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Abstract

A toroidal, nonlinear, electrostatic fluid-kinetic hybrid electron model is
formulated for global gyrokinetic particle simulations of driftwave turbulence
in fusion plasmas. Numerical properties are improved by an expansion of
the electron response using a smallness parameter of the ratio of driftwave
frequency to electron transit frequency. Linear simulations accurately recover
the real frequency and growth rate of toroidal ion temperature gradient (ITG)
instability. Trapped electrons increase the ITG growth rate by mostly not
responding to the ITG modes. Nonlinear simulations of ITG turbulence find
that the electron thermal and particle transport are much smaller than the
ion thermal transport and that small scale zonal flows are generated through
nonlinear interactions of the trapped electrons with the turbulence.

1. Introduction

Understanding and controlling ion thermal transport in fusion plasmas have been steadily
improved thanks to orchestrated efforts in experiment, theory and simulation [1], in particular,
intense studies of ion temperature gradient (ITG) turbulence [2]. Therefore, studying electron
thermal transport as well as particle and momentum transport has become a high priority. First-
principles simulations of electron thermal and particle transport need to treat kinetic effects
of electrons. In the asymptotic limit of infinitely large thermal velocity as compared with
the wave phase velocity, electrons can be modeled as adiabatic [3] in electrostatic gyrokinetic
particle simulations [4] of ion transport driven by the ITG turbulence in tokamaks to avoid
computational constraints due to the fast parallel motion of thermal electrons. However, the
electrostatic adiabatic model cannot treat the electron parallel and precessional resonances,
the nonadiabatic response of magnetically trapped electrons and the nonresonant current of
thermal electrons.

Direct implementation of the electron drift kinetic equation in gyrokinetic particle
simulations of tokamak plasmas introduces stringent numerical constraints associated with
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enhanced discrete particle noise [5], electron parallel Courant condition [6], high-frequency
electrostatic oscillation (the so-called wy mode) [4] and electromagnetic fluctuation with
tearing parity near mode rational surfaces [7, 8]. Recognizing that the electron response
in the driftwave and Alfvenic turbulence is dominated by the adiabatic component, a split-
weight scheme in the slab geometry [9] was introduced to separate the electron response into
an adiabatic part and a nonadiabatic part, which has been implemented in some gyrokinetic
toroidal particle codes [10, 11]. Since the adiabatic component can be described analytically,
simulation only needs to treat the non-adiabatic component, an approach similar to the analytic
gyrokinetic theory [12]. The advantage of the split-weight scheme is to remove the particle
noise associated with the electron adiabatic response [13], while retaining all the physics
associated with the kinetic electrons. However, since it is an exact formulation of the
drift kinetic equation, the Courant condition, the high-frequency wy mode in electrostatic
simulation and the tearing mode in electromagnetic simulation still place stringent numerical
constraints [14].

The concept of treating only the nonadiabatic component dynamically leads to the
development of a fluid-kinetic hybrid electron model [15] in the slab geometry, which has
been extended to the toroidal geometry and implemented in the gyrokinetic toroidal code
(GTC) [16]. In this hybrid model, electron response is asymptotically expanded order by
order based on a smallness parameter of the ratio of wave phase velocity to electron thermal
velocity. In the lowest order, electron response is adiabatic and is thus treated as a massless fluid
commonly employed in space plasma physics [17]. The nonresonant current is fully retained in
the electron fluid equations without the need to resolve the dynamics of thermal electrons, i.e.
the electron Courant condition can be circumvented. In fact, the ideal magnetohydrodynamic
(MHD) dispersion of shear Alfven wave in tokamak has been recovered in electromagnetic
GTC simulations [16] using the lowest order hybrid expansion with adiabatic electrons. The
dynamics of kinetic electrons is implemented perturbatively as higher order corrections to treat
the electron parallel and precessional resonances and the nonadiabatic response of magnetically
trapped electrons. Since electrons behave as a ‘frozen-in-line’ massless fluid [14] in the
lowest order expansion, the magnetic topology is preserved. The electron resonance with the
perturbation of the tearing parity near mode rational surfaces and the tearing mode are thus
systematically removed by the expansion ordering. Therefore, the well-known difficulty [7, 8]
of resolving the electron resonance with tearing parity near mode rational surfaces is eliminated.
Furthermore, the high-frequency wy mode in electrostatic simulation is also removed from the
hybrid model [15]. The improvement of numerical properties comes from the approximation
made in the expansion of the electron response, i.e. the hybrid model is not an exact formulation
of the electron drift kinetic equation. The price to pay for the improved numerical properties
is that the model cannot treat the tearing mode physics. However, the hybrid model is most
suitable for simulations of the driftwave turbulence and MHD turbulence for studying electron
transport and energetic particle physics. The hybrid model retains rigorously linear and
nonlinear electron resonances with Alfvenic and ion acoustic waves such as the Alfven-ion
temperature gradient (AITG) [18] mode and the toroidal Alfven eigenmode (TAE) [19].

