kinetic theory with transparent
physics picture that also provide an efficient tool for nonlin-
ear studies of mirror instability, both analytically and com-
putationally. Here we adopt the gyrokinetic theory �Frieman
and Chen,27 Chen and Hasegawa,28 and Brizard29� instead of
the fully kinetic theory.12,13 The gyrokinetic theory is a pow-
erful approach for nonlinear analysis and simulation of the
low-frequency instabilities. It employs the gyrokinetic order-
ing that the characteristic frequency of wave and gyroradius
are small compared with the gyrofrequency and unperturbed
scale length, respectively, and that the perturbed parallel
scale lengths are of the order of the unperturbed scale
lengths. Such an ordering can enable us to get rid of the
explicit dependence of the Vlasov equation on the gyrophase
angle while retaining the FLR effects and all nonlinear dy-
namics. We show that the gyrokinetic approach leads to an
elegant expression for the general kinetic dispersion relation
of mirror instability accounting for FLR effects.

A gyrokinetic particle-in-cell �PIC� simulation30 for the
mirror mode has been developed and applied for the study of
the mirror instability in this paper. Numerical PIC simulation
has proven to be a powerful tool in understanding the kinetic
physics of various fundamental plasma processes, especially
in which the plasma dynamics is of nonlinear nature under
realistic conditions. However, the PIC simulation also has its
share of limitations. It is generally agreed that conventional
PIC modes are not efficient for studying low-frequency phe-
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nomena, because of the disparate time and spatial scales in-
volved. Motivated by the inadequacy in the existing kinetic
simulation models, we utilize the gyrokinetic simulation
model for the mirror mode, in which the rapid cyclotron
motion is removed through gyroaveraging while the vital
FLR effects and nonlinear dynamics are retained. The gyro-
kinetic simulation model is particularly suitable for the dy-
namics with wave frequency ���i, such as the mirror in-
stability. As a necessary first step in developing this model to
its fullest nonlinear physics, the benchmark against linear
physics is presented in this paper. Our 2D linear gyrokinetic
simulation results show that the model can indeed recover
precisely the physics of mirror mode.

The paper is organized as follows: In Sec. II, we employ
the linear gyrokinetic equations and carry out a normal mode
analysis of the mirror instability. Section III describes the
formulation of the simulation and the benchmark of the nu-
merical code is shown in Sec. IV. Finally, a summary is
given in Sec. V.

II. GYROKINETIC MIRROR DISPERSION RELATION

As discussed in Sec. I, the mirror instability is an insta-
bility driven by an anisotropic pressure in a high-� plasma,
we can take the ion plasma pressure to be on the same order
as magnetic pressure and define the dimensionless parameter
�i=8�pi /B0

2�O�1� where B0 is the equilibrium magnetic
field and pi is the ion pressure. Since we are interested in the
low frequency mirror instability �i.e., � /�i�1� with FLR
effects considered �i.e., k��i�1�, these ordering are consis-
tent with the gyrokinetic orderings,27–29

�

�i
�

�i

L
� k��i �

�B

B
� 	, k��i � 1. �1�

Here, �i=qB0 /mic and �i=vi,� /�i are, respectively, the ion
cyclotron frequency and Larmor radius, L is the macroscopic
background plasma scale length, k� and k� are parallel and
perpendicular wave vectors, �B and B are perturbed and total
magnetic field, and 	 is the smallness parameter. Therefore,
we can employ the low-frequency linear gyrokinetic
equations.27,28 In the guiding center variables �X ,V�, where
X=x−� is the guiding center position and V��	=v2 /2 ,

=v�

2 /2B0 ,�=gyrophase angle, �̂=sgn�v���, by adopting
WKB ansatz in the perpendicular direction, i.e.,

�f�x,v,t� = �F�l,V�exp�i	
x�

k� · dx� − �t��
where l is the coordinate along B0, in the uniform plasma and
ambient magnetic field, the perturbed particle distribution
function �F can be given by

