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Abstract

A new finite element Poisson solver is developed and applied to a global gyrokinetic toroidal code (GTC) which
employs the field aligned mesh and thus a logically non-rectangular grid in a general geometry. Employing test cases where
the analytical solutions are known, the finite element solver has been verified. The CPU time scaling versus the matrix size
employing portable, extensible toolkit for scientific computation (PETSc) to solve the sparse matrix is promising. Taking
the ion temperature gradient modes (ITG) as an example, the solution from the new finite element solver has been com-
pared to the solution from the original GTC�s iterative solver which is only efficient for adiabatic electrons. Linear and
nonlinear simulation results from the two different forms of the gyrokinetic Poisson equation (integral form and the dif-
ferential form) coincide each other. The new finite element solver enables the implementation of advanced kinetic electron
models for global electromagnetic simulations.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In gyrokinetic simulations of turbulence in magnetized plasmas [1], overcoming stringent numerical
constraints imposed by the kinetic electrons has been a crucial issue. The split-weight scheme [2] separates
the adiabatic and the non-adiabatic electron responses which reduces the statistical noise of the particle sim-
ulation. Lin and Chen [3] developed a hybrid electron model which can relax the numerical constraints asso-
ciated with the fast electron motion in the direction parallel to the magnetic field. Using small parameter
expansion based on the square-root of the electron–ion mass ratio, the hybrid model solves the electron adi-
abatic response in the lowest order and the kinetic response in the higher orders. Both models preserve linear
and nonlinear wave–particle interactions. The aim of this paper is to present a newly developed Poisson solver
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which will be the basis for the electromagnetic simulation using both the split-weight scheme [2] and the hybrid
model [3].

The global gyrokinetic toroidal code (GTC) [4] currently uses an iterative Poisson solver [5], which is efficient for
the adiabatic electron response. The general form of the gyrokinetic Poisson equation is in an integral form [1,5–7].
The iterative solver employs local operations in configuration space to compute the polarization density and auto-
matically takes into account the background profile effects contained in the gyrokinetic Poisson equation [7]. It is
useful for global gyrokinetic simulations of toroidal plasmas, where the traditional spectral method is not applica-
ble. However, with the inclusion of the non-adiabatic electron response, using either the split-weight schemes [2,8,9]
or the hybrid model [3] for finite-beta plasmas, the resulting gyrokinetic Poisson equation requires a new algorithm.
Further, in the electromagnetic split-weight scheme, one needs to solve time derivative of Poisson�s equation, as well
as Ampere�s law for the magnetic perturbation. For all these purposes, a new linear elliptic solver is highly in
demand. In its simplest form, the gyrokinetic Poisson equation for electrostatic perturbations is given by
r2
?U ¼ �r; ð1Þ
where U is the electrostatic potential, r is the perturbed guiding center charge density averaged over gyro-
motion, and the subscript ^ denotes the direction perpendicular to the magnetic field.

The global code GTC has a unique grid structure due to the global field aligned mesh employed [10–12].
The field aligned mesh provides the highest computational efficiency without any approximation in geometry
to describe the structure of the toroidal drift wave eigenmode. It also keeps the number of particles per cell
nearly constant. The computational mesh on a poloidal plane twists along with the sheared magnetic field
in the toroidal direction. Consequently, the GTC code employs a logically non-rectangular grid (LNR grid,
hereafter) with a number of poloidal grid points which increases radially. This unique mesh structure compli-
cates the Poisson solver. In this work, a finite element method (FEM) [13,14] is introduced for the Poisson
solver and successfully implemented into the GTC. The finite element solver developed in this work is also
applicable for a general particle in cell code [15].

For the finite element method, one needs to solve a large sparse matrix. To solve the sparse matrix, we
employ the state-of-the-art PETSc (portable, extensible toolkit for scientific computation) code [16]. Here,
PETSc is a suite of data structures and routines for the scalable (parallel) solution of scientific applications
modeled by partial differential equations. It employs the message passing interface (MPI) standard for mes-
sage-passing communications [16].

The elliptic gyrokinetic Poisson solver in GTC is inherently two-dimensional as a result of perpendicular
polarization drift [1]. Taking an international thermonuclear experimental reactor (ITER) size plasma as an
example, where the minor radius is on the order of one thousand ion Larmor radii, several million grid points
per poloidal plane are used (for a total of typically 32–64 poloidal planes). This requires a fast and efficient
way of solving the resulting elliptic equations, the multigrid method, for example. To speed up the matrix sol-
ver, the PETSc code is interfaced with hypre (high performance preconditioners) [17] which employs algebraic
multigrid (AMG) method [18] as a preconditioner. Here, preconditioning means that we change variables to
obtain a new equation whose coefficient matrix has a better eigenvalue distribution than that of the original
coefficient matrix. In this paper, as a first step, we focus on the finite element method and application of the
PETSc code to the gyrokinetic particle simulation.

This paper is organized as follows. In Section 2, the basic model for the gyrokinetic Poisson equation is
reviewed. We then discuss the finite element method applied to the GTC grid geometry. Section 3 presents
the verification of the finite element solver by employing test problems whose analytical solutions are known.
In Section 4 taking the ion temperature gradient (ITG) mode in toroidal geometry as an example, we focus on
the benchmark of two solutions from the new FEM solver and the original iterative field solver [5]. We sum-
marize this work in Section 5.

