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The gyrokinetic toroidal code (GTC) capability has been extended for simulating internal kink

instability with kinetic effects in toroidal geometry. The global simulation domain covers the

magnetic axis, which is necessary for simulating current-driven instabilities. GTC simulation in the

fluid limit of the kink modes in cylindrical geometry is verified by benchmarking with a magneto-

hydrodynamic eigenvalue code. Gyrokinetic simulations of the kink modes in the toroidal geome-

try find that ion kinetic effects significantly reduce the growth rate even when the banana orbit

width is much smaller than the radial width of the perturbed current layer at the mode rational

surface. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4905073]

I. INTRODUCTION

Large currents are needed to form nested magnetic

surfaces for confining high temperature plasmas in axisym-

metric fusion devices. These equilibrium currents often

excite magnetohydrodynamic (MHD) instabilities including

ideal kink modes1 and resistive tearing modes.2 The basic

physics mechanisms of these current-driven instabilities

manifest themselves in tokamak plasmas as various macro-

scopic MHD modes, such as fishbones,3 sawteeth,4 neoclass-

ical tearing modes,5 and resistive wall modes,6 which can

limit burning plasma performance and threaten fusion device

integrity.7 The studies of the MHD modes typically rely on

MHD simulations8–10 or reduced models.11 However, the

excitation and evolution of macroscopic MHD modes often

depend on kinetic effects at microscopic scales and on the

nonlinear coupling of multiple physical processes, e.g., micro-

turbulence, neoclassical transport, and energetic particle

effects. Therefore, fully self-consistent simulations require a

kinetic approach to incorporate microscopic kinetic effects in

these current-driven MHD modes. In this work, we extend

gyrokinetic particle simulation12 capability to the internal

kink instability with kinetic effects in toroidal geometry.

The ideal MHD internal kink mode is an m¼ n¼ 1 per-

turbation driven unstable by gradients of the equilibrium cur-

rents in magnetized plasmas. Here, m and n are the poloidal

and toroidal, respectively, mode number. The mode structure

peaks at the rational surface with the safety factor q¼ 1 in a

tokamak. While internal kink modes are observed to be rela-

tively benign in tokamaks,1 they can trigger fishbone modes

and sawtooth oscillations, both are a potential threat to the a-

particle confinement in the International Thermonuclear

Experimental Reactor (ITER). The excitation of fishbone-

like modes13,14 by fast ions is routinely observed in current

tokamak experiments. Recently, experiments manipulate the

current profile to destabilize the sawtooth oscillations to

avoid the more dangerous neoclassical tearing modes.15

When q is larger than unity but approaches unity, a long-

lived kink mode has been observed to degrade the fast ion

confinement.8,16,17

The ideal MHD theory finds that the internal kink is

always unstable in a cylindrical geometry with a q¼ 1

surface.1 In a toroidal geometry, the internal kink mode can

be stabilized by the toroidicity18 due to the coupling to the

m¼ 2 harmonic. However, the toroidicity can be either stabi-

lized or destabilized depending on the plasma beta b (defined

as the ratio of kinetic pressure to magnetic pressure).19 The

stabilization of internal kink modes by the toroidicity has

been confirmed in some MHD simulations.20,21 Recently,

nonlinear two-fluid simulations with sources and sinks were

able to demonstrate the long time dynamics of kink modes

exhibiting sustained cycles.22

Kinetic effects can play an important role on the stabil-

ity of the internal kink mode due to the thin layer of per-

turbed currents near the mode rational surface.1 The kinetic

effects tend to stabilize the internal kink mode23,24 in gen-

eral. However, sufficient fast ion pressure gradients can

destabilize internal kink modes25 or even excite fishbone

modes.26 To study the kinetic effects, gyrokinetic particle

simulation has been utilized to simulate internal kink modes

in the cylindrical geometry.27,28 The growth rate and mode

structure are found29 to depend strongly on the ratio of ion

gyroradius to radial width of the perturbed current layer near

the rational surface. In the toroidal geometry, a gyrokinetic

eigenvalue analysis30 shows that trapped ions can signifi-

cantly affect the internal kink eigenmode structure and

growth rate.

Here, we extend the global gyrokinetic toroidal code

(GTC)31,32 capability for simulating internal kink modes, for

the first time, with kinetic effects in the toroidal geometry.