�F =
q

m
 �F0

�	
� −

�F0

�	
J0eiL�� +

�F0

B�


���1 − J0eiL�	� −
v�k�

�
��� −

v�J1

ck�

eiL�B��� + �KeiL

�2�

where �K satisfies the gyrokinetic equation

�k�v� − ���K = �
q

m

�F0

�	
�J0�� − ��� +

v�J1

ck�

�B�� , �3�

where F0�	 ,
� is the equilibrium distribution function in ve-
locity space, J0=J0�k��� and J1=J1�k��� are the Bessel
functions of the zero and the first order, L=k ·b�v /�, b
=B0 /B, � is the cyclotron frequency, q and m are the charge
and mass of particles, respectively. In the above equations,
we have adopted scalar and vector potentials as the field
variables and the Coulomb gauge � ·A=0, i.e., � the per-
turbed electrostatic potential, ��=�A� ·� /ck�, a quantity re-
lated to the parallel component of the magnetic vector poten-
tial, and �B� is the parallel component of the magnetic field.
From Eqs. �2� and �3�, the solution of the perturbed particle
distribution function is

�F =
q

m
� �F0

�	
+

�F0

B�
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�

� − k�v�

�F0
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+
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m
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v�J1

ck�

eiL −
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� − k�v�

�F0

�	

v�J1

ck�

eiL��B� , �4�

where �� =�−��. The physical content of different terms
in Eq. �4� is as follows. The terms in the bracket of �� come
from the particle acceleration in the parallel field. The terms
in bracket of �� represent the change in distribution function
due to the perturbed field line bending. The terms in the third
bracket is associated with the excursion of particle from the
regions with increased magnetic field through compressive
magnetic field perturbation. Especially, the second terms in
the brackets of �� and �B� contribute resonant wave-particle
interaction leading to the mirror mode.

For the low-frequency mirror mode, ���i, the perpen-
dicular current contribution from the higher order terms of
the perturbed particle distribution function needs to be con-
sidered in the perpendicular Ampere’s law �B� = i�4� /c�
��k� /k2��jy, where

�jy = �
s

q
 vy��F − �B�

q

m

�F0

B�


k�
2v�

2

�2

v�J1�

ck�

ei�k�� sin �−���dv ,

k=k�ex+k�ez and �s indicating summation of the species of
particles.31,32 Note that the second term of the integral for �jy

comes from the higher order terms of the perturbed particle
distribution function. Therefore, the perpendicular Ampere’s
law can be rewritten as

−
i�jy0

ck�

+
�B�

4�
= −

k�
2

k�
2 �1 + ��

�B�

4�
�5�

where �jy0=�sq�vy�Fdv,

� = 

−�

+�

dv�

0

+�

v�dv� · 4�
q2

m

�F

B�


v�
2v�

2

�2c2 �J1��
2

coming from higher order terms of the perturbed particle
distribution function, the prime in the Bessel function of first
order J1 denotes the derivative with respect to the argument
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of the Bessel function. Poisson’s equation can be approxi-
mated by the quasineutrality condition

�
s

qn = 0, �6�

where n=��Fdv. Meanwhile, the parallel Ampere’s law is

ck�

�
�� =

4�

ck2�j� , �7�

where �j�=�sq�v��Fdv. Equations �4�–�7� form a complete
set of normal mode equations for � and field variables ��,
��, and �B�. Substituting the perturbed distribution function
into the field equations, the general linear dispersion relation
can be written as

����� = 0 �8�

where the dispersion tensor

��� = � L1 L2 L3

M1 M2 M3

N1 N2 N3
�

and vector

�� = � e��

e��

�B�/B
� .