2. Gyrokinetic Poisson equation

In this section, we review the gyrokinetic Poisson equation. We also review the iterative method employed
in the original GTC [5] to illustrate the difference between the new finite element solvers and the iterative sol-
ver. Following Lee [7], the gyrokinetic Poisson equation is given by
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r2U� s

k2
d

ðU� ~UÞ ¼ �4peðd�ni � dneÞ; ð2Þ
where e is the unit charge, kd is the electron Debye length, d�ni, dne are the ion and the electron guiding center
charge density, and s = Te/Ti is the ratio between the equilibrium electron temperature Te and the equilibrium
ion temperature Ti. Here, 4peðd�ni � dneÞ corresponds to r of Eq. (1). In Eq. (2), the gyro-phase averaged
potential �U and the second gyro-phase averaged potential ~U are given by [5]
�UðRÞ ¼ 1

2p

Z
UðxÞdðx� R� qÞdx d/
and
~UðxÞ ¼ 1

2p

Z
�UðRÞF MðR; l; vkÞdðR� xþ qÞdR dl dvk d/;
where R is the gyro-center position, x is the position of the particles, q = x � R corresponds to the Larmor
radius, and FM stands for the Maxwellian distribution. Here, / is the gyro-phase, l is the magnetic moment,
vi is the parallel velocity. The Debye length is given by kd = (Te/4pn0e2)1/2, where n0 is the background equi-
librium ion and electron densities. In Eq. (2), the first term is the Debye shielding term [7]. The second term is
derived by Lee [1] and later by Dubin et al. [6]. Physically, the second term comes from the ion polarization (or
the inertia) effects. From the ordering (qs/kd)2� 1 [6,7], only the second term is retained [5], giving Eq. (2) a
form of an integral equation. Here, qs is the ion gyro-radius at the electron temperature. To solve Eq. (2)
numerically, an iterative double-gyro-averaging scheme [5] is employed. This iterative method has been one
of the key components of the GTC [4].

Unfortunately, the iterative method (under the integral form) cannot be applied for the non-adiabatic
kinetic electrons, when they are used in the split-weight schemes [2] and the electromagnetic hybrid model
[3]. In the presence of non-adiabatic electrons, the inversion matrix of the iterative method cannot be diago-
nally dominant. Note this is an inherent nature of the gyrokinetic Poisson equation.

By expansion in the long wavelength limit, the second term of Eq. (2) becomes [1]
�sk�2
d ðU� ~UÞ � sðxpi=XiÞ2r2

?U; ð3Þ
where xpi is the ion plasma frequency and Xi is the ion cyclotron frequency [note the Debye shielding term in
Eq. (2) and the ðxpi=XiÞ2r2

?U term in Eq. (3) are different]. As noted above, as a result of perpendicular polar-
ization effect [1], the Poisson equation is essentially two-dimensional when the Debye shielding term is
neglected.

To calculate the response of the short wavelength mode correctly, Padé approximation [19,20] should be
introduced on the right-hand side of the gyrokinetic Poisson equation. Using Eq. (2), together with the
approximation of Eq. (3), we obtain
sðxpi=XiÞ2r2
?U ¼ �4pe 1� q2

ir2
?

� �
ð �dni � dneÞ; ð4Þ
where qi is the ion Larmor radius. Normalizing Eq. (4) with qs for the length, the background density n0, and
Te/e for the potential, we obtain (note q2

s ¼ sq2
i )
r2
?U ¼ � 1� 1

s
r2
?

� �
ð �dni � dneÞ. ð5Þ
Hereafter U, �dni, dne, and the $^ operator stand for normalized values. Eq. (5) is employed for the simulations
in the presence of non-adiabatic kinetic electrons.

With the adiabatic condition dne = U, Eq. (5) reduces to
1� 1þ s
s
r2
?

� �
U ¼ 1� 1

s
r2
?

� �
�dni ð6Þ
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with a Helmholtz type operator on the left-hand side. Eq. (6) is employed for the simulations of ITG turbu-
lence where electrons are adiabatic. More complicated form is needed, for example, to simulate low aspect
ratio tokamaks.

As we discussed above, the global field aligned coordinate [10–12] gives rise to unique computational grid
structures. Fig. 1(a) is the topology of the conventional GTC grid at a particular toroidal angle. The structures
of the grid are different at other toroidal angles. Compared to the nominal polar coordinate, the grid points of
the azimuthal coordinate increase with respect to the radial coordinate. For example, we have four grid points
on the first flux surface (ir = 1) and eight grid points on the second flux surface (ir = 2). Here, the term flux
surface (a plasma physics terminology) implies a plane with a constant (r in this simple case with a circular
cross-section, the GTC applies to arbitrary cross-sections). The arc length of the segments is kept nearly con-
stant for uniform resolution, Dr = rDh, where Dr and Dh are the mesh size in the radial (r) and the azimuthal
(h) directions.

One way to solve Eqs. (5) and (6) is to employ the finite difference scheme [22]. When a finite difference
scheme is used on our LNR grid, we encounter difficulties. First, one needs to find corresponding ‘‘ghost
points’’ (in the radial direction). Second, problems arise near the magnetic axis due to limited number of grid
points (see Appendix for ghost points interpolation. Conventionally, GTC simulations [21] exclude center
regions since there are not significant turbulence activities near the axis). Third, the application of the geomet-
ric multigrid methods becomes extremely difficult.

Instead, we employ the finite element method (FEM) in this work [13]. With the finite element method, the
Poisson equation can be solved in the logically non-rectangular grid. Fig. 1(b) demonstrates application of the
new FEM grid generator. In general, the FEM is suitable for dealing with complicated geometries, where
unstructured meshes are employed. In Fig. 1(b), the poloidal plane is divided into quadrants (this is for the
purpose of second domain decomposition in the future) [16,23]. In Fig. 1(b), the boundaries are connected
by linear elements but can be smooth enough when sufficient grid points are taken.

2.1. Introducing a finite element method

The application of the finite element method for Eqs. (5) and (6) are described below. Denoting (xi,j,k,yi,j,k) as
the Cartesian coordinate variables for the vertices (1 6 i, j,k 6 N), a linear shape function S(e) for U is given by
Fig. 1.
topolo
elemen
point l
SðeÞ ¼ 1

4DðeÞ
½ðxiyk � xkyjÞ þ ðyj � ykÞxþ ðxk � xjÞy� ¼

1 on the ith vertex;

0 otherwise;
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ð7Þ
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Adaptation of the FEM generator to the GTC grid. Here, very small numbers of grid points are taken to emphasize the GTC grid
gy. (a) A conceptual plot of the logically non-rectangular GTC grid. (b) The GTC grid with an adaptation of triangular finite
ts. Note in (b), the poloidal plane is divided into quadrants (this is for the purpose of second domain decomposition). In (b), grid
ocations are adjusted; the number of the grid points increases by a constant factor of four in the radial direction.
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where
Fig. 2.
labelin
DðeÞ ¼ 1
2
½ðxi � xkÞðyj � ykÞ � ðxk � xjÞðyk � yiÞ� ð8Þ
is the area of the triangle elements. Indices i, j,k are labeled counter clock-wise (see Fig. 2(a)). Assembling local
3 · 3 matrices, Eq. (6) can be written in the form [13,14]
XN

j¼1

ðmijUj þ kijUjÞ ¼ di. ð9Þ
In Eq. (9), N is the number of vertices,
mij ¼
DðeÞ

12
ð1þ dijÞ ¼

DðeÞ=6; i ¼ j;

DðeÞ=12; i 6¼ j;

(
ð10Þ

kij ¼
1þ s

s
1

4DðeÞ
½ðyj � ykÞðyk � yiÞ þ ðxk � xjÞðxi � xkÞ� ð11Þ
and
dðeÞi ¼
DðeÞ

12
½2riðtÞ þ rjðtÞ þ rkðtÞ�; ð12Þ
where dij is the Kronecker�s delta. Here, ri,j,k stand for the particles charges gathered on the vertices i, j and k.
The charge gathering scheme stays the same as in the original Poisson solver [5]. In the particle simulations,
the charge densities ri,j,k change with time and thus the right-hand side of Eq. (12) needed to be calculated
inside the particle code at each time step, while the geometrical information contained in the matrix mij

and kij stay the same throughout the simulation.

2.2. The matrix equation

To include the boundary condition, let us rewrite Eq. (9) explicitly in a matrix form. In addition, a trans-
formation from the local to the global matrix is demonstrated with an example of three triangle elements with
four vertices (see Fig. 2). For the triangle (1) of Fig. 2(b), we have [13]
Dð1Þ=6þ k11 Dð1Þ=12þ k12 Dð1Þ=12þ k14

Dð1Þ=12þ k21 Dð1Þ=6þ k22 Dð1Þ=12þ k24

Dð1Þ=12þ k41 Dð1Þ=12þ k42 Dð1Þ=6þ k44

0
B@

1
CA

U1

U2

U4

0
B@

1
CA ¼

dð1Þ1

dð1Þ2

dð1Þ4

0
BB@

1
CCA; ð13Þ
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An example of the finite element labeling scheme with a three-node triangular element. (a) Labeling i, j, k for one element. The
g is counter-clock wise. (b) Discretization of the solution domain and the system numbering scheme. Cited from Huebner et al. [13].
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In the same manner, for the triangle (2)
Dð2Þ=6þ k22 Dð2Þ=12þ k23 Dð2Þ=12þ k24

Dð2Þ=12þ k32 Dð2Þ=6þ k33 Dð2Þ=12þ k34

Dð2Þ=12þ k42 Dð2Þ=12þ k43 Dð2Þ=6þ k44

0
B@

1
CA

U2

U3

U4

0
B@

1
CA ¼

dð2Þ2

dð2Þ3

dð2Þ4

0
BB@

1
CCA ð14Þ
and for the triangle (3)
Dð3Þ=6þ k33 Dð3Þ=12þ k31 Dð3Þ=12þ k34

Dð3Þ=12þ k13 Dð3Þ=6þ k11 Dð3Þ=12þ k14

Dð3Þ=12þ k43 Dð3Þ=12þ k41 Dð3Þ=6þ k44

0
B@

1
CA

U3

U1

U4

0
B@

1
CA ¼

dð3Þ3

dð3Þ1

dð3Þ4

0
BB@

1
CCA. ð15Þ
These are called the local matrices [13]. Note that the superscript indices with the brackets (e) are for the
elements and the subscripts i, j, k without brackets are for the vertices. Eqs. (13)–(15) are equivalent to writing
three 4 · 4 matrices [13],
Dð1Þ=6þ k11 Dð1Þ=12þ k12 0 Dð1Þ=12þ k14

Dð1Þ=12þ k21 Dð1Þ=6þ k22 0 Dð1Þ=12þ k24

0 0 0 0

Dð1Þ=12þ k41 Dð1Þ=12þ k42 0 Dð1Þ=6þ k44

0
BBBBB@

1
CCCCCA

U1

U2

U3

U4

0
BBBBB@

1
CCCCCA ¼

dð1Þ1

dð1Þ2

0

dð1Þ4

0
BBBBB@

1
CCCCCA; ð16Þ

0 0 0 0

0 Dð2Þ=6þ k22 Dð2Þ=12þ k23 Dð2Þ=12þ k24

0 Dð2Þ=12þ k32 Dð2Þ=6þ k33 Dð2Þ=12þ k34

0 Dð2Þ=12þ k42 Dð2Þ=12þ k43 Dð2Þ=6þ k44

0
BBBBB@

1
CCCCCA

U1

U2

U3

U4

0
BBBBB@

1
CCCCCA ¼

0

dð2Þ2

dð2Þ3

dð2Þ4

0
BBBBB@

1
CCCCCA; ð17Þ

Dð3Þ=6þ k11 0 Dð3Þ=12þ k13 Dð3Þ=12þ k14

0 0 0 0

Dð3Þ=12þ k31 0 Dð3Þ=6þ k33 Dð3Þ=12þ k34

Dð3Þ=12þ k41 0 Dð3Þ=12þ k43 Dð3Þ=6þ k44

0
BBBBB@

1
CCCCCA

U1

U2

U3

U4

0
BBBBB@

1
CCCCCA ¼

dð3Þ1

0

dð3Þ3

dð3Þ4

0
BBBBB@

1
CCCCCA. ð18Þ
Note that the order has been rearranged in the last equation [13]. Adding all together, and denoting
aij = mij + kij = D(e)(1 + dij)/12 + kij, we obtain
að1Þ11 þ að3Þ11 að1Þ12 að3Þ13 að1Þ14 þ að3Þ14

að1Þ21 að1Þ22 þ að2Þ22 að2Þ23 að1Þ24 þ að2Þ24

að3Þ31 að2Þ32 að2Þ33 þ að3Þ33 að2Þ34 þ að3Þ34

að1Þ41 þ að3Þ41 að2Þ42 þ að2Þ42 að2Þ43 þ að3Þ43 að1Þ44 þ að2Þ44 þ að3Þ44

0
BBBB@

1
CCCCA

U1

U2

U3

U4

0
BBB@

1
CCCA ¼

dð1Þ1 þ dð3Þ1

dð1Þ2 þ dð2Þ2

dð2Þ3 þ dð3Þ3

dð1Þ4 þ dð2Þ4 þ dð3Þ4

0
BBBB@

1
CCCCA. ð19Þ
Eq. (19) is called the global matrix [13]. For N vertices in general, Eq. (19) is given by an N · N matrix
XðeÞ
a11 a12 � � � a1i � � � a1N

a21 a22 � � � a2i � � � a2N

..

. ..
. ..

. ..
.

ai1 ai2 � � � aiN � � � aiN

..

. ..
. ..

. ..
.

aN1 aN2 � � � aNi � � � aNN

0
BBBBBBBBBB@

1
CCCCCCCCCCA

U1

U2

..

.

Ui

..

.

UN

0
BBBBBBBBBB@

1
CCCCCCCCCCA
¼
XðeÞ

d1

d2

..

.

di

..

.

dN

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; ð20Þ
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where
PðeÞ denotes contributions from all the triangle elements. In this paper, we employ a homogeneous

Dirichlet boundary condition (Ui = C = 0) on the inner-most flux surface and the outer-most flux surface.
To include the Dirichlet boundary condition, we modify Eq. (20) to
Fig. 3.
symme
shape
XðeÞ
a11 a12 � � � 0 � � � a1N

a21 a22 � � � 0 � � � a2N

..

. ..
. ..

. ..
.

0 0 � � � 1 � � � 0

..

. ..
. ..

. ..
.

aN1 aN2 � � � 0 � � � aNN

0
BBBBBBBBBB@

1
CCCCCCCCCCA

U1

U2

..

.

Ui

..

.

UN

0
BBBBBBBBBB@

1
CCCCCCCCCCA
¼
XðeÞ

d1 � a1iC

d2 � a2iC

..

.

C

..

.

dN � aNiC

0
BBBBBBBBBB@

1
CCCCCCCCCCA
¼
XðeÞ

d1

d2

..

.

0

..

.

dN

0
BBBBBBBBBB@

1
CCCCCCCCCCA

. ð21Þ
Hereafter, we denote Eq. (21) as A Æ U = d. Note, in Eq. (21), by setting mij = 0, we recover nominal Pois-
son�s equation, Eq. (5), instead of the Helmholtz equation. An example of the shape of the matrix [the loca-
tion of the nonzero components of the matrix in Eq. (21)] is shown in Fig. 3. The maximum number of
nonzero components is seven for each row (or column), and we have a sparse positive semi-definite symmet-
ric matrix. The four period we see in Fig. 3 is due to the labeling schemes we took for the vertices (the quad-
rant by quadrant ordering). Once the matrix is generated, our task is reduced to a routine work of solving
A Æ U = d. Rather than developing a matrix solver by our own, we employ the state-of-the-art PETSc code
from Angonne National Laboratory [16]. The main task in FEM is the book-keeping in relating the labels of
the vertices and the labels of the triangle elements. To save the computational memory, in Eq. (21), only (1)
the nonzero column index for each rows and (2) the nonzero values of aij for each rows are passed to the
matrix solver.

The generalization of the grid generation to a shaped plasma is straightforward. Fig. 4 shows the applica-
tion of the grid generator to the geometry of the National Spherical Tokamak Experiment (NSTX) equilib-
rium profile [24], an ultra-low aspect ratio tokamak. By knowing the number of the grid points on each
flux surfaces beforehand (the number of the grid points can be arbitrary), the new grid generator automatically
relates the vertex labels and the element labels.

One approach in speeding up the elliptic type solver is to employ the geometric multigrid (GMG)
method. The geometric multigrid method is very useful in simple, logically rectangular geometries, such
as Cartesian or cylindrical ones where the finite difference method applies. Another approach in speeding
up the elliptic solver is to employ the algebraic multigrid (AMG) method, which is a multilevel method
where geometry information is not required (as compared to GMG). The algebraic multigrid method is
useful for sparse matrices obtained from FEM. We plan to employ AMG [17,18,26] to further accelerate
the elliptic solve.
0 50 100 150 200
i (row)

0

50

100

150

200

j (
co

lu
m

n)

The shape of a banded sparse matrix for the grid of Fig. 1(b). The boundary condition of Eq. (21) is included. In general, we obtain
tric semi-positive definite matrix. The number of maximum nonzero components for each rows (columns) is seven. The matrix
stays the same at larger N.
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Fig. 4. The application of the grid generator to the shaped plasmas using the National Spherical Tokamak Experiment (NSTX)
equilibrium. The grid points are obtained from a Grad–Shafranov equilibrium. By the courtesy of J. Manickam, Princeton Plasma Physics
Laboratory.
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2.3. Toroidal dependence of elements

Here, we discuss how we include the effects of helically twisted magnetic field lines (q-profiles or the safety
factor) into the finite element grid generator. In the GTC, the field aligned coordinate [10–12] is used where the
magnetic field is given by
Fig. 5.
f = 0 a
elemen
the inn
q(r) =
B ¼ rw�ra; ð22Þ

where a = h � f/q [25]. Here, a is the helical angle, h is the poloidal angle and f is the toroidal angle. Due to the
finite value of the safety factor q(r), the grid points on each field lines rotate and move to different locations
depending on the toroidal angle. Further, since q(r) in general is not a constant, the flux surfaces do not rotate
rigidly. This feature is illustrated in Fig. 5 by fans. Each fan represents one-fourth of the poloidal plane.
Fig. 5(a) shows the fans at f = 0 and f = p. As a consequence of non-constant q(r) (finite magnetic shear),
the triangles are highly distorted at f = p. For the accuracy of the finite element method, we need to retain
each angle of the triangle elements to be larger than certain values [14]. Fig. 5(b) shows how we remedied this
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The 2D FEM Poisson solve is applied to multiple poloidal planes. Each fan represents one-fourth of the poloidal plane. (a) Fans at
nd f = p (f is the toroidal angle). Observe the distortion of the triangle elements. (b) Fans at f = 0 and f = p with modified triangle
ts. By knowing the values of q(r) on each flux surfaces, the elements are forwarded (counter-clock wise) to align closely with that of
er most flux surface (the solid lines). The vertices still stay on the original GTC grid points. Here, the q-profile is taken as

0.6 + 0.6/(0.358)2r2 to illustrate the distortion.
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problem. Fig. 5(b) shows the fans at f = 0 and f = p, but this time with modified elements. Knowing the value
of q(r) on each flux surfaces, the elements are forwarded (counter-clock wise) to align closely with that of the
inner-most flux surface suggested by the thick lines. Note the vertices still stay on the original GTC grid
points. It is only the labeling of the vertices that has been changed. Consequently, the labeling of the vertices
differs depending on poloidal planes and we generate multiple matrices A of Eq. (21). The geometrical infor-
mation for multiple 32 (or 64) [21] poloidal planes is stored in 32 (or 64) A matrices.

3. Verification and CPU-timing of the new finite element solver

In this section, we generate turbulence like electrostatic potential profile, U, whose analytical solution is
known. We check the validity of the new FEM solver. The term FEM solver in this paper describes the com-
bination of the grid generator, the matrix generator, and the PETSc code as the matrix solver.

Denoting r as the radial and h as the azimuthal variable in the polar coordinate, the test analytical profile
Umath is taken as
Umathðr; hÞ ¼ sinð2pnÞ þ �
X

M

BM sinð2pMnÞ
" #X

l

Al cosðlhþHlÞ; ð23Þ
where 0 6 � 6 1 is a small parameter and n = (r � rmin)/(rmax � rmin) (rmin and rmax are the minimum and the
maximum range of r). The Fourier coefficients Al and BM are generated by a random number generator and l

is taken in the range of �lmax 6 l 6 lmax (similarly �Mmax 6M 6Mmax). Here, lmax (Mmax) is the ‘‘wave mode
number’’ at the finest resolution that can exist in the azimuthal (radial) direction of the simulating domain.
Since we restrict the GTC simulations to circular cross-sections in this work, x = rcosh and y = r sinh apply
throughout this paper. The first term in Eq. (23) is an analogy of the zonal flows [4,27] (counter streaming
within the range of rmin 6 r 6 rmax) and the second term is an analogy of the drift wave turbulence fluctua-
tions. The phase Hl is also given by the random number generator. With Eq. (23), the right-hand side of
Eq. (1) is given by
rðr; hÞ ¼ �r2Umathðr; hÞ ¼ �
1

r
o

or
r
oUmath

or

� �
� 1

r2

o
2Umath

oh2

¼ � 1

r
rrðr; hÞ

X
l

Al cosðlhþHlÞ þ sinð2pnÞ þ �
X

M

BM sinð2pMnÞ
" #X

l

l2

r2
Al cosðlhþHlÞ;
where
rrðr; hÞ ¼
2p
Dr

cosð2pnÞ � 4p2r
Dr2

sinð2pnÞ þ �
X

M

BM
2pM
Dr

cosð2pMnÞ � 4p2M2r
Dr2

sinð2pMnÞ
� �

.

Note Eq. (23) satisfies the homogeneous Dirichlet boundary condition U = 0 at r = rmin and r = rmax. Fig. 6
compares the analytical profile of Eq. (23) and numerical solutions obtained from the FEM solver (the profiles
are extracted at h = 0). The parameters taken are lmax = 20, Mmax = 20, � = 0.4, rmin = 0.2, and rmax = 0.4 (the
annular simulating domain of 0.2 6 r 6 0.4). The dots represent the numerical solution while the solid lines
represent the mathematical solution. As shown in Fig. 6, the two solutions match. A total of N = 154,560 grid
points are taken in the example of Fig. 6.

Further, we have calculated the L-2 norms of the difference between the analytical and the numerical solu-
tions shown in Fig. 6. The grid size N is varied. Letting L2 � ð1=NÞ

P
N ðU� UmathÞ2, we obtain L2 = 7.705 ·

10�4 (for N = 9840), L2 = 5.890 · 10�5 (for N = 38,880), and L2 = 8.847 · 10�6 (for N = 154,560). The L2

value decreases as the number of the grid size increases. This tendency supports the linear shape function
Eq. (7) (instead of employing higher order shape functions). In solving our matrix equation (21), PETSc’s
main solve employs the generalized minimal residual (GMRES) method and the incomplete LU decomposi-
tion for the preconditioner [22].

The solid line in Fig. 7(a) is the CPU time (in seconds) versus the number of the grid points ‘‘N’’ (as a
reminder the matrix size is N · N). The scaling is obtained using a single processor on IBM SP-3 at National
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Fig. 6. The analytical profile of Eq. (23) and numerical solutions obtained from the FEM solver. The parameters taken are lmax = 20,
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Fig. 7. (a) The CPU time versus the matrix size (number of grid points) in the finite element method using PETSc. (b) The CPU time
versus the number of processors. The number of grid points N = 616,320 is used for the scaling. The timing of PETSc is quite promising.
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Energy Research Supercomputing Center (http://www.nersc.gov). Note, the scaling of the thick solid line is
obtained from a PETSc solve where the initial guess of U is taken as a zero vector.

In our particle simulation, since the numerical time step Dt is much shorter than the timescale of our inter-
est (e.g., eddy turn over time, estimated by the drift wave frequency xq) we expect the solution to be similar to
U(k�1)(r,h), where the superscripts (k � 1) signify the previous time step in the simulation. The U(k�1)(r,h) val-
ues can be used for the initial guess for solving A Æ U(k)(r,h) = d. Such preconditioning of the solution U(k) can
speed up the computation. This latter timing is shown as dashed line in Fig. 7(a). The timing of the dashed line
is trivially time required for one iteration where the solution U is employed for the initial guess. To see the
effect of time evolution of the charge density in this test model, we manipulate the right-hand side of Eq.
(21), d, by multiplying a random number by
d i ¼ ½1:0þ R� � d i. ð24Þ

With this manipulation, we measure the change in CPU timing by varying the amplitude of the random num-
ber term R. The long dashed line in Fig. 7(a) is the case when R is taken within the range of �0.01 6 R 6 0.01,
and a thin solid line is the case with �0.10 6 R 6 0.10. In both the cases, we observe a tendency that the pre-
conditioning is effective at large N which is the size of the matrix. On the other hand, Fig. 7(b) shows the CPU
time versus the number of processors. The default MPI (in PETSc) speeds up the computation proportional to
the number of processors. The number of grid points N = 616,320 is used for the scaling.

As a reference, the computational timings for the GTC simulations for ITG runs (with the adiabatic
approximation for the electrons) [21] are approximately 10 s per step for the particle pusher and approxi-

http://www.nersc.gov
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mately 1 s per step for the Poisson solver using 1024 processors on the IBM SP-3. The time for the field solver
is approximately 10% of the total CPU time (due to the use of the original Poisson solver), where the adiabatic
electron response is dominant [4]. A rough estimation of the timing with the new FEM Poisson solver is
approximately 20 s per step with the same number of grid points, which is about 20 times slower than the ori-
ginal solver. Our goal is to speed up the new solver by a factor of 2, so that we spend equal time for the field
solve and for the particle pushing. In the next section, the finite element solver is employed inside the GTC
simulation, replacing the original iterative solver [5].

4. Linear and nonlinear simulation of ITG modes

In tokamak core regions, with auxiliary ion heating, the ion temperature gradient exceeds the density gra-
dient and induces an instability known as the ITG mode [29] which is believed to be the drive for the core
turbulence. Employing the new finite element solver, we first benchmark the linear growth rate of the ITG
mode. We further analyze the nonlinear simulation results. For the ITG analysis, we employ a toroidal geom-
etry but stay in a circular cross-section.

Shown in Fig. 8 is an example of a linear ITG eigenmode structure, a contour plot of U at a f = 0 poloidal
plane. Fig. 8 is obtained from linear runs, which means we select a specific toroidal eigenmode and filter out
the others. Fig. 8(a) is obtained from the simulation with the finite element solver and Fig. 8(b) is from the
standard GTC field solver. As a reminder, Eq. (6) is solved for Fig. 8(a) (s = Te/Ti = 1.0 is taken). These
are from two different series of simulations (using two different field solvers). From t = 0, we let the linear
ITG grow. A linear mode with a toroidal mode number n = 6 is chosen, where the safety factor varies within
the range of 1.53 6 q 6 3.58 in the annular simulating domain, 0.2 6 r 6 0.4. In Fig. 8, the number of grid
points in each poloidal plane is N = 9840 (160 points on r = 0.2 and 320 points on r = 0.4). The new FEM
solver gives the linear growth rate of c = 2.39 · 10�4, while the original solver gives c = 2.32 · 10�4. The linear
growth rate falls within 3% of difference (with the Padé approximation). In Fig. 8(a), the scheme of Section 2.3
is employed (forwarding the triangle elements counter-clockwise). When the number of grid points is changed
for the cases with the FEM solver (N = 38,880, 320 points on r = 0.2 and 640 points on r = 0.4), the growth
rate stays c = 2.39 · 10�4.

Results of nonlinear simulation, where all n modes are kept, are shown in Fig. 9. In the nonlinear regime,
due to the mode coupling, multiple modes come into play and the plasma reach a turbulence state. Shown in
Fig. 9 is a two-dimensional contour plot of U (with the zonal flow components subtracted). In Fig. 9, red
represents positive U values, while blue fsrepresents negative U values. We observe vortex structures elongated
in the radial direction. The vortex dynamics along the density and the temperature gradient give rise to net
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xa b

Fig. 8. A linear eigenmode (contour plot) of ITG instability (a) from the new FEM solver, (b) from the original iterative solver. A
dominant mode of m/n = 14/6 is shown. The safety factor varies in the range of 1.53 < q < 3.58 within the simulating domain.
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Fig. 9. A contour plot of electrostatic potential U in the nonlinear saturated state of ITG instability. (a) From the new FEM solver, (b)
from the original iterative solver. The turbulence saturation is regulated by the zonal flows. (For interpretation of the references in colour
in this figure legend, the reader is referred to the web version of this article.)
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plasma radial transport. Plasma turbulence, as what we perceive, is a state where short wavelength micro-
scopic instabilities and dissipation mechanisms balance. In an actual plasma discharge, no modes can keep
growing forever unless the entire plasma discharge is terminated. Any instability should reach a saturation
state. In the system we considered, the ITG mode drives the instability, and zonal flows [4,30] regulate the tur-
bulence saturation level. Zonal flows are manifested as a global structure in the h direction, with a Fourier
harmonics of m/n = 0/0 (m is a poloidal mode number), and a radially varying structure in the potential U
(or the counter streaming) [30]. Note, what we plotted in Fig. 9 is the response of the turbulence (m/n 6¼ 0/
0 modes) to the zonal flows.

Fig. 10 shows the evolution of volume averaged ion heat fluxes qi. In Fig. 10, the ITG mode grows linearly
and saturates after t � 25. The time averaged value of ion heat flux after t = 25 in Fig. 10(a) (from the finite
element solver) is qi = 1.27 · 10�4 and in Fig. 10(b) (from the original solver), qi = 1.42 · 10�4. For the non-
linear simulation of Figs. 9 and 10, N = 38,880 is taken. All the other parameters are the same as in the linear
simulation of Fig. 8.

Note although the individual behaviors of qi (as a function of time) are different between Fig. 10(a) and (b),
the saturation level takes on similar values. As a reminder, in stochastic processes (the ITG driven turbulence
in our system), while the individual trajectories (the particle orbits as well as the electrostatic field) are time
irreversible, the statistical values can take on the same value (the volume averaged ion heat fluxes in our case).

Let us discuss a few technical issues with respect to the finite element solver. As a reminder, in the matrix
equation A Æ U = d of Eq. (21), A corresponds to the differential operator r2

? (contains geometrical informa-
t

q i

t

q i

a b

Fig. 10. Evolution of volume averaged ion heat flux from Fig. 9. From (a) the new finite element solver, (b) the original iterative solver.
The time averaged value of ion heat flux (a) qi = 1.27 · 10�4 and (b) qi = 1.42 · 10�4. The saturation level takes on similar values.
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tion, but independent of time) and only d is time-dependent (the right-hand side of the Poisson�s equation). In
the practical GTC runs with the finite element solver, the matrices A for different poloidal planes (32 to 64 in
practice) are pre-generated at the beginning of the simulation. The matrices A are given only once at t = 0 as
one of the input parameters.

As suggested by the analyses of Section 3, the preconditioning of the solution U speeds up the computation
by employing the solution of the previous time step as an initial guess. In the GTC simulation, we employed
U(k�1) from the previous time step for the initial guess of the next time step U(k) (the super-scripts (k) signify the
time step in the simulation).

5. Summary and discussion

In this work, a new finite element field solver is developed and successfully implemented into the GTC code
[21] which employs a logically non-rectangular grid. For the sparse matrix solve we employed the PETSc code
[16]. Test cases for the matrix solver have shown optimistic CPU timing. The CPU timing scaled linearly ver-
sus the number of grid points (equivalent to N · N, the size of the matrix). Application of the finite element
field solver (together with the algebraic multigrid method) seems quite promising for large scale gyrokinetic
turbulence simulations in the presence of kinetic electrons.

The benchmark ITG runs are also discussed. The simulation results using the new solver have been com-
pared favorably with the results from the original field solver. The linear growth rate and the eigenmode struc-
ture matched closely, and in the nonlinear ITG simulations, the two gave the same transport level at the
turbulence saturation state. The two different forms of the gyrokinetic Poisson equation, that are the integral
form and the differential form with the Padé approximation generated similar results both in the linear and the
nonlinear simulations.

The goal of our physics research is to investigate electron dynamics and electromagnetic effects [3] on the
drift wave type turbulence. At a critical value of plasma pressure, we expect excitations of new branches of
electromagnetic modes, that are the Alfvenic ion temperature gradient mode (AITG) and the kinetic balloon-
ing mode (KBM) [31].

The field solver is expected to be more time consuming as the simulation domain (the number of grid
points) becomes larger. We expect to further accelerate the computation, by employing AMG as a pre-condi-
tioner to the matrix A [17]. In this work, the Poisson�s equation is solved using one processor per poloidal
plane. The details on the parallelization strategies will be discussed in our later publications. Second domain
decomposition (within a poloidal plane) using MPI will be our future work.
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Appendix A. Numerical derivatives in a logically non-rectangular grid

As we discussed in Section 2 for the Padé approximation, we need to operate r2
? on the charge density.

Nominally, in a polar coordinate [22] r2
? operator is given by a 5-point scheme
r2rðr; hÞ ¼ 1

r
o

or
r
or
or

� �
þ 1

r2

o2r

oh2
¼ 1

ri

1

Dr
riþ1=2

riþ1;j � ri;j
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� ri�1=2

ri;j � ri�1;j
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Fig. A.1. (a) The concept of the scheme in finding ghost points for the radial derivatives. The black dots are the grid points and the thin
solid lines represent flux surfaces. The parallelogram with the dashed lines signifies the relevant four corners. The thick line connects two
ghost points we need for the radial derivatives. (b) Comparison on the value of 1/ror(rorr) obtained linear interpolation and cubic spline
(which matches with the analytical profile).
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where 0 6 r 6 1 and 0 6 h 6 2p. Here, i is the label for the radial coordinate r and j is the label for the azi-
muthal coordinate h. For the radial derivative in the equation above, ri±1,j does not have grid points (while
for the h derivative, ri,j±1 have corresponding grid points on a magnetic flux surface). To obtain the ghost
points ri±1,j, we need an interpolation scheme (see Fig. A.1(a)). For the interpolation scheme, cubic spline
is indispensable for accuracy.

Fig. A.1(b) compares the second derivative values from (1) a linear interpolation (2) the cubic spline and (3)
the analytical profile. The values are plotted along the azimuthal coordinate. Here the analytical model of Eq.
(23) is taken for r with � = 0.2, lmax = 20, Mmax = 0. The accuracy in the cubic spline reveals superiority over
the linear interpolation.
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