The electromagnetic version of the hybrid electron model uses the ratio of the Alfvenic/ion
acoustic wave phase velocity to the electron thermal velocity as the smallness parameter for the
expansion of the electron response [16]. In the electrostatic toroidal simulation, the smallness
parameter is the ratio of the driftwave frequency to the electron transit frequency. The toroidal
formulation and GTC implementation of the electrostatic hybrid electron model is presented in
section 2. In section 3, GTC simulations of ITG instability and turbulence with kinetic electrons
are presented. The linear dispersion relation is found to agree well with an eigenvalue code
and another gyrokinetic particle code. The increase in ITG growth rate is shown to result
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from nearly no response (i.e. nonadiabatic) of trapped electrons to the ITG modes. Linear
poloidal coupling is shown to prevent a singular electron response near mode rational surfaces
in electrostatic ballooning modes [20]. Nonlinear simulations indicate that electron thermal
transport in the ITG turbulence is driven by nonresonant interactions. Both the particle transport
and the electron thermal transport are much smaller than the ion thermal transport in the ITG
turbulence. Short scale zonal flows are generated by nonlinear interactions of trapped electrons
with the ITG turbulence. Conclusions are drawn in section4. Application of the hybrid electron
model for simulation of TEM turbulence will appear in a separate paper.

2. Nonlinear electrostatic fluid-Kkinetic hybrid electron mode in toroidal geometry

We consider a simple plasma of electrons and ions. Assuming the wavelength of electrostatic
fluctuations is much longer than the electron gyroradius, the dynamics of electrons is governed
by the electron guiding center Hamiltonian in the phase space of (x,u, v)), where x is the 3D
real space, u is the magnetic moment and vy is the parallel velocity,

H = %mevﬁ+uB —ed

with B the magnetic field amplitude, m. the electron mass, e the magnitude of electron charge
and ¢ the electrostatic potential. The electron drift kinetic equation in (x,u, vj) space is,
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[5 +(vjb +va +vg) - P b* - V(uB — ed) - Ce} fe=0, (D

meavH
where b* = b — (mecv/eB*)b x (b - Vb), v = —(c/eB*)b x (uVB + mevﬁb - Vb),
ve = (¢/B*)b x V¢, b = B/B, B* = B — (mecv)/eb) - V x b and c is the speed of
light. The appearance of B* ensures that the guiding center drifts preserve the Hamiltonian
structure. A collision operator C. is added to represent electron—electron and electron—ion
collisions. The ion dynamics is governed by the nonlinear gyrokinetic equation that also
preserves the Hamiltonian structure [21,22].
The electrostatic potential is derived from the gyrokinetic Poisson equation [4],

Aiz (¢ _ ¢3) — drre(8it; — Sne),
D

where T = T,/ T is the ratio of electron to ion temperature, AZD = T,/4mnye? is the Debye
length, ny is the equilibrium electron density and the tilde represents double-gyroaveraging [4].
For electrostatic driftwave turbulence, the zonal flow component (k;; = 0) is much larger
than the nonzonal flow component [3]. Electron responses to the two components are quite
different: nearly adiabatic response to the non-zonal component and nearly no response to the
zonal flows. Therefore, it is numerically advantageous to solve the two components separately
by writing ¢ = (¢) + 6¢, where the angle bracket represents the flux-surface averaging. Here
we take a high aspect-ratio limit so that the double-gyroaveraging and flux-surface averaging
are commutable.

We now expand the electron response and the electrostatic potential using a smallness
parameter of § = w/w. K 1, where w is the mode frequency and w, is the electron transit

frequency, f. = f.0e®?/ T +§ gél), and 8¢ = 8¢© +38¢D, where the nonadiabatic parts Sgél)

and qu(]) are smaller than the adiabatic parts by a factor of §. The electron equilibrium is
defined as

a
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The solution of f,y is the neoclassical equilibrium. Here we approximate f.y as a local
Maxwellian.
In the lowest order, electron response is adiabatic,

on (0)
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The gyrokinetic Poisson equation for the lowest order nonzonal component §¢© becomes

(t+1)esp®  1esdp®  si; — (5i;)

T; T: no
with 871, = [ 8; d’v with the perturbed ion distribution function §f; = f; — fi. In the initial
value simulation, particle orbits and fields are updated in a sequence of time stepping. At the
jth time step with all field quantities known, ion orbits are pushed to the (j + 1)th time step
using the ion gyrokinetic equation [22]. The lowest order solution of the nonzonal component
of the electrostatic potential is obtained at the (j + 1)th time step from equation (2) using an
iterative [23] or a finite element method [24].