GTC has been extensively applied to study neoclassical and

turbulent transport33,34 and energetic particles.35 It has recently

been extended to simulate kinetic-MHD processes including

various Alfv�en eigenmodes.36,37 The implementation of the
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equilibrium current and the verification of its effects on reverse

shear Alfv�en eigenmode38 enable GTC simulation of current-

driven instabilities, such as kink modes reported in this paper

and tearing modes in a follow-up paper.39 In the present work,

we first extend the simulation domain to magnetic axis for

global kink simulation. We then verify GTC simulations of in-

ternal kink modes in the cylindrical geometry by benchmark-

ing with an MHD eigenvalue code. Finally, GTC gyrokinetic

simulations of internal kink modes in the toroidal geometry

find that ion kinetic effects significantly reduce the growth rate

even when the banana orbit width is much smaller than the ra-

dial width of the perturbed current layer.

The structure of the paper is as follows. In Sec. II, the

simulation method will be described, including extension of

the simulation domain to the magnetic axis. In Sec. III, GTC

simulations of the internal kink mode in the cylindrical ge-

ometry are verified. Toroidal simulations are presented in

Sec. IV. Conclusions and discussions are given in Sec. V.

II. GYROKINETIC SIMULATION MODEL FOR KINETIC
MHD

A. Gyrokinetic formulation with equilibrium current

Since the frequency and growth rate of kinetic-MHD

modes are much smaller than the ion cyclotron frequency,

nonlinear gyrokinetics, which removes unwanted high fre-

quency modes and rigorously retains all linear and nonlinear

wave-particle resonances and finite Larmor radius effects, is

well suited to study kinetic-MHD modes.

Using d as a smallness parameter, the gyrokinetic order-

ing is40–42

x
Xi
� kkqi �

dB

B0

� k?qi

ed/
T
� O dð Þ: (1)

The variables x, kk, and k? are wave frequency, parallel

wave vector, and perpendicular wave vector of the mode of

interest; Xi, qi, and B0 are ion cyclotron frequency, ion

Larmor radius, and equilibrium magnetic field; dB, d/, and

T are perturbed magnetic field, perturbed electrostatic poten-

tial, and plasma temperature.

Since the electron mass is much smaller than the ion

mass, the electron dynamics are on a much faster time scale

compared to the ion dynamics. Due to the computational

time constraints, it is often impractical to calculate the brute

force electron dynamics for macroscopic MHD modes. This

motivated the fluid-kinetic hybrid electron model in which

the electron distribution function is expanded using the

smallness parameter of the ratio of wave frequency to elec-

tron transit frequency.43 In the zeroth order, the electrons

are adiabatic and can be described by the continuity equa-

tion (i.e., massless electron model). Nonadiabatic responses

are treated kinetically in the higher order. However, in this

paper only massless electrons will be considered since the

important kinetic effects (finite orbit width, wave-particle

resonances, and polarization drift) on the kink instability

are mostly contributed by ions. The fluid-kinetic hybrid

electron model removes collisionless tearing mode physics

from the simulation, and avoids well known numerical

difficulties associated with tearing mode physics.44 In

extension to this model, GTC simulations of resistive tear-

ing modes using the fluid electron model with a resistivity

term have recently been verified.39 The collisionless tearing

mode using a finite-mass electron model has also been

verified.45

Starting with the electron fluid and field equations for

the fluid-kinetic hybrid model, the nonlinear continuity equa-

tion derived from the drift kinetic equation is38

@ne

@t
þ B0 � r

n0eduke
B0

� �
þ B0vE � r

n0e

B0

� �

�n0e dv�e þ vEð Þ � rB0

B0

þ dB � r
n0euk0e

B0

� �

þ cr� B0

B2
0

� �rdPke þ n0erd/
� �

þdB � r
n0eduke

B0

� �
þ B0vE � r

dne

B0

� �

þ cdne

B2
0

b0 �rB0 � rd/þ cdne

B2
0

r� B0 � rd/ ¼ 0; (2)

where the electron density ne and the electron parallel flow

ujje are split into the equilibrium and perturbed quantities:

ne¼ n0eþ dne and ujje¼ ujj0eþ dujje. The drift velocities are

defined as vE ¼ cb0�rd/
B0

and v�e ¼
b0�r dPjjeþdP?eð Þ

n0eB0
, where b0

is the unit vector along the direction of the equilibrium mag-

netic field, dPjje and dP?e are the parallel and perpendicular

perturbed electron pressure, and c is the speed of light.