The components of ��� given by Eqs. �4�–�7� are

L1 =
4�

eBck�
�

s

q2

m
�� �F0

B�

v�J0J1�

+ � �

� − k�v�

�F0

�	
v�J0J1�� ,

L2 =
4�

eBck�
�

s

q2

m
�� �F0

�	
v�J0J1�

+ �� − k�v�

�

�F0

B�

v�J0J1�� ,

L3 = − 1 −
k�

2

k�
2 �1 + �� +

4�

ck�
�

s

q2

m
�� �F0

B�


v�
2 J1

2

ck�
�

+ � �

� − k�v�

�F0

�	

v�
2 J1

2

ck�
�� ,

M1 = �
s

q2

em
�� �F0

�	
� + � �F0

B�

�1 − J0

2��
− � �

� − k�v�

�F0

�	
J0

2�� ,

M2 = �
s

q2

em
�� �F0

�	
�1 − J0

2�� + � �F0

B�

�1 − J0

2�	� − k�v�

�
��� ,

M3 = − �
s

Bq2

m
�� �F0

B�


v�J0J1

ck�
� + � �

� − k�v�

�F0

�	

v�J0J!

ck�
�� ,

N1 = −
4��

c2k�k2
�

s

q2

m
� �v�

� − k�v�

�F0

�	
J0

2� ,

N2 = − 1 −
4��

c2k�k2
�

s

q2

m
� �F0

B�

�1 − J0

2�
k�v�

2

�
� ,

N3 = −
4�e�

c2k�k2
�

s

Bq2

m
� �v�

� − k�v�

�F0

�	

v�J0J1

ck�
� ,

where �¯�=2���̂��¯�B / �v��d	d
.
In mirror mode approximation, �2�k�

2vi
2�k�

2ve
2, there-

fore the dispersion relation �8� can be simplified. First, elec-
trons respond adiabatically to the perturbed fields. Their
resonance contribution to the mirror mode is much smaller
than that coming from ions and therefore can be neglected.
In addition, it is found that the effect of �� can also be
negligible in the dispersion relation when � /k�vi,��1. Then,
by setting the determinant of the system of Eq. �8� to zero,
we can finally obtain the linear dispersion relation of the
mirror mode

D�k,�� = DB + DS = 0 �9�

where
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DS = − 4�

��
s
	q2

m
�� �F0

B�


v�J1J0

ck�
� − 	q2

m
�

i
� �F0

�	

v�J1J0

ck�

�

k�v� − �
��2

�
s
	q2

m
�� �F0

�	
+

�F0

B�

�1 − J0

2�� + 	q2

m
�

i
� �F0

�	
J0
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represents the effect of coupling to the slow sound wave. Equation �9� is valid for arbitrary velocity distribution functions of
ions and electrons. It can be used for the study of the mirror mode of multicomponent plasmas.

In the analysis of effects of finite Larmor radius on the mirror mode for ��vi,� /k�, Eq. �9� becomes
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DBr + DS − i� · 4�2	q2

m
�

i
� �F0

�	
	v�J1

ck�

�2

· ��k�v� − ��� = 0,

�10�

where DBr=1+k�
2 /k�

2 �1+��−4��s�q2 /m���F0 /B�
�v�J1 /
ck��2� is the real part of DB and DS is a positive real number.
The third term in Eq. �10� describes the contribution of reso-
nant ions whose parallel velocity is very small. It plays an
important role in determining the growth rate of mirror in-
stability. Obviously, from Eq. �10�, we can see that the fre-
quency of mirror instability is purely imaginary and instabil-
ity happens when

DBr + DS � 0. �11�

Since DS�0, it therefore increases the threshold of the in-
stability, thus the effect of coupling to the slow sound wave
is always stabilizing. Furthermore, if T��T� �for example,
in bi-Maxwellian distribution�, DBr increases with k��. In
this case, the finite Larmor radius effect is also stabilizing.
This is an important contribution to the threshold of mirror
instability and never has been derived formally by using gy-
rokinetic theory before, although the similar results have
been obtained by Pokhotelov13 using a complicated fully ki-
netic method.

In the case of k��i�1, neglecting the FLR effects, the
dispersion relation �10� can be simplified as

� +
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where

� = A − �1 + k�
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	�

s
�B


�F0

�	 �/�
s

q

m� �F0

�	 ��
. It just reproduces the dispersion relation derived in the
quasihydrodynamic analysis of mirror mode by
Pokhotelov.11 Thus, our results can be looked as an extension
of the dispersion relation of mirror mode with FLR effects
included.