In the higher order, the dynamics of electrons is treated using the drift kinetic equation of
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where vy = (c/B*)b x V3¢, and the gradient operator on f¢ in the second term on the right-
hand side is taken with vy, v held fixed. The equilibrium pressure gradient scale length is
assumed to be much longer than the perturbation wavelength. The first two terms on the right-
hand side are the familiar w and w+* terms, respectively, and the third term is the convection
of zonal flows by magnetic and E x B drifts. Equation (3) is an approximate equation since
we replace the exact potential 8¢ with the lowest order solution §¢© in the first term on the
right-hand side. This approximation is required for numerical stability when taking the time-
derivative for the first term on the right-hand side, i.e. a time-centered operation for the jth time
step by using the lowest order solutions at the (j + 1)th and (j — 1)th time steps. Physically,
this approximation renders electron response inaccurate near mode rational surfaces (where
ky — 0), since the lowest order solution 8¢© does not dominate there. Electron orbits are
now pushed from the jth time step to the (j + 1)th time step using all field quantities at the
jth time step in equation (3). The electrostatic potential with the first order correction at the
(j + Dyth time step becomes:
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with Snél) =/ 8g§1) d3v. Equations (3) and (4) can be repeated to reach higher orders in
the expansion of the electron response. In the toroidal system, the response of magnetically
trapped electrons is not dominantly adiabatic. Higher order expansion is needed depending
on the trapped fraction. We found that the second order expansion is sufficiently accurate for
typical values of the tokamak aspect-ratio (see section 3).
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After all particle orbits and nonzonal components of field quantities are updated to a
desired accuracy at the (j + 1)th time step, the zonal flows at the (j + 1)th time step are
calculated from

e (@ = @) (5my — o
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T: no

The cycle of equations (2)—(5) can then be repeated to the next time step.

3. Global simulation of ITG turbulence with Kinetic electrons

The nonlinear, electrostatic kinetic-fluid hybrid electron model described in section 2 has
been implemented in the GTC [3], which is a well-benchmarked, massively parallel,
global gyrokinetic particle-in-cell code incorporating both linear and nonlinear wave—particle
interactions and nonlocal geometric effects. A global field-aligned mesh [25] provides
the maximal computational efficiency without any approximation in physics or geometry
to describe the toroidal eigenmode with anisotropic structures. An effective collision
operator modeling a heat bath [26] prevents the relaxation of the temperature profile. The
tokamak with concentric flux-surfaces is described by magnetic coordinates (r, 6, ¢), where
r is the radial coordinate labeling the flux-surfaces, 6 is the poloidal angle and ¢ is the
toroidal angle. These global GTC simulations use representative tokamak plasmas with the
following local parameters at a radial position r = 0.5a, R/Lt. = 6.9, R/L, = 2.2,q =
1.4,s=0.78,T./T; = 1 and a/R = 0.36. Here R and a are the major and minor radii, L
and L, are the electron temperature and density gradient scale lengths, 7; and T, are the ion
and electron temperatures, g is the safety factor and s is the magnetic shear. The profile for
the safety factor is ¢ = 0.581 + 1.092(r/a) + 1.092(r/a)? and for the temperature and density
gradients is exp{—[(r — 0.5a)/0.32a]®}. Collisions are not treated in present simulations. The
boundary condition of the perturbed electrostatic potential ¢ = 0 is enforced at r < 0.la
and r > 0.9a. The size of the tokamak used in the simulation is a = 250p; for nonlinear
simulations and a = 125p; for linear simulations, where p; = v;/€2; is the ion gyroradius,
ion thermal speedv; = (T;/m;)"/ 2 and ion mass m;. The computational mesh consists of 32
toroidal grids and a set of unstructured radial and poloidal grids with a perpendicular grid size
of p;. The time step is 0.2L e /v;.