Using the Pad�e approximation, the gyrokinetic Poisson

equation is40

c2

4pv2
A

r2
?d/ ¼ � 1� q2

ir2
?

� �
Zidni � dne

� �
; (3)

where dni is the perturbed gyro-averaged ion density, vA is

the Alfv�en velocity, and Zi is the ion charge. Gyrokinetic

Ampere’s law is used to calculate the electron perturbed

current

n0eeduke ¼
c

4p
r2
?Ak þ Zin0iduki: (4)

The variable dujji is the perturbed parallel ion flow.

The perturbed magnetic potential dAjj, defined as dB ¼ r
� dAkb0, is calculated from

@dAjj
@t
¼ �b0 � d/� d/ef f

� �
; (5)

where the effective scalar potential, which describes the par-

allel electric field (dEjj ¼ b0 � r/ef f ), in the lowest order is

d/ef f ¼ eTe
dne

n0e
� dw

n0e

@n0e

@w0

: (6)

This effective potential comes from the non-ideal ion ki-

netic effects (e.g., ion polarization drift and wave-particle

interactions). The parallel and perpendicular perturbed elec-

tron pressures in the lowest order are
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dPjje ¼ dP?e ¼ n0eed/ef f þ
@ n0eTeð Þ
@w0

dw; (7)

where w0 and dw are the equilibrium and perturbed poloidal

flux, respectively.

When ion kinetic effects are suppressed and parallel

electric field is set to zero, Eqs. (2)–(7) form a closed system,

which will be referred to as GTC fluid simulation from now

on. Also, for the fluid limit linear simulations the vE terms in

the electron continuity equation are removed because they

cancel out with the ions. This set of equations has been

shown to recover reduced MHD.38

To incorporate the kinetic effects from the ions, the ion

flow dui and the ion density dni are calculated using the

gyrokinetic equation

d

dt
fi X; l; vk; t
� �

� @

@t
þr � _X þ _vk

@

@vk

" #
fi ¼ 0: (8)

The term fi is the ion gyrocenter distribution function, _X
is the position of the gyrocenter, vjj is the velocity parallel to

the magnetic field, and l is the magnetic moment.

The ion gyrocenter motion is governed by

_X ¼ vkbþ vE þ vd; (9)

_vk ¼ �
1

mi

B�

B0

� lrB0 þ Zird/ð Þ � Zi

mi

@dAk
@t

; (10)

where mi is the ion mass. The magnetic field is

B� ¼ B�0 þ dB ¼ B0 þ
B0vk
Xi
r� b0 þ dB; (11)

where magnetic drift velocity vd is the sum of the curvature

drift vc and grad-B drift vg

vd ¼ vc þ vg ¼
v2
k

Xi
r� b0 þ

l
miXi

b0 �rB0: (12)

B. Equilibrium model

In this subsection, a brief description of the equilibrium

model is given. GTC uses a magnetic flux coordinate system

(w, h, f), where w is the poloidal magnetic flux, h is the

poloidal angle, and f is the toroidal angle. The covariant and

contravariant representations of the magnetic field and the

Jacobian J are shown below46

B0 ¼ gðwÞrfþ IðwÞrh ¼ qrw�rh�rw�rf; (13)

J�1 ¼ rw � rh�rfð Þ ¼ B2
0

gqþ I
: (14)

The parameters q, 2pg, and 2pI are the safety factory,

poloidal current, and toroidal current, respectively. Using the

covariant representation of the magnetic field, the equilib-

rium current density can be written as

r� B0 ¼ g0rw�rfþ I0rw�rh: (15)

While GTC has the capability to simulate realistic toka-

mak equilibria,37,47 this paper will focus on using analytical

equilibria to simulate kink modes for both cylindrical geom-

etry and toroidal geometry. In cylindrical geometry, the to-

roidal angle is defined as f¼ 2pz/L, where z is the axial

position and L is the length of the cylinder. The effective

major radius in cylindrical geometry is R0¼ L/2p, and a peri-

odic boundary condition is used for the toroidal angle. The

cylindrical geometry equilibrium is

B0 ¼ Ba;

I ¼ Bar2=q;

g ¼ BaR2
0;

h ¼ h0;

f ¼ f0;

(16)

where Ba is the on axis magnetic field strength. The variables

h0 and f0 represent the geometric poloidal and toroidal

angles and � is the local inverse aspect ratio �¼ r/R0.

For toroidal simulations, a tokamak with concentric

flux-surfaces will be used at two levels of approximation.48

At the lowest order in the expansion of the toroidal geome-

try, using the inverse aspect ratio as a smallness parameter,

we approximate the magnetic flux h-coordinate as the geo-

metric angle h0

B0 ¼ Ba � Ba� cos h0 þOð�2Þ;

I ¼ Bar2=qþOð�4Þ;

g ¼ BaR2
0 þOð�2Þ;

h ¼ h0;

f ¼ f0:

(17)

The next order is a realistic toroidal geometry

equilibrium,38 which uses a more realistic magnetic flux

h-coordinate

B0 ¼ Ba � Ba� cos h0 þOð�2Þ;

I ¼ Bar2=qþOð�4Þ;

g ¼ BaR2
0 þOð�2Þ;

h ¼ h0 � � sin h0;

f ¼ f0:

(18)

Note that a poloidal current term g of order �2 was

ignored, while the toroidal current term I of same order is

kept. This is because toroidal current term is an order of �
smaller than the poloidal current in the equilibrium current

density r�B0 because jrf=rhj � �.
For implementation of the realistic toroidal geometry

equilibrium, the Cartesian coordinates X(w, h) and Z(w, h)

are approximated for construction of a 2D spline. This is

done so that each term in the X and Z are separable into a

function of w and h, and the 2D splines can be constructed

from a 1D spline in w and a 1D spline in h
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X ¼ 1� � cos h0 � 1� � cosðhþ � sin hÞ
� 1� � cos hþ �2 sin2h� 1=2�3 sin2h cos h;

Z ¼ � sin h0 � � sinðh� � sin hÞ
� � cos hþ �2 sin h cos h� 1=2�3 sin2h:

(19)

C. Extending the simulation region to the magnetic
axis

In this subsection, a method to extrapolate solutions to

the magnetic axis for the gyrokinetic Poisson equation and

Ampere’s Law is discussed. The simulation domain must

include the magnetic axis, since the m¼ n¼ 1 internal kink

mode structures have a finite value near the axis which will

be shown in Secs. III and IV. This suggests that the internal

kink mode could be unphysically damped by excluding the

magnetic axis. GTC uses the finite difference method to cal-

culate the two dimensional perpendicular Laplacian on a

poloidal plane away from the magnetic axis. The Laplacian

operator in GTC is written in magnetic flux coordinates, as

shown below47

r2
?F ¼ gww @

2F

@w2
þ 2gwh @2F

@w@h
þ ghh þ gff=q2
� � @2F

@h2
0

þ 1

J
@J gww

@w
þ @J gwh

@h

 !
@F

@w

þ 1

J
@J gwh

@w
þ @J gww

@h

 !
@F

@h
: (20)

In the above equation, the contravariant tensor is defined

as gab�ra �rb, where a and b are any combination of the

magnetic coordinates w, h, or f. The choice of the magnetic

flux coordinate system leads to numerical errors when invert-

ing the Laplacian operator near the axis for low-m modes.

To understand why the numerical errors arise, consider

Laplace’s equation in cylindrical coordinates, which has the

Bessel functions Jm as a solution. With r being defined as

the minor radius, Bessel functions behave as Jm / rm

near the axis, and the equilibrium poloidal flux behaves as

w / r2 near the magnetic axis. Since quantities like @r/@w
and @2r/@w2 are singular near the magnetic axis, the

Laplacian of a m¼ 0, 1 Bessel function will lead numerical

errors in differencing the w derivatives.

To avoid numerical errors near the magnetic axis, the

Laplacian is solved using finite differences for the majority

of the simulation domain, then d/ and dAjj are extrapolated

to the magnetic axis for the first few flux surfaces. The flux

surface that separates the finite differences region and

the extrapolation region will be referred to as the “FD

Boundary” for short. The perpendicular Laplacian of a

Bessel function returns the same Bessel function multiplied

by a constant with r2
?JmðgrÞ cosðmhÞ ¼ �g2JmðgrÞ cosðmhÞ,

where g is the numerical constant. This relationship can be

used to extrapolate the behavior of d/ and dAjj near the mag-

netic axis. The method described here retains only the m¼0,

1 modes. To extrapolate solutions to the magnetic axis, per-

turbed quantities such as d/ and dAjj can be Fourier

decomposed at the FD Boundary surface. Since the m¼0

Bessel function is approximately constant, and the m¼1

Bessel function is approximately linear in r, the Laplacian of

a function near the magnetic axis can be extrapolated with

the form of the equation below

r2
?F ¼ a0 þ a1

r

rb
cos hþ b1

r

rb
sin h: (21)

The quantities a0, a1, and b1, are the poloidal Fourier

coefficients of the perturbed quantities at the FD Boundary

flux surface. The radial location of the FD Boundary is

given by rb, where the subscript b represents the radial FD

boundary grid point. To complete the finite differences

Laplacian matrix, a linear boundary condition in r is chosen

between the extrapolation region and the finite difference

region.

Fb�1 ¼ 2Fb � Fbþ1: (22)

To test this Laplacian operator, with the variable “a”

being defined as the minor radius of the wall, the function

F ¼ re�50ðr=aÞ8 , was chosen because it is linear in r near the

magnetic axis. A perpendicular Laplacian is performed ana-

lytically on F, and solved for G ¼ r2
?F. The function G is

input into GTC, which solves the gyrokinetic Poisson equa-

tion for F. The numerical solution to the perpendicular

Laplacian and the analytical function F can be seen in

Figure 1. For this test case, the first eight radial grid points

were chosen to be in the extrapolation region, and the rest

in the finite differences region. The GTC solution and the

analytic function F agree well in both regions with no sig-

nificant error near the FD boundary.

To treat the ion dynamics near the magnetic axis, if a

particle is located within the flux surface of the first radial

grid, the position is updated using Cartesian-like coordinates

x ¼
ffiffiffiffi
w

p
cos h;

z ¼
ffiffiffiffi
w

p
sin h:

(23)

The ion position is updated using the following

equations:

FIG. 1. The GTC laplacian operator solution and the analytic solution for F
are plotted against radial coordinate, r/a. The FD boundary flux surface is

drawn with a vertical dashed line.
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x1 ¼ x0 þ Dt
@x

@w
_w þ @x

@h
_h

� �
;

z1 ¼ z0 þ Dt
@z

@w
_w þ @z

@h
_h

� �
:

(24)

The subscripts 0 and 1 represent the old and new posi-

tions, respectively. The term Dt is the time step size, _h and _w
are the time derivatives of the particle position in magnetic

coordinates, which are described in detail in Holod et al.32

III. GTC SIMULATION OF KINK INSTABILITY IN
CYLINDRICAL GEOMETRY

The first internal kink mode simulations are in cylindri-

cal geometry in order to verify the gyrokinetic capability of

simulating kink modes and to benchmark the GTC results

against ideal MHD theory without added complexity of tor-

oidicity. The MHD eigenvalue code used to benchmark the

GTC internal kink simulation is based on the 1D solution to

the MHD equations in the cylindrical geometry and contains

all ideal MHD effects.49 The GTC fluid limit model contains

only the reduced MHD physics making approximations such

as kjj/k?	 1, and dBjj ¼ 0.

The Alfv�en frequency is used to normalize the inter-

nal kink growth rate and is defined as xA¼ vA/R0. In this

simulation, a uniform pressure is used with the ion gyrora-

dius of qi/R0� 0.001 and an electron beta of be¼ 8pn0eTe/B
2

¼ 0.4%. In the MHD eigenvalue code, the finite beta effect

that comes from compressibility is found to be negligible.

The safety factor is

q rð Þ ¼ 4

5
1þ r2

a2

� �
; (25)

where a is the minor radius of the device.

A. GTC simulations in fluid limit

For the GTC fluid simulations, the linearized equations

(2)–(7) are used with ion kinetic effects suppressed and with

the parallel electric field set to zero (i.e., d/ef f ¼ 0). Since

the effective scalar potential is set to zero and there is no

equilibrium pressure gradient, be does not enter into the sys-

tem of fluid equations.

Applying an initial perturbation to dAjj, the simulation is

ran long enough to observe exponential growth and con-

verged mode structures. Figure 2 shows the growth rate of

the internal kink mode for three different inverse aspect

ratios. As the inverse aspect ratio increases, the growth rate

of the internal kink mode increases for both GTC and MHD

eigenvalue codes. For all three aspect ratios, the GTC growth

rate agrees with the MHD growth rate to within 15%. This

increase in growth rate for larger inverse aspect ratio can be

seen in Rosenbluth et al.,1 where it was shown that the inter-

nal kink growth rate is of the order c � r2=R2
0 xA. The fre-

quency from the GTC simulation is zero, which is consistent

with the ideal MHD theory.

With radial location of the q¼ 1 mode rational surface

defined as rs, the rs/R0¼ 0.25 case will be examined more

closely, since it has the largest growth rate and a broad mode

width at the mode rational surface. While all m-modes are

kept, the m¼ 1 mode is the dominant mode in these simula-

tions. The GTC m¼ 1 mode structures of dAk, duek, and d/,

along with their ideal MHD counterparts are shown in

Figures 3 and 4. Overall, the agreement between GTC and

ideal MHD mode structures is good, however, the GTC

mode structures are slightly sharper at the q¼ 1 surface than

the MHD mode structures. In Figure 3, the perturbed current

dJjj has a thin layer that is peaked at the q¼ 1 surface.

Defining Drkink as the half width of this current layer, the

current layer width is Drkink/a� 0.061. It is the size of this

current layer that the ion gyroradius and other relevant scale

lengths will be compared to in Secs. III B, III C, and IV B.

The small differences in growth rates and mode struc-

ture between GTC and MHD eigenvalue codes can likely be

attributed to the difference between the two models such as

the assumption of kjj/k?	 1, and dBjj ¼ 0 in GTC.

B. GTC gyrokinetic simulations

For studying kinetic effects on the internal kink mode for

the rs/R0¼ 0.25 case, the same parameters as the fluid simula-

tion are used, where be¼ bi¼ 0.4%. For the gyrokinetic simu-

lations, the linearized equations (2)–(12) are used. In this

simulation, the ion Larmor radius is much smaller than the

minor radius and the perturbed current layer with qi/a� 0.002

and qi/Drkink� 0.033. Since the ion gyroradius scale length is

much smaller than relevant mode scale lengths, kinetic effects

FIG. 2. The internal kink mode growth rate is plotted vs. the inverse aspect

ratio rs/R0 of the q¼ 1 surface for cylindrical geometry.

FIG. 3. The mode structure of the dAk and dJk are plotted against the radial

coordinate r/a, for the rs/R0¼ 0.25 case in cylindrical geometry.
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should play only a small role and the result should be similar

to the fluid simulation.

The internal kink mode growth rate from the kinetic

simulation is c¼ 0.026 xA, about 10% smaller than the fluid

simulation. Figure 4 shows the internal kink mode electro-

static potential from GTC gyrokinetic, GTC fluid and MHD

simulations. The electrostatic potential in the gyrokinetic

simulation is almost identical to the GTC fluid simulation. In

the regime where the Larmor radius is much less than the

perturbed current layer, the kinetic effects are not significant

as expected. This result agrees with Mishchenko and

Zocco,29 which showed that the ion kinetic effects are not

important when the ratio of the ion gyroradius to the MHD

current layer qi/Drkink is approximately twice the value used

in our simulation.

C. Convergence tests

In this subsection, two convergence tests that were per-

formed for GTC fluid simulation of the rs/R0¼ 0.25 case are

shown in Figure 5. The first convergence test is to ensure

that the FD boundary does not cause any numerical prob-

lems. Figure 5(a) shows the internal kink mode growth rate

for different values of radial FD boundary point. The growth

rate remains almost constant for different rb, suggesting that

the FD radial boundary location has little effect on the

growth rate as long as the boundary is far away from the

mode q¼ 1 surface. For the rest of the simulations in this pa-

per, a FD boundary point of rb¼ 0.04a is chosen where the

q¼ 1 surface is at r¼ 0.5a.

The other convergence test is a radial grid point conver-

gence shown in Figure 5(b). Since internal kink modes can

have a thin current layer at the q¼ 1 surface, it is important to

make sure that the thin layer is adequately resolved. The growth

rate is approximately converged when there are 128 radial grid

points, which corresponds to approximately 7 grid points within

the current layer half width Drkink. For the rs/R0¼ 0.1 simula-

tion in Figure 2, the current layer at the mode rational surface

Drkink is very thin. A radially nonuniform grid have also been

successfully used so there can be higher resolution near the

q¼ 1 surface, and lower resolution away from it.

The internal kink mode growth rate is well converged for

32 grid points in the f direction and 300 grid points in the

h-direction at the q¼ 1 surface. In GTC gyrokinetic simula-

tions of high-n microturbulence, the number of poloidal grid

points is determined such that the arc length between grid

points is approximately constant on all flux surfaces. This

means there are less poloidal grid points near the axis, which

is why 300 poloidal grid points at the q¼ 1 surface were

needed. For simulations of the low-n modes, it is computa-

tionally more efficient to use a uniform grid in the h-direction,

which will be used in the future. For gyrokinetic simulations,

ten particles per cell are adequate for convergence.

IV. GTC SIMULATIONS OF KINK INSTABILITY IN
TOROIDAL GEOMETRY

Using the analytic toroidal equilibria shown in Eqs. (17)

and (18), GTC simulations are performed with the same pa-

rameters as the cylindrical simulation to study the effects of

toroidicity on internal kink modes with rs/R0¼ 0.25.

A. GTC simulations in fluid limit

When the lowest-order tokamak model shown in Eq.

(17) is used, the properties of the internal kink mode are very

similar to the cylindrical geometry. The growth rate is

c¼ 0.026 xA, which is approximately the same as the cylin-

drical geometry growth rate of c¼ 0.028 xA. Figure 6 shows

the electrostatic potential of internal kink mode for the two

toroidal geometry models. The kink mode structure for the

lowest-order toroidal model (Eq. (17)) is approximately the

same as the cylindrical geometry model, and little coupling

to higher m harmonics is observed.
FIG. 4. The mode structure of the electrostatic potential d/ vs. the radial

coordinate r/a is plotted for the rs/R0¼ 0.25 case in cylindrical geometry.

FIG. 5. (a) The growth rate of the internal kink mode is plotted vs. radial

position of the FD boundary. (b) The GTC internal kink mode growth rate is

plotted against the number of radial grid points.

122519-6 McClenaghan et al. Phys. Plasmas 21, 122519 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.200.44.221 On: Tue, 30 Dec 2014 18:31:01



When the realistic toroidal model shown in Eq. (18) is

used, the growth rate is c¼ 0.0255 xA, which is approxi-

mately the same as the lowest order tokamak model of Eq.

(18). Figure 6(b) shows that for the realistic toroidal model,

the internal kink mode is bent so that the mode is larger on

the low field side. This bending is along the magnetic flux

coordinate h such that the internal kink mode is still almost

purely an m¼ 1 mode in the flux coordinate system, with lit-

tle m-mode coupling. Since the only physical difference

between the lowest-order tokamak model and the realistic

tokamak model is magnetic field configuration, the change to

the mode structure must be solely due to the more realistic

magnetic field configuration. The growth rates for both toroi-

dal models are approximately the same as the cylindrical ge-

ometry model, and only small stabilization due to m-mode

coupling as predicted by Bussac et al.18 However, Galvao

et al. predicted that the kink mode becomes more unstable

for a lower aspect ratio case.19

B. GTC gyrokinetic simulations

Using the linearized gyrokinetic Eqs. (2)–(12), the realis-

tic toroidal geometry model shown in Eq. (18) is simulated in

this section. The ion banana orbit width for this simulation is

approximately Drbanana¼ 2q(R0/r)1=2qi¼ 4qi. Then, the ratio

of the ion banana orbit width to the kink current layer width is

Drbanana/Drkink� 0.12, so kinetic effects should still be mini-

mal when bi¼ 0.4%. However, when ion kinetic effects are

added to the toroidal geometry simulation, the internal kink

mode growth rate decreases significantly to c¼ 0.0085 xA

compared to the GTC fluid simulation of c¼ 0.0255 xA in the

same geometry as discussed in Subsection IV A.

To understand the gyrokinetic result, several simulation

scans were performed, which are shown in Figure 7. In the

first scan, the ion pressure is varied while bi¼ be and the par-

allel electric field dEjj is kept. The growth rate of the internal

kink mode increases as the bi is reduced, where at very low

plasma pressure does the gyrokinetic growth rate reaches the

fluid growth rate. In the second scan, the bi is varied while

bi¼be and setting dEjj ¼ 0. The variations of