In the case of the simplest nonequilibrium particle dis-
tribution, the bi-Maxwellian velocity distribution, the disper-
sion relation �9� becomes

� · Z��� =
1 + �k�

2/k�
2 � · �1 + �b · ��� − ���� − �i,�

* Ai

�i,�
* �1 + Ai�

, �13�

where Z���=�0
�e−x2

/ �x−��dx is the plasma dispersion func-
tion, �=� /k�vi,�, �b=�0

�x3e−x2/2zJ1�
2�x�dx /z2, z=k�

2 �i
2 /2, �i,�

*

=�i,�e−k�
2

�i
2/2�I0�k�

2 �i
2 /2�− I1�k�

2 �i
2 /2�� including the FLR ef-

fects, I0 and I1 are modified Bessel functions of zero and the
first order, Ai=Ti,� /Ti,�−1 is the temperature anisotropy fac-
tor of ions. Here, for simplicity, we only consider the contri-
bution of �B� to the mirror mode and the effect of electrons is
neglected for Te /Ti�1.

Let us now find the condition of the maximum growth of
the mirror mode because it is of utmost importance for cer-
tain problems. According to Eq. �13�, and for the fixed per-
pendicular wave vector k�, maximum growth rate occurs at a
ratio of parallel to perpendicular wave vector given by

	 k�

k�

�
max

=
��i,�

* Ai − 1�1/2

31/2�1 + �b · ��i,� − �i,���1/2 . �14�

Accordingly, the maximum growth rate �max can be taken
from

� · Z��� =
1 + �k�/k��max

2 · �1 + �b · ��� − ���� − �i,�
* Ai

�i,�
* �1 + Ai�

.

�15�

Figures 1 and 2 demonstrate the FLR effects to the maximum
parallel wave vector �k��max �normalized by ion Larmor ra-
dius �i� and the maximum growth rate �max �normalized to
the ion cyclotron frequency �i� for �i,�=2 and Ai=1. It is
shown in Fig. 1 that the FLR effects can affect the maximum
wave propagation angle, i.e., the increase of k��i can turn
the wave vector of the fastest-growth mode more perpen-
dicular to the ambient magnetic field. More importantly, in
Fig. 2, we find that the maximum growth rate is also the
function of k��i and can be found at k��i�1. These results
are much different from the results based on the quasihydro-
dynamic approximation, in which �k��max and �max are simply

FIG. 1. Dependence �k��i�max for the fastest-growing mirror mode as a func-
tion of k��i at �i,�=2 and Ai=1. For comparison, the dashed line shows the
corresponding quasihydrodynamic result.
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proportional to k��i for fixed Ai and �i,�. Obviously, the
FLR effects introduce an important correction to the growth
rate of the mirror mode. In fact, the FLR effects can be easily
understood by a simple physical picture that the electromag-

netic field acting on the ions will become reduced in the
short-wavelength limit when averaged over an ion-Larmor
orbit.

Figures 3�a� and 3�b� show the plots of the instability
growth rate as a function of k��i for different Ai and �i,�.
They demonstrate that the maximum growth rate not only
increases with Ai and �i,� but also can be displaced to
shorter wavelengths with an increase of Ai and �i,�.

III. GYROKINETIC PARTICLE SIMULATION
OF MIRROR INSTABILITY

Gyrokinetic PIC simulation solves the gyrophase-
averaged Vlasov-Maxwell system, in which the particle gy-
ration is removed from the equations of motion, while FLR
effects and nonlinear dynamics are retained.30 The reduced
system has been obtained through the use of gyrokinetic or-
dering of Eq. �1�. Here, to prepare for the future nonlinear
simulation, we adopt so-called gyrocenter coordinates in-
stead of guiding center coordinates adopted in Sec. II. In
fact, in the absence of perturbed electromagnetic fields, the
gyrocenter coordinates are known as guiding-center coordi-
nates. The introduction of electromagnetic perturbation re-
sults in the reintroduction of the gyroangle dependence to the
guiding center Hamiltonian, and consequently the magnetic
moment 
=v�

2 /2B0 is no longer an invariant. Thus, a new
set of gyrocenter Hamiltonian equations are needed through
the elimination of the gyroangle dependence from the per-
turbed guiding center equations. This provides a transforma-
tion from guiding center coordinates to gyrocenter coordi-

nates �X̄ , �̄� , 
̄ , �̄�, where X̄ is the gyrocenter position, �̄�

= Ū /�, 
̄= v̄�
2 /2B the adiabatic invariant, Ū the gyrocenter

parallel velocity, B=B0+�B, �̄ the gyrophase angle.29

When Te /Ti�1, the kinetic effects of electrons on mir-
ror instability can be neglected. Therefore, the gyrokinetic
simulation model is developed only by treating ions with
gyrokinetic approximation. The following gyrokinetic equa-
tion can be obtained by averaging the Vlasov equation over
the gyrophase angle �̄,29

�Fi

�t
+ �Ūb + X̄

˙
�� · �Fi + �̇̄�

�Fi

��̄�

= 0, �16�

where Fi�X̄ , �̄� , 
̄� is the gyrocenter distribution function of
the ion in the reduced five-dimensional gyrocenter phase
space. To reduce the level of particle noise, we use a pertur-
bative simulation method ��f method�.33 Let Fi=F0i+�Fi,
where F0i and �Fi are equilibrium and perturbed distribution
functions, respectively. Then, by keeping the first order and
neglecting the higher order terms of small quantity 	 used in
gyrokinetic approximation �1�, in uniform plasma and ambi-
ent magnetic field, the linear gyrokinetic Vlasov equation for
the perturbed distribution function is

��Fi

�t
+ Ūb � �Fi = − �̇̄�

�F0i

��̄�

, �17�

where �̇̄�= Ū
˙

/�i=−�q /m�i)b ·���−v ·�A /c�, �¯�
=1/2��0

2��¯�d�̄ represents gyroaveraging, and the equation
of motion for ions is

FIG. 2. Normalized growth rate �̂max=� /�i of the mirror instability as a
function of k��i at �i,�=2 and Ai=1 with FLR effects considered. The
dashed line shows the corresponding quasihydrodynamic result of �̂max.

FIG. 3. Normalized growth rate �̂max=� /�i of the mirror instability as a
function of k��i for �a� Ai=1 and �i,�=1.5,1.75,2; �b� �i,�=2 and Ai

=0.8,0.9,1.0.
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dX̄�

dt
= Ū = �̄��i. �18�

Here,  and A are perturbed scalar and vector potentials,
respectively. In gyrokinetic simulation, the gyroaveraging
can be carried out numerically on a discretized gyro-orbit in
real space.30

In order to advance �Fi, we need to calculate the per-
turbed potentials and fields from Maxwell equations, i.e.,
Poisson’s equation and Ampere’s law. It is straightforward to
include the contribution from �A� and �. In the current
simulations, we assume Te /Ti�1 and � /k�vi,��1, so that the
mirror instability is dominated by the contribution of �B�.
Therefore, we can focus on �B� and neglect the contribution
of �A� and � for simplicity. Thus, the only field equation
needed is the perpendicular Ampere’s law. In the case of the
bi-Maxwellian velocity distribution, it can be expressed as

−
i�jy0

ck�

+
�B�

4�
= −

k�
2

k�
2 �1 + �b · ��� − ����

�B�

4�
, �19�

�jy0 = qi
 vy�Fidv + i�B�

2nTi,�ck�

B0
2 e−k�

2 �i
2/2

��I0�k�
2 �i

2/2� − I1�k�
2 �i

2/2�� , �20�

where I0 and I1 are modified Bessel functions. Here, the ex-
pression of �jy0 in Eq. �19� is different from that in Eq. �5�
because the �jy0 in Eq. �20� is calculated from �Fi�X̄ , �̄� , 
̄�,
which is expressed in gyrocenter coordinates instead of guid-
ing center coordinates used in Eq. �5�. The second term on
the right-hand side of Eq. �20� appears when transforming
from gyrocenter coordinates back to particle coordinates.29

Physically, it comes from the perpendicular gyrocenter drift.
Gyrokinetic equations of the perturbed distribution func-

tion �17�, equation of motion, �18� and field equation �19�
form a complete set of gyrokinetic Vlasov-Maxwell equa-
tions for simulation.

IV. RESULTS OF LINEAR SIMULATION

Various numerical approaches can be explored to imple-
ment the simulation model described in Sec. III. In this pa-
per, a 2D particle-in-cell gyrokinetic simulation code is de-
veloped. First, we assume k= �k� ,0 ,k�� in the xoz plane, k�

along the x direction, and k� along the z direction and the
ambient magnetic field points to the z direction. In linear 2D
simulation, using the �f method,33 the positions of ion gyro-
centers are constant in the x direction. Thus, only the posi-
tions of ions in the z direction are needed to be advanced by
the second-order Runge-Kutta scheme through Eq. �18�. The
perpendicular Ampere’s law can be solved using fast Fourier
transform �FFT�. The simulation domain is discretized by a
set of grids in both x and z directions and the positions of
ions are loaded uniformly in the cells with the bi-Maxwellian
distribution in velocity space.

In the linear run of this 2D simulation code, only the
single mode m=n=1 is calculated using a filter process,
where m and n is the mode number in the perpendicular and
parallel direction. Accordingly, the size of the simulation box

is chosen as Lx=2� /k� in the x direction, accordingly, Lz

=Lx / �k� /k��� in the z direction. The linear simulation is car-
ried out in a domain of k��i from 0.1 to 0.9 for fixed �i,�

=2, and Ai=1. All time quantities are normalized by ion
Larmor frequency �i and length quantities by ion Larmor

FIG. 4. Convergence with regard to number of particles, grid points, and
time size for �i,�=2 and Ai=1. In �a�, Ng=64 and �t ·�i=1 for different
Np; in �b�, Np=1.6�106 and �t ·�i=1 for different Ng; in �c�, Np=1.6
�106 and Ng=64 for different �t ·�i.
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radius �i. As a result, velocity quantities are normalized by
ion perpendicular thermal velocity vi,�=�i�i. Thus, the nor-

malized simulation box length are L̂x=2� / �k��i� and L̂z

= L̂x / �k� /k��.
We have carried out convergence studies with regard to

the number of particles �Np�, the number of grid points �Ng�
and the dimensionless time step size ��t ·�i� in order to
make sure that numerical resolution does not affect the phys-
ics. Figures 4�a�–4�c� show that, by choosing Np=1.6�106,
Ng=64 and �t ·�i=1, the uncertainty of growth rate could
be controlled under 3%.

The code is benchmarked by comparison between the
growth rates obtained from simulation and corresponding
analytical solutions. In Fig. 5, for �i,�=2 and Ai=1, the
crosses indicate the results from linear simulation and the
solid line indicates the results from theoretical analysis based
on gyrokinetic theory, as described in Sec. II. It shows that
the numerical results agree very well with the theoretical
prediction. Therefore, this linear simulation code confirms
the analytic theory of mirror instability, and the benchmark
provides a validation of the simulation code for the future
nonlinear simulation.

V. SUMMARY

It is important to clarify the finite Larmor radius effects
on the mirror instability in the short wavelength range. In
this paper, we have presented a gyrokinetic model for the
linear mirror instability with the FLR effects included. We
have employed the linear gyrokinetic equation to carry out a
normal mode analysis. The derived dispersion relation is
valid for an arbitrary value of k��i. This extends traditional
quasihydrodynamic theory which is valid only for k��i�1
and do not contain FLR effects. Our results indicate the most
unstable mirror modes could occur at k��i�1, i.e., the FLR
effect is stabilizing and modifies the threshold and the maxi-
mum growth rate substantially. Our theoretical analysis also

shows the stabilizing effect of the coupling to the slow sound
wave. Furthermore, our linear gyrokinetic particle simulation
results agree with the analytical results very well and it pro-
vides a good benchmark for the future nonlinear simulation.
Future work will study the inhomogeneity of the plasma and
ambient magnetic field and the most interesting nonlinear
physics.
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