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Global gyrokinetic particle simulation and nonlinear gyrokinetic theory find that electron
temperature gradientsETGd instability saturates via nonlinear toroidal coupling, which is a nonlocal
interaction in the wave vector space that transfers energy successively from unstable modes to
damped modes preferentially with lower toroidal mode numbers. The electrostatic ETG turbulence
is dominated by nonlinearly generated radial streamers. The length of the streamers scales with the
device size, which is longer than the distance between mode rational surfaces and electron radial
excursions. Both fluctuation intensity and transport level at saturation are independent of the
streamer length, and are much smaller than the mixing length estimates.
© 2005 American Institute of Physics. fDOI: 10.1063/1.1894766g

I. INTRODUCTION

Electron temperature gradients in magnetically confined
plasmas provide expansion free energy for driving drift wave
instabilities,1 which may induce the high level electron heat
transport often observed in toroidal experiments. Identifying
the candidate instabilities and understanding the nonlinear
interactions are the first step toward predicting and control-
ling the electron transport in fusion plasmas.

Background. Experimental evidence for the origin of
electron transport is not conclusive. Instabilities with a char-
acteristic length on the order of the ion gyroradius, driven by
the trapped electron modesTEMd and/or ion temperature
gradientsITGd mode, have been invoked to account for the
anomalous electron transport in ASDEX Upgrade2,3 and
TCV4 tokamaks. On the other hand, the electromagnetic
electron temperature gradientsETGd turbulence with a
shorter characteristic length of the collisionless electron skin
depth has been suggested as responsible for the electron
transport in Tore Supra5,6 tokamak. Short wavelength mea-
surement in TFTR tokamak7 has observed fluctuations with a
characteristic length of the skin depth, however, with a
propagation in the ion diamagnetic direction. More recently,
diagnostics are being installed in major tokamaks to measure
electrostatic ETG fluctuations, which have an even shorter
characteristic length of the electron gyroradius and propagate
in the electron diamagnetic direction. Large electron trans-
port has also been observed in the absence of strong electron
temperature gradient, suggesting mechanisms8 not related to
the electrostatic drift-wave turbulence.

Linear properties of the toroidal ETG instability9 are
well understood. The gyro-Bohm level of the ETG electron
heat conductivity xe

GB from a heuristic mixing length
estimate10 is smaller than the ITG ion transportxi

GB by a

factor of the square root of the electron-to-ion mass ratio,
i.e.,xe

GB,1/60xi
GB for deuterium plasmas. Since experimen-

tal measurements find, typically,xe,xi on the order ofxi
GB,

the ETG instability has generally been discarded as a poten-
tial driver for the anomalous electron transport. Nonetheless,
the nonlinear evolution of ETG and ITG could be very dif-
ferent. Whereas a zonal flowE3B drift nonlinearity11–13

dominates in the ITG turbulence, ETG turbulence is regu-
lated by a weaker polarization drift nonlinearity.14

The renewed interest in the electrostatic ETG instability
comes from gyrokinetic continuum simulations using flux-
tube geometry,15 which found that radially extended eddies,
or streamers, form in the absence of strong zonal flows and
that large electron transport is driven by the electrostaticE
3B convection. However, the scale length of ETG streamers
is comparable to the simulation box size. This violates the
fundamental assumption of the flux-tube simulation,16 which
assumes that the radial correlation length of turbulence ed-
dies is much shorter than the simulation box size and uses a
periodic boundary condition in the radial direction. Mean-
while, radially nonlocal, global simulations using fluid mod-
els in a small tokamak17 or a simplified equilibrium
geometry18 found that the ETG turbulent transport is smaller
than the flux-tube simulation result by more than an order of
magnitude, and concluded that ETG turbulence is unlikely to
be responsible for the electron anomalous transport.

Key results from flux-tube simulations15 of the ETG tur-
bulence are the existence of radial streamers and large elec-
tron transport when the magnetic shear is positive. In addi-
tion, a mixing length argument was invoked to make the
connection between the streamer length and transport level,
and a balance between the primary ETG instability and a
Kelvin–Helmholtz-type secondary instability19 was proposed
as the saturation mechanism. Furthermore, a conjecture was
invoked to argue that the ETG turbulence could survive even
in the regime where the ITG/TEM turbulence is suppressed
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by strong equilibrium sheared flows. In this conjecture, the
condition for the turbulence suppression is that the flow
shearvE3B,g0, whereg0 is the ETG linear growth rate.

Therefore, the causal relationship between the streamer
length and transport level, as well as the mechanism for the
instability saturation has not been established by direct nu-
merical simulations or by first-principles theories. Further-
more, the substitution of the nonlinear decorrelation rate by
the linear growth rate in the condition for the flow shear
suppression20 of ETG turbulence is not supported by theoret-
ical or computational evidence. We address all these issues in
our present studies utilizing a well-benchmarked, massively
parallel, global gyrokinetic toroidal code11 sGTCd to simulate
the electrostatic ETG turbulence in a realistic tokamak.