To verify the electrostatic hybrid electron model for simulations of driftwave instabilities
such as ITG or trapped electron mode (TEM) instability, linear simulation was first carried out.
A key issue of numerical convergences is which order in the expansion of the electron response
is sufficient to recover the dynamics of magnetically trapped electrons. Since TEM instability
is the most sensitive to the response of trapped electrons, we performed the convergence test
for the TEM mode by using a parameter of the ITG with R/Lt; = 1.1, which excites the TEM
mode but not the ITG mode. Shown in figure 1(a) is the dependence of the real frequency
and the growth rate of the TEM mode with kg,; = 0.335 on the order of the expansion in the
hybrid electron model. Clearly, the second order expansion is sufficiently accurate even though
the trapped fraction is about 42%. This is probably due to the fact that the real frequency of
the toroidal driftwave eigenmodes is primarily determined by the combination of diamagnetic
frequency (w=) and drift frequency (w,), but insensitive to the electron response (see figure 3).
In all simulations presented in the rest of this paper, electron response is treated to the second
order expansion of the hybrid model.

The ITG is varied to investigate the relative drive for the TEM and ITG modes. Shown
in figure 1(b) is the dependence on the ITG of the real frequency and the growth rate of a
toroidal eigenmode with kypi = 0.335, which typically has the highest growth rate for the
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Figure 1. Dependence of frequency (solid) and growth rate (dashed) on the order of expansion in
the hybrid electron model for R/Lt; = 1.1 (a) and on the ion temperature gradient (b).
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Figure 2. Dependence of growth rate (a) and frequency (B) on poloidal wavelength for
R/LTi = 6.9. The solid lines are for kinetic electrons and the dashed lines are for adiabatic
electrons.

ITG modes. For small ITG, R/Lt; < 5.5, the TEM instability has a higher growth rate as
the real frequency is positive, which means that the wave phase velocity is in the electron
diamagnetic drift direction. For stronger ITGs, R/Lt; > 5.5, the ITG instability has a higher
growth rate as the real frequency becomes negative. To examine the response of passing
electrons, simulations with both passing and trapped electrons are compared with simulations
with trapped electrons only. The differences in the frequency and the growth rate are found to
be less than 1%, indicating that the response of the passing electrons is very close to adiabatic.
Therefore, only trapped electrons are kept in all simulations reported in the rest of this paper.

We now focus on the regime of a strong ITG with R/Lt; = 6.9. Shown in figure 2 is the
dependence of the growth rate and the frequency on the poloidal wavelength for simulations
with kinetic electrons and with adiabatic electrons, respectively. When the electron response
is adiabatic, only the ITG modes are unstable (real frequency is negative) for the range of
poloidal wavelength kgpo; < 0.6. With non-adiabatic electrons, the growth rate of the most
unstable ITG mode increases by almost a factor of 2, and short-wavelength TEM modes are
found to be unstable with a higher growth rate than that of the ITG modes for kg po; > 0.6. The
co-existence of both the ITG and the TEM modes has been reported earlier [27]. All GTC
results of figures 1 and 2 are found to agree well with a comprehensive toroidal eigenvalue
code FULL and another gyrokinetic particle code GT3D [28].

The increase of the ITG growth rate when trapped electrons are included in the simulations
has previously been observed. This is generally attributed to the nonadiabatic response of the
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Figure 3. Dependence of growth rate (a) and frequency () on inverse aspect-ratio € = a/R with
r = 0.5a and R/L1i = 6.9. The solid lines are for kinetic electrons and the dashed lines are for
adiabatic electrons.

trapped electrons. However, since the toroidal precession of the trapped electrons is in the
opposite direction of the ITG phase velocity, trapped electrons do not interact resonantly with
the ITG modes. To elucidate the physical mechanism of the enhancement of the ITG growth
rate by the trapped electrons, the inverse aspect-ratio is varied while all other dimensionless
quantities are kept constant to examine the dependence of the ITG frequency and the growth
rate on the fraction of trapped particles. As shown in figure 3, when the electron response is
adiabatic, the ITG frequency and growth rate are insensitive to the inverse aspect-ratio. This
is due to the fact that the ITG frequency is faster than the ion bounce frequency so that the
trapped ions play no special roles. On the other hand, when the dynamics of trapped electrons
are treated in the simulation, the ITG growth rate increases with the fraction of the trapped
electrons even though the frequency is insensitive to the trapped fraction. This is consistent
with the fact that the ITG frequency is determined by a combination of the ion diamagnetic
and drift frequencies to satisfy a resonant condition with ions, so that it is insensitive to the
electron response. Since the trapped electrons do not interact resonantly with the ITG modes,
the response of trapped electrons is nearly zero, rather than adiabatic. Therefore the dielectric
constant in the gyrokinetic Poisson equation decreases when the trapped fraction increases,
leading to a higher ITG growth rate. To confirm this physics picture, we have performed a
linear simulation assuming the adiabatic response for the passing electrons and no response
for the trapped electrons (i.e. §ne = 0 for trapped electrons). The growth rate is found to agree
very well with the simulation with kinetic electrons.

The structure of the toroidal ITG eigenmode (kyp; = 0.335) with kinetic electrons is
shown in figure 4. The overlap is very strong between neighboring poloidal harmonics (i.e.
m and m + 1), significant between (m + 1) and (m — 1) and insignificant further apart. Thus
the mode is modestly ballooning. It is clear that the component of the k; — 0 perturbation
never appears at any mode rational surface because of the linear poloidal coupling in the
presence of a finite magnetic shear. In particular, there is no singular behavior at the low-
order mode rational surfaces of ¢ = 1, 1.5 and 2, which appear at the radial positions of
r/a = 0.30, 0.54 and 0.74, respectively. This is quite different from the sheared slab case,
which allows the component of the k; — O perturbation near the mode rational surface.
This explains the good agreement [28] in the linear dispersion relation in the presence of the
magnetic shear between the FULL eigenvalue code and the GTC simulation with the hybrid
electron model.
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Figure 4. Radial structures of poloidal harmonics (m) for a toroidal eigenmode n = 15.
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Figure 5. Time histories of ion heat flux ¢; (dotted), electron heat flux g, (solid), particle flux I'
(dashed), all normalized by fluctuation intensity (8¢%) (a) and instantaneous radial profile of zonal
flows normalized by ion thermal velocity (b).

With the rigorous linear benchmark, the hybrid electron model is now applied for nonlinear
simulations of ITG-dominated turbulence with kinetic electrons using R/Lt; = 6.9. Since the
ITG frequency is much smaller than the bounce frequency of electrons, electrons are pushed
10 times for every time step of ion orbits and field solvers. Shown in figure 5(a) are volume-
averaged time histories of ion heat flux electron heat flux, and particle flux, all normalized
by the fluctuation intensity (8¢?) from a simulation using 100 particles per cell. The ratio
of transport to fluctuation intensity plotted in figure 5(a) indicates the strength of coherent
wave—particle interactions, i.e. a measure of effective wave—particle decorrelation time [29].
After an initial phase of random fluctuations, linear eigenmodes are formed as demonstrated
by the long wave—ion decorrelation time for a period of 3/y < t < 10/y. This is due to the
fact that ITG is driven by the ion resonance and the only decorrelation mechanism for ions in
the linear phase is the growth rate. In contrast, the effective decorrelation time for electrons
is much shorter during this linear phase. The instability saturates at ¢+ ~ 10/y and reaches
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a quasi-steady state after r ~ 16/y. In this saturation process, the poloidal spectrum shifts
downward from (kg p; ~ 0.3) to (kg p; ~ 0.15) due to a spectral energy cascade induced by the
nonlinear toroidal coupling [30,31]. The electron thermal transport is about a factor of 5 smaller
than the ion thermal transport and the particle transport is even smaller. The fact that the ion
and electron transport are different for the same fluctuation intensity indicates that the transport
mechanisms for ions and electrons are different due to the different nature of wave—particle
interactions. While the ion transport is governed by the wave—ion resonance, the electron
transport is governed by nonresonant, nonlinear processes in ITG-dominated turbulence [32].

Another nonlinear feature of interest in the ITG-dominated turbulence with kinetic
electrons is the generation of short-wavelength zonal flows (k,p; ~ 0.5), as shown in
figure 5(b). For comparison, when the electron response is adiabatic, zonal flows are dominated
by much longer wavelength modes (k, p; ~ 0.1) [33]. The generation of the short-wavelength
zonal flows by kinetic electrons may suggest higher order nonlinear processes, e.g. ITG mode
scattering off trapped electrons, in consistence with the nonresonant electron transport in the
ITG-dominated turbulence. A comparison of resonant and nonresonant electron transport in
ITG and TEM turbulence will be reported in a separate paper.

4. Conclusion

A toroidal, nonlinear, electrostatic fluid-kinetic hybrid electron model is formulated for
global gyrokinetic particle simulations of the driftwave turbulence in fusion plasmas. Linear
simulations accurately recover the real frequency and the growth rate of toroidal ITG instability.
Trapped electrons enhance the ITG growth rate by mostly not responding to the ITG modes.
Nonlinear simulations find that the electron thermal and particle transport are much smaller
than the ion thermal transport and that small scale zonal flows are generated through nonlinear
interactions of the trapped electrons with the ITG turbulence.
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