Findings. Our global gyrokinetic particle simulation and
nonlinear gyrokinetic theory find that the ETG instability
saturates via nonlinear toroidal coupling, which transfers en-
ergy successively from unstable modes to damped modes
preferentially with lower toroidal mode numbers. The elec-
trostatic ETG turbulence is dominated by nonlinearly gener-
ated radial streamers, which have an eddy turn over time
much longer than the linear growth time. Both fluctuation
intensity and transport level at saturation are independent of
the streamer length, which scales with the device size and is
longer than the distance between mode rational surfaces or
electron radial excursions. These findings from global simu-
lations with realistic parameters are not consistent with flux-
tube simulation results.15

The nonlinear toroidal coupling found in this study is a
novel nonlinear interaction underlying the toroidal spectral
cascade. In this nonlinear mode coupling, two unstable high-
n pump toroidal eigenmodes with toroidal mode numbers
n0,n1@1 first drive a low-n quasimode withnl =n0−n1

,n0
1/2. Next, the scattering of pump modes on the quasimode

creates secondary eigenmodes preferentially with a lower
mode numbern2=n1−nl. Then, the coupling ofn0 and n2

drives another quasimode with a mode number of 2nl =n0

−n2. This nonlinear process proceeds until alln-matching
modes are populated, and results in a downshift of the toroi-
dal spectrum from linearly most unstable modes to nonlin-
early dominant modes with lower toroidal mode numbers.
This nonlocal interaction in the wave vector space is similar
to the Compton scattering with quasimodes playing the role
of quasiparticles. Three-mode resonant coupling is not opera-
tive due to the frequency mismatch. Similar toroidal spectral
cascade occurs in the ITG/TEM turbulence.21 Although zonal
flows play a dominant role in saturating the ITG/TEM insta-
bility, the toroidal spectrum cannot be determined22 solely by
interactions between ITG/TEM turbulence and zonal flows.
Therefore, the toroidal spectrum of any toroidal drift wave
tubulence is ultimately determined by drift-wave–drift–wave
interactions. Because of this universal role, nonlinear toroi-
dal couplings represent a new paradigm for plasma turbu-
lence.

Our GTC simulations and associated gyrokinetic theory
have important implications for plasma turbulence studies.
First, particle dynamics must be treated on the same footing
as fluid nonlinearity. Radial streamers, which representE
3B velocity fields, are generated by nonlinear toroidal cou-

plings. Linear wave-particle resonance can be destroyed non-
linearly. Consequently, electron radial excursions are diffu-
sive and much shorter than the streamer size, i.e., particles
and fluid elements do not move together due to the parallel
free streaming motion. While wave-wave couplings deter-
mine fluctuation characteristics, transport is driven by wave-
particle interactions. This is a crucial difference with fluid
turbulence, where fluid elements move with velocity fields.
Fluid concepts, such as mixing length rule and eddy turnover
time, do not correctly describe transport processes in colli-
sionless plasma turbulence. Second, toroidal geometry must
be treated rigorously in studying toroidal drift-wave turbu-
lence. The nonlinear toroidal coupling is strictly a geometry-
specific effect because two parallel streamers cannot interact
in the slab geometry. All eigenmodes participate in nonlinear
toroidal coupling. Thus, the saturation amplitude may not be
predicted accurately using a small number of modes. Finally,
the contradictory results from ETG turbulence simulations
between flux-tube and global codes are presumably conse-
quences of differences in the respective geometry represen-
tations. While the toroidicity is treated rigorously in global
codes, flux-tube codes make key approximations, the validity
regime of which remains dubious for nonlinear simulations
involving fluctuations with low toroidal mode numbers and
nonlinear particle dynamics.

The paper is organized as follows. Global GTC simula-
tions of electrostatic ETG turbulent transport is presented in
Sec. II. In Sec. III, we discuss the saturation of ETG insta-
bility via nonlinear toroidal couplings, as observed in GTC
simulations. The gyrokinetic theory of nonlinear toroidal
couplings is presented in Sec. IV. Discussions and conclu-
sions are in Sec. V.

II. ETG TURBULENT TRANSPORT

Our studies utilize a well-benchmarked, massively par-
allel, full torus GTC.11 Both linear and nonlinear wave-
particle resonances, and finite Larmor radius effects are
treated in gyrokinetic particle simulations.23 Toroidal geom-
etry is treated rigorously using magnetic coordinates which
provide the most general coordinate system for any magnetic
configuration possessing nested surfaces. The straight field
lines are desirable for describing the microinstabilities with
field-aligned mode structures and for efficiently integrating
the electron and ion orbits. A challenge for full torus ETG
turbulence simulations is that the computational cost grows
rapidly with the device size. Global ETG turbulence simula-
tions only became feasible with an efficient global field-
aligned mesh,21 which provides the highest possible compu-
tational efficiency without any simplification in terms of
physics models or simulation geometry. Consequently, the
GTC code has a unique feature that the number of computa-
tions Nc has a quadratic, rather than the usual cubic, depen-
dence on the device size, i.e.,Nc,sa/red2, wherea is the
tokamak minor radius andre is the electron gyroradius. This
reduces computational requirements by three orders of mag-
nitude for realistic ETG turbulence simulations. Further-
more, the particle-in-cell approach efficiently resolves the
five-dimensionals5Dd phase space through a Monte Carlo
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sampling,24 which reduces the number of velocity grids com-
pared to that in continuum codes. As a result, all unstable
toroidal modes are treated in the global GTC code. Finally,
effective utilization of massively parallel computers allows
nonlinear ETG simulation using billions of spatial grids and
particles.

All simulations reported in this paper use representative
parameters of tokamak plasmas which have a peak electron
temperature gradient atr =0.5a with the following local elec-
tron parameters:R0/LT=6.9, R0/Ln=2.2, q=1.4, ŝ;sr /qd
3sdq/drd=0.78, Te/Ti =1, anda/R0=0.36. HereR0 is the
major radius,LT and Ln are the electron temperature and
density gradient scale lengths, respectively,Ti andTe are the
ion and electron temperatures, andq is the safety factor. Our
global simulations use fixed boundary conditions with elec-
trostatic potential df=0 enforced for r ,0.25a and r
.0.75a. Modes with short perpendicular wavelengthsk're

.1d are filtered out, wherere=ve/Ve, ve=ÎTe/me with Ve

the electron cyclotron frequency andme the electron mass.
Simplified physics models include a parabolic profileq
=0.854+2.184sr /ad2, a temperature gradient profile of
exph−fsr −0.5ad /0.2ag6j, a circular cross section, and electro-
static fluctuations with an adiabatic ion response. Extensive
studies of numerical convergence have been carried out us-
ing relatively small device size with perpendicular grid sizes
of s1−2dre, s45–90d parallel grids per toroidal connection
length, s5–20d particles per cell, and time steps
s0.1–0.2dLT/ve. The verification of true convergence is es-
pecially challenging for the simulations of ETG turbulence
due to the large ratio of the device size to the fluctuation
scale length. Nevertheless, the key nonlinear physics found
in this study, i.e., ETG saturation and transport mechanisms,
has been carefully benchmarked to be free of numerical con-
vergence issues.

The linear ETG dispersion relation for these plasma pa-
rameters shows that the most unstable mode has a poloidal
wave vector kure=0.33 with a linear growth rateg0

=0.038ve/LT and a real frequencyvr .3g0. The growth rate
decreases to.g0/4 at kure=0.1 and 0.6. The real frequency
is roughly a linear function ofku for kureø0.6.

In fully nonlinear simulations, random fluctuations with
a very small amplitude first grow exponentially, then satu-
rate, and eventually reach a quasisteady state. In the toroidal
spectra shown in Fig. 1, each mode is represented by the
amplitude of the harmonicssn,md with a toroidal mode num-
ber n and a poloidal mode numberm such thatku=nq/ r, m
=nq, andq=1.4 atr =0.5a. In the linear phase, the spectrum
peaks atkure.0.3 and decreases to very low amplitude at
kure.0.2 and 0.4. The spectral width is narrower than that
of the linear growth rate as expected in an initial value cal-
culation. In the nonlinear phase, the toroidal spectrum gradu-
ally downshifts to peak nearkure.0.1 with long wavelength
modes down tokure=0 all excited. Similar nonlinear down-
shift of the toroidal spectrum also occurs in the ITG
turbulence.21 Therefore, we conjecture that toroidal spectral
cascades in both ETG and ITG turbulence are governed by
same processes, i.e., nonlinear toroidal couplings.

In the time history of three representative modes shown
in Fig. 2, the linearly most unstable short wavelength mode

grows first to a high amplitude, then saturates, and decreases
to a low level. The longer wavelength modes have two
growth phases: first a fast growth and then a much slower
growth after the most unstable short wavelength mode am-
plitude decreases. The fast growth in the first phase is non-
linearly driven since the growth rates are much larger than
the linear growth rates of the long wavelength modes. This
suggests that the short wavelength mode saturates via a non-
linear mode coupling to the longer wavelength modes. The
saturated amplitude of the long wavelength modes are much
higher than that of the linearly most unstable modes, show-
ing that the structures in the fully developed ETG turbulence
are nonlinearly generated. Finally, an important clue for the
ETG nonlinear physics is that the very long wavelength
mode withkure=0.02 grows before the shorter wavelength
mode withkure=0.15, suggesting that the downshift of the
toroidal spectrum is not the conventional inverse cascade,14

in which the fluctuation energy flows orderly from short to
long wavelengths due to local interactions inn-space.

The structure of the fully developed ETG turbulence is
shown in Fig. 3, which is a poloidal contour plot of the
electrostatic potentialsor densityd. The seemingly coherent
structure in Fig. 3 actually contains hundreds of toroidal

FIG. 1. ETG fluctuation spectra in linear phases3105, dottedd and at t
.20/g0 after saturations3104, solidd for a=2000re.

FIG. 2. Time history of three toroidal modes withkure=0.3 sdashedd, 0.15
ssolidd, and 0.02sdottedd.
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modes as shown in the nonlinear spectrum of Fig. 1. Clearly,
the ETG turbulence is dominated by nonlinearly generated
radial streamers. By varying the simulation device size, we
find that the radial streamer length scales with the device
size. This is in sharp contrast to the isotropic eddies of the
ITG turbulence,21 where the shearing effects of spontane-
ously generated zonal flows break up the linear toroidal ITG
eigenmodes.

The nonlinear decorrelation rategnl is conventionally es-
timated from streamer eddy turnover time associated with
E3B drift, gnl,Vekrrekureedf /Te. Using streamer enve-
lope krre,4310−3, kure,0.1, andedf /Te,8310−3, we
find thatg0/gnl,16 for the case ofa=2000re. Note that the
value of g0/gnl increases linearly witha/re since bothkrre

andedf /Te are proportional tore/a. Therefore, the nonlin-
ear decorrelation rategnl is much smaller than the linear
growth rateg0, contradicting the mixing length rule that the
instability saturates whengnl balancesg0. The fact that
g0/gnl@1 also invalidates a common practice, wheregnl is
replaced byg0 in the condition for the turbulence suppres-
sion by shearedE3B flows, i.e.,vE3B,g0. An assumption
of gnl,g0 is a key element of the conjecture15 that the ETG
turbulence could survive when strong sheared flows suppress
the ITG/TEM turbulence in some tokamak operation re-
gimes.

A mixing length type of argument has been invoked to
attribute the large electron transport observed in flux-tube
simulations15 to the convection of plasma by the radial
streamers. However, electrons do not rotate around the
streamers, as illustrated by a typical electron orbit during a
period of 20/g0 in Fig. 3. This is due to the fact that elec-
trons move predominantly along the magnetic field line and
resonant electrons, which contribute to the transport, can
decorrelate with streamers due to the overlapping of phase-
space islands or the nonlinear loss of the parallel resonant

condition. Thus, we find that streamers only cause a small
perturbation on the electron free streaming motion. To fur-
ther demonstrate that the electron thermal transport is diffu-
sive, it is instructive to examine the statistics of radial excur-
sions of test particles.21 The test particles have a Maxwellian
distribution with a temperature ofTe and move under the
influences of the fluctuating potential. After an initial ballis-
tic motion over a short radial distance, the volume averaged
electron radial excursion is diffusive. The range of the radial
excursion is only about one-tenth of the streamer size. Dur-
ing the same period, ETG streamers should have completed a
full rotation as estimated by the eddy turnover time. Again,
this result supports the thesis that transport is induced by the
overlapping of phase-space islands of resonant electrons, and
further invalidates the transport scaling obtained from the
mixing length estimate, which assumes that particles rotate
around turbulence eddies. Plasma turbulence eddies are sim-
ply amplitude contours of electrostatic potentialsor densityd
perturbations, or equivalently,E3B velocity fields. Due to
free streaming motion along the magnetic field line in colli-
sionless plasmas, particles do not only move with the veloc-
ity fields. In contrast, the fluid elements move exactly with
the velocity fields in the fluid turbulence because the colli-
sional mean free path is typically much shorter than the fluc-
tuation scale length.

The electron heat conductivityxe sin gyroBohm unit
vere

2/LTd at saturation is indeed insensitive to the device size
sand thus the streamer lengthd. In Fig. 4, volume averagedxe

is very similar fora/re=1000 and 2000. The fluctuation in-
tensity in gyroBohm unit is also found to be insensitive to
the device size. Therefore, in contrast to the conventional
wisdom, we find no direct causal relationship between the
streamer length and the electron transport level, and that the
transport is well below that expected from the mixing length
estimates. This is obviously due to the fact that transport is
diffusive and driven by the local fluctuation intensity.25

Meanwhile, the intensity is determined by the saturation
mechanism, i.e., nonlinear toroidal coupling which is not
sensitive to the streamer length. We emphasize here the size
scaling of xe at saturation. Even the largexe at the early

FIG. 3. sColord. Poloidal contour plots of electrostatic potential att
.20/g0 after saturation. The poloidal projection of a typical electron orbit
from saturation tot is plotted. The length unit isre.

FIG. 4. Time history of the heat conductivity.
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nonlinear stage is an order of magnitude smaller than the
ITG/TEM transport with the same plasma parameters.28 Af-
ter the initial saturation, the electron heat conductivity
evolves slowly and reaches a much lower level,26,27a process
that is not well understood.

For comparisons with flux-tube simulations, we made
several simplifications, i.e., neglecting the Debye shielding
term in the gyrokinetic Poisson equation,23 using marker par-
ticles with uniform temperature in the partially linearizeddf
scheme29 which removes parallel nonlinearity,30 assuming no
externally driven flows, and neglecting the coupling to ITG/
TEM turbulence.31 All these additional effects could further
reduce the ETG electron transport. Numerical convergence
studies indicate that 10 particles per cell are sufficient for a
few tens of linear growth times after nonlinear saturation.
Nevertheless, nonlinear interactions involving fine scale
structures in phase-space are difficult to resolve in particle
simulations, on the other hand, are artifically destroyed in
continuum simulations using coarse velocity grids. There-
fore, all these physics subtleties and the issue of numerical
noise buildup in long timedf simulation26,27,32 need to be
further examined in order to quantitatively predict the ETG
electron transport level.

III. NONLINEAR TOROIDAL COUPLING

In order to understand why fluctuation intensity and
electron transport are independent of the streamer length, we
need to study the saturation mechanism for the toroidal ETG
instability. The linear eigenmodes can be described with
three degrees of freedom: a toroidal eigenmode numbern
assuming axisymmetry, a parallel mode structure determined
by the radial width of the poloidal mode numberm, and a
ballooning angleu0 representing the radial envelope of the
linearly coupledm harmonics. Correspondingly, nonlinear
interactions can take the following three forms: a nonlinear
mode coupling between twon toroidal eigenmodes, a modi-
fication of the parallel mode structure, and a modulation of
the radial envelope. The envelope modulation, i.e., the gen-
eration of zonal flows, dominates in the ITG turbulence. In
the ETG turbulence, all these interactions are formally on the
same order.

The simulation results reported in Sec. II suggest that
nonlinear mode coupling plays a key role in regulating the
ETG turbulence. We study all these interactions and find that
the coupling of twon eigenmodes, labeled as nonlinear tor-
oidal coupling, is the dominant nonlinear interaction in the
ETG turbulence. All simulations in this section use the same
parameters described in Sec. II except that the tokamak size
is a=1000re with a simulation domain ofr /a=f0.4,0.6g. All
diagnostics in this section are at a reference minor radiusr
=0.5a with a safety factorq=1.4.

A. Saturation of a single toroidal eigenmode

It has been suggested that ETG instability saturates when
the linear growth of the primary ETG instability is balanced
by a slablike secondary Kelvin–HelmholtzsKHd instability.15

In this process the linear streamer of a single toroidal eigen-
mode is broken up by the KH instability. To test this hypoth-

esis, we first study the nonlinear saturation of a single toroi-
dal eigenmode ofn0=110 with kure=0.31. In this test case,
we initially only allow then0 mode to grow from very small
random noise, i.e., only the electric field associated with this
mode is used in the calculation of particle orbits. The poloi-
dal contour plot of density perturbation shows that the mode
is dominated by an eigenmode with a ballooning angleu0

=0. The linear streamers19,26,33,34are formed by linear toroi-
dal couplings, where many poloidalm harmonics of a single
n mode are linearly coupled because of the magnetic field
dependence on the poloidal angle. Atr =0.5a, the dominant
m harmonic is m0=qn0=154. When the amplitude ofn0

mode is much higher than any other mode, alln modes are
allowed to grow. After saturation of then0=110 mode, the
linear streamer is well preserved. We do not find the signa-
ture of the secondary KH instability. This is in contrast to the
ITG where zonal flows, generated through a secondary insta-
bility, breakup linear ITG streamers.

At the saturation of the pump eigenmode, two most sig-
nificant secondary modes atr =0.5a are that of n=0, m
= ±1, or s0, 1d mode, and n=2n0=220, m=2m0±1
=307,309, ors2n0,2m0±1d mode. They are evidently gen-
erated by the following mode coupling process:

sn0,m0d + sn0,m0 ± 1d ⇒ s0, ± 1d,s2n0,2m0 ± 1d.

This coupling can be easily identified in the upper panel of
Fig. 5, which shows the amplitude of them harmonics in a
linear ETG toroidal eigenmode as a function of the radial
coordinate denoted by the safety factorqsrd. Each m har-
monic peaks at the mode rational surface wherem=qn0 and
decreases to very low amplitudes at neighboring mode ratio-
nal surfaces form±1 harmonics. The radial width ofm har-
monics represents the parallel mode wave vectorki. The
wider radial width corresponds to the largerki. The radial
profile of them harmonics after nonlinear saturation in the
middle panel of Fig. 5 clearly shows a widening of them
harmonics, i.e., an increase inki. Landau damping is then
enhanced since the ETG linear frequency is larger than the
transit frequency of thermal electrons. Therefore, the single-
n ETG eigenmode could saturate through the modification of
the parallel mode structure via a coupling to thes0, 1d mode,
which is of particular interest since all linearly unstable
modes contribute to it in the fully nonlinear simulations. The
radial coherence length of thes0, 1d mode is similar to the
distance between mode rational surfaces of the high-n pump
mode, as shown in the lower panel of Fig. 5, and thus the
assumption of an adiabatic ion response is valid even for the
n=0 mode. Meanwhile, the zonal flow, ors0, 0d mode, is
generated through modulation of the radial envelope. How-
ever, the amplitude of zonal flow is low and it does not
breakup the linear ETG streamer.

B. Saturation in the presence of multiple eigenmodes

We now study the nonlinear interaction between twon
modes by adding another pump mode. We find that the satu-
ration amplitude of a single-n mode is much higher than that
in the presence of another eigenmode with a similar ampli-
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tude, suggesting that the nonlinear coupling between two
eigenmodes is the dominant process in the ETG saturation.

Since the most unstable toroidal eigenmodes typically
have an envelopekr =0, a conceptual difficulty we must first
address regarding nonlinear mode couplings is whether two
toroidal eigenmodes withkr =0 can nonlinearly interact. Two
streamers in a slab geometry with parallel wave vectors
would not nonlinearly interact due to the fact thatk13k2
=0. This concept of slab streamers has perhaps misled pre-
vious studies of toroidal drift-wave turbulence. In fact, the
situation is quite different for toroidal eigenmodes. Although
toroidal streamers have an envelopekr =0, there is a “hid-

den” kr = ŝuku due to the localization of eachm harmonics
near the mode rational surface as shown in Fig. 5. This can
also be visualized in a poloidal contour plot of the superpo-
sition of two toroidal eigenmodes, which shows fine radial
structures away from the poloidal angleu=0. Therefore, two
toroidal eigenmodes can nonlinearly interact because of the
unique ballooning mode structure. This nonlinear streamer
coupling is strictly geometry specific since there is no slab
counterpart. We thus call the nonlinear coupling between two
n modes a nonlinear toroidal coupling.

We now examine the nonlinear toroidal coupling of two
n modes. Two toroidal eigenmodes,n0=110 andn1=95, are
allowed to grow first, i.e., only these two pump modes feed
back to the particle dynamics. When the amplitudes of these
two modes are much higher than any other mode, all toroidal
modes are allowed to grow. The radial profiles of these two
eigenmode in linear phase are shown in the upper two panels
of Fig. 6. Eachm0 harmonic of then0 mode, in addition to
the coupling to them0±1 harmonics of then0 mode itself,
interacts most strongly with onem1 harmonic of then1

mode, wherem0 andm1 are the harmonics whose mode ra-
tional surfaces sit close to each other. The coupling proceeds,

sn0,m0d + sn1,m1d ⇒ sn0 ± n1,m0 ± m1d.

This coupling produces both a very high-n mode, nh

=205, and a low-n mode,nl =15. The amplitude of the very
high-n mode is much smaller since the coupling coefficients
of thenh mode is much weaker than that to thenl mode. This
is because the intrinsic frequency, i.e., the inertia, of thenh

mode is much higher than that of thenl mode, and because
the interacting wave vectors of the two pump eigenmodes are
almost parallel in the coupling to thenh mode, whereas they
are almost perpendicular in the coupling to thenl mode. The
low-n mode is a forced oscillation, i.e., a quasimode, since
its intrinsic frequency is much smaller than the frequency
difference between the two pump eigenmodes, which is on
the order of their linear growth rates. As shown in the lower
panel of Fig. 6, eachm harmonic of the low-n quasimode is
localized near its own mode rational surface, and the radial
coherence length of the quasimode is similar to the distance
between the mode rational surfaces of pump modes, which is
the radial width of the interactions betweenm harmonics.
This is also confirmed in a poloidal contour plot, which
shows that the radial eddy size of the quasimode is very
small. Therefore, the quasimode does not possess the bal-
looning mode structure and has a very long parallel wave-
length,ki ,1/qR0n0

1/2 sSec. IVd, near mode rational surface.
Resolving these low-n quasimodes with very long parallel
wavelength would require16 simulation box size orders of
magnitude bigger than typical ETG flux-tube simulations.15

The generation of the low-n quasimode,nl ;n0−n1=15
is just the first step of the nonlinear toroidal coupling. The
quasimodenl couples back to the two pump modes and gen-
erates secondaryn2 modes,n1−nl =80, andn0+nl =125 sup-
per panel of Fig. 7d before the saturation of pump modes. In
turn, each secondaryn2 mode couples with the far-side pump
mode to generate another quasimodenl =30. Then, the cou-
pling between the low-n quasimodenl =30 with the pump
modes generates further secondary modesn2=65 and 140.

FIG. 5. Radial profiles ofsn,md harmonics ofeufu /Te for n0=110 before
spanela, 3106d and afterspanelb, 3103d saturation, and fors0,1d mode
spanelc, 3104d before saturation. Each solid or dashed line describes anm
harmonic.
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These successive coupling processes proceed until alln
modes that satisfy then-matching condition are populated
with either a quasimode or a secondary mode, as shown in
the middle panel of Fig. 7 after the saturation of pump
modes. The amplitudes of the higher-n secondary modes,
n2=125,140, . . ., aremuch smaller than lower-n secondary
modes,n2=80,65, . . ..This indicates that the energy cas-
cades preferentially to lower-n secondary modes. Each cou-
pling always involves a quasimode, a secondary ballooning
mode and a pump ballooning mode. The low-n quasimodes
do not contain much energy or drive much transport. Rather,
they act as mediators that facilitate the transfer of energy
from pump modes to secondary modes. Thus, the nonlinear

toroidal coupling can be viewed as a two-step process, first
the generation of the low-n quasimode, and the subsequent
energy transfer from pump modes to lower-n secondary
modes. The second step is similar to the Compton
scattering35 with the quasimode playing the role of the qua-
siparticle.

The parallel mode structure of pump modes is also
modified at saturation through coupling to thes0, 1d har-
monic smiddle panel of Fig. 6d. However, its amplitude de-
creases quickly due to Landau dampingslower panel of Fig.
6d. The amplitude of the zonal flow, ors0, 0d mode, is always
very small, consistent with the fact that the envelope modu-
lation is insignificant. At the steady state, the ETG turbulence
is dominated by nonlinearly-generated lower-n secondary
mode streamers, which have longer intrinsic characteristic
time scales and could be prone to the shearing effects of the
equilibrium and zonal flows. Steady state is achieved both
via energy transfer to damped modes and via modification by

FIG. 6. Radial profiles ofsn,md harmonics ofeufu /Te for n0=110 spanela,
3106d, n1=95 spanelb, 3106d, andnl =15 spanelc, 3105d before saturation.
Each solid or dashed line describes anm harmonic.

FIG. 7. Toroidal mode numbern spectra before and after saturation of the
pump modes atr =0.5a. Solid line represents the harmonics ofm=qn; m
=qn+1 for dashed line.
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the s0, 1d mode of the parallel mode structure of linearly
unstable modes, which enhances Landau damping.

In summary, we find that the toroidal ETG instability
saturates via nonlinear toroidal couplings, which transfer en-
ergy from unstable to stable modes. The parallel wave vector
also increases through coupling to thes0, 1d mode, which is
a weaker nonlinear interaction due to Landau damping of the
s0, 1d mode. Finally, the generation of the zonal flow is the
weakest nonlinear interaction because the amplitude of the
sidebands withu0Þ0 is much smaller than those of the
pump eigenmodes.

IV. GYROKINETIC THEORY OF NONLINEAR
TOROIDAL COUPLING

In this section, we develop a gyrokinetic theory of the
nonlinear toroidal coupling. To delineate the mode-coupling
process, let us first consider the nonlinear couplings between
three modes with toroidal mode numbern0, n1, andnl. Thus,
we have in mind,n0,n1,Os103d@1 being the spontane-
ously excited ETG modesspump wavesd and nl =n0−n1

,Osn0
1/2d.1 being the low-n beat mode. In addition, noting

that ETG normal mode real frequencyv0 scales linearly with
n0 sSec. IId, we adopt the following frequency and wave-
length ordering: 1.g0/v0,g1/v1,k're,n0

21/4

. uv0−v1u / uv0u,n0
21/2, which will be used in the following

to solve the electron nonlinear gyrokinetic equation in the
fluid limit.

Within the three-wave coupling model, we have,

dfsrW,td = df0srW,td + df1srW,td + dflsrW,td + c.c.,

where df0 and df1 take the following ballooning-mode
representation,36 assuming circular magnetic surfaces and
sr ,u ,zd being a right handed toroidal flux coordinate system:

df0srW,td = e−in0zA0stdo
m0

eim0uF0sn0q − m0d,

df1srW,td = e−in1zA1stdo
m1

eim1uF1sn1q − m1d,

dflsrW,td = e−isnlz−mludAlstdo
j

eij uFl jsrWd.

We have thus ignored envelope modulations due to either
equilibrium variations or zonal flow dynamics, which occurs
at a longer time scale for ETG.

In fact, the crucial difference between ITG and ETG
zonal flow dynamics is that massless electron zonal response
is identically zero in the ITG case, whereas large orbit ion
zonal dynamics is adiabatic for ETG. For this reason, the
ETG zonal flow polarization will be different, i.e., an
Oskz

−2re
−2d larger, with respect to that of ITGsRef. 37d and

zonal flow dynamics will occur on aOskz
−2re

−2d longer time
scale with respect to the toroidal three-wave couplings dis-
cussed here. Here,kz is the wave vector of the zonal flow.
Contrary to ITG, where zonal flows interactions with a co-
herent ITG determine the shortest nonlinear time scale, ETG
nonlinear dynamics is dominated by nonlinear scattering pro-
cesses to longer wavelengths, via a truly toroidal process, as

demonstrated in the global GTC simulations. In the follow-
ing, we derive analytic expressions for the parallel mode
structures of the low-n beat mode and construct nonlinear
evolution equations for the local amplitudes,A0std, A1std, and
Alstd.

Due to the radially localized nature ofF0 andF1, effec-
tive nonlinear coupling requires that significant spatial over-
lap exists between the poloidal mode structures of the two
considered ETG pump waves. This fact, in turn, can be ex-
pressed as aselection rulevia F0 andF1 representation. In
other words, assumingrs as the reference low-order mode
rational surface, i.e.,qsrsd=ml /nl, df0,1 can be further ex-
pressed as, in the largen0,1 asymptotic limit,

df0,1srW,td = e−isn0,1z−ms0,1udA0,1stdo
j

eij uFsz0,1− jd,

with ms0,1=n0,1qsrsd, z0,1=sr −rsd /D0,1, and D0,1

=1/n0,1q8srsd.
The governing field equation is the quasineutrality con-

dition, for k=0,1,l, assuming that ion response is adiabatic
ssincek'ri ,Îmi /mek're@1d,

eNe0

Te
s1 + tddfk + kJ0ksdgk

linear+ dgk
nldlvW = 0, s1d

where t=Te/Ti, and Ne0 is the electronsiond equilibrium
density,k lvW denotes integration in velocity space, anddgk’s
satisfy the electron nonlinear gyrokinetic equations,38

Lgdgk
linear= −

e

Te
FMs]t + iv*dJ0dfk, s2d

Lgdgk
nl = − sduWE · ¹ dgdk, s3d

with Lg=]t+vi]i+vWd·¹ and standard notations. In the linear
limit, Eq. s1d can be formally written asseNe0/TedLkF=0,
with Lk the linear eigenmode operator. Specifically, we note
that L0Fsz0d=L1Fsz1d=0. Here, we assume thatFszd is the
normalized linear eigenmode, i.e.,euFu2dz=1.

Assuming fluid approximation fordgk
nl on the left-hand

side of Eq.s3d, consistently with the frequency and wave-
length ordering assumed above, we have the following
Hasegawa–Mima-like equation,

]

]t
Lkdfk = ae

c

2B
re

2skW'9 3 kW'8 d ·eWisk'9
2 − k'8

2ddfk8dfk9,

with ae;fdP',ek/ seN0edfkd−1g, i.e., ae=hts1+hed / fs3t

−1dLn/R+1/2g+1j,13 andkW =kW8+kW9. Here,kW8 andkW9 should

be strictly interpreted as operators, i.e.,ikW8dfk8=¹W dfk8.
We now proceed with specific calculations. For the low-

n l mode,k=knl
, k'8 =skn0

d' andk'9 =−skn1
d' fcomplex con-

jugate of skn1
d'g, we can ignore variations on the scale of

1/nlq8 and concentrate only on thej =0 term,

]

]t
LlalstdFl0srd = ia0a1

* âeSku0

D0
D ]

]z0
fdk'

2 g0C0,

where ak=eAk/Te, âe=aeuVeure
4, C0=o juF0ju2, F0j =Fsz0

− jd, and
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fdk'
2 g0C0 =

2nl

n0
ku0

2 s1 + ŝ2/W0
2dC0

;
2nl

n0
ku0

2 C0 + qs8
2o

j

n1
2F0j

]2

]z0
2F0j

*

− n0
2F0j

* ]2

]z0
2F0j ,

where we have consideredku1.ku0 and kul ;ku0−ku1

=ku0snl /n0d. Furthermore,ŝ=rsqs8 /qs, andW0,Os1d denotes
the typical width ofFsz0d. Strictly speaking, 1/W0 must be
considered as an operator, as it is implicitly assumed without
loss of generality in its definition above. NotingLl .t, and
definingFl0srd= is] /]z0ds1+ŝ2/W0

2dC0, we have,

]alstd
]t

=
âe

t

2nl

n0

ku0
3

D0
a0a1

* . s4d

The feedback equation for the pump modedf0, using
k=kn0

, k8=kn1
, andk9=knl

, is given by

]

]t
L0a0stdFsz0d = âea1al

ku1

D1
fk'1

2 gFsz0d
]2

]z0
2S1 +

ŝ2

W0
2DC0,

with fk'1
2 gfsz0dgsz0d;−ku1

2 fgs1−ŝ2]2/]z0
2df + ŝ2f]2g/]z0

2g.
Projecting withF*sz0d, we obtain,

s]t − g0da0std = − sâe/tda1alsku1/D1dsk'1
2 /Wl

2d, s5d

whereg0 is the linear growth/damping rate, and

sk'1
2 /Wl

2d ; −E dz0F*fk'1
2 gF

]2

]z0
2S1 +

ŝ2

W0
2DC0.

Thus,Wl corresponds to the typical radial scale ofFl0 or dfl,
and v0]D0/]v0<t is noted withD0 being the Hermitian
part of the linear ETG dielectric constant. Following the
same procedure, we can readily derive the following evolu-
tion equation of another pump modea1std:

s]t − g1da1std = sâe/tda0al
*sku0/D0dsk'0

2 /Wl
2d. s6d

With evolution equations foral, a0, a1 derived, we can
readily extend the results to the case of multi-n pump modes
interacting with a singlenl quasimode. In this case eachn
mode will interact with then+nl mode, as well as with the
n−nl mode. Theal mode, meanwhile, will interact with all
the n and n−nl pairs. Noting thatn@nl, we can take the
continuum limit and obtain the final set of spectral-cascading
equations for the wave energy densityIn= uanu2/2,

S ]

]t
− 2gnDIn + vn

]

]n
In = 0, s7d

wherevnstd=−fs2âe/tdŝkun
2 sk'n

2 /Wl
2dnlgualstdu, and

S ]

]t
+ glDualstdu = 4sâe/tdqs8E kun

3 Indn. s8d

In Eq. s8d, we have introducedgl as the damping rate of the
forcednl mode viakivi Landau damping.

Equations7d indicates cascades toward lowern modes if
vn,0. Meanwhile, sgnsvnd=−sgnsk'n

2 d, and, approximately,
k'n

2 <kun
2 fŝ2/Wl

2−s1+ŝ2/Wn
2dg. Here, we recall thatWl and

Wn are, respectively, the radial scales ofFl0 andFn. Noting,
typically Wnø1, and ŝ,1, we haveFl0srd,uFnszdu2, and
hence,Wl ,Wn/2 andk'n

2 .0, i.e., vn,0. So wave energy
cascades from high to lowern values. We emphasize that the
low-n forced oscillation having rapid radial variation is cru-
cial in terms of, not only determining the direction of the
energy cascade, but also the cascading rate, i.e.,uvnu,Wl

−4.
Such rapid radial oscillations are, of course, due to the fact
that the spontaneously excited pump ETG modes are com-
posed of radially localized poloidal harmonics with nearly
flat envelope, i.e., the ballooning-mode structure unique to
the toroidal geometry. It is also worthwhile noticing that, in
the present analysis leading to Eq.s7d, the low-n mode have
the role ofmediatorsin the spectral cascading: they are un-
important in terms of amplitudes but crucial in the sense they
makenonlocal transfers of energy possible in wave vector
space. The resulting downshifted nonlinearswith respect to
the lineard spectrum, see Fig. 1, is characterized by radially
elongated-streamer-like structures. Thus these structures can
be considered as nonlinear streamers. However, we empha-
size that their characteristic radial extension is due to linear
toroidal mode couplings, as in the linear phase, since nonlin-
ear distortions to toroidal equilibrium variations is small, as
discussed below. Further proof of this are the weak effects of
nonlinear dynamics on the streamers envelope structure.

Another important issue to be discussed is the nonlinear
generation ofsn,md=s0,1d low frequency fluctuations by
beatings of neighboring poloidal harmonics of the samen. It
can be shown that theses0, 1d low frequency quasimodes
alter the ETG potential well structure parallel to magnetic
field lines and, thus, their parallel mode structure and
growth/damping rate. At saturation, the amplitude ofs0, 1d
low frequency fluctuations is still small compared with tor-
oidal equilibrium variations in the poloidal plane. For this
reason, the effect ofs0, 1d low frequency modes is marginal
on ETG streamers envelope structures. Detailed analysis of
these issues will be presented in a future publication.

V. DISCUSSION AND CONCLUSION

Key findings from global gyrokinetic particle simula-
tions are that ETG instability saturates via nonlinear toroidal
couplings and that radially extended streamers do not drive a
large electron thermal transport expected from mixing length
estimates. The nonlinear gyrokinetic theory confirms qualita-
tively key simulation results, among others, that the ETG
spectral energy cascades to lower toroidal mode numbers.
Our studies focus on toroidal ETG turbulence with a strong
positive magnetic shearŝ,1, of which flux-tube simulations
predict large electron transport. The mechanism of instability
saturation and electron transport could be very different in
the weak shear region withŝ,0, where the dominant insta-
bility is a slab ETG.39

The crucial role of low-n quasimodes as mediators in
nonlinear toroidal couplings is a possible explanation of the
difference between flux-tube and global simulations. In fact,
the quasimode has an optimal mode number,n0

1/2, where
n0,1000, and a parallel wave vector,1/qR0n0

1/2 sSec. IVd.
Thus, ETG simulations require16 that radial box size scales
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as ,ren0
1/2 and parallel box size scales as,qR0n0

1/2, i.e.,
order of magnitude larger than current flux-tube ETG
simulations.15 If quasimode dynamics is suppressed, then
only parallel mode structure modification via thes0, 1d mode
and zonal flow dynamics can set thesmuch higherd saturation
level of the ETG turbulence. Finally, since all unstable eigen-
modes participate in nonlinear toroidal couplings, using a
small number of toroidal eigenmodes may not accurately
predict the saturation amplitude.

We note that there are accumulating evidences from
first-principles turbulence simulations that contradict the
heuristic mixing length rule, which underlies most existing
transport models. We have reported earlier21 a gradual tran-
sition from Bohm to gyro-Bohm scaling for the ion transport
driven by the ITG turbulence although the eddies are isotro-
pic. In this paper, we further demonstrate that the scaling of
electron transport driven by the ETG turbulence is gyro-
Bohm even though the size of streamers scales with the de-
vice size. The key to reconciling these obvious contradic-
tions is that transport is diffusive and driven by the local
fluctuation intensity, rather than the eddy size. The deviation
of ITG transport from the gyro-Bohm scaling is due to the
fact that the fluctuation intensity is driven by nonlocal ef-
fects, i.e., the turbulence spreading.21,40,41 Meanwhile, the
ETG fluctuation intensity is determined by the nonlinear to-
roidal coupling, which does not depend on the streamersor
systemd size. The effects of turbulence spreading is negli-
gible in ETG since the fluctuation intensity is independent of
the device size.

In conclusion, global gyrokinetic particle simulation and
nonlinear gyrokinetic theory find that ETG instability satu-
rates via nonlinear toroidal couplings, which transfer energy
successively from unstable modes to damped modes prefer-
ably with lower toroidal mode numbers. The electrostatic
ETG turbulence is dominated by nonlinearly generated radial
streamers with an eddy turnover time much longer than the
linear growth time. The streamer length scales with the de-
vice size and is longer than the distance between mode ra-
tional surfaces and electron radial excursions. Both fluctua-
tion intensity and transport level at saturation are
independent of the streamer size. The nonlinear toroidal cou-
plings represent a new paradigm for regulating turbulence
via the toroidal spectral cascade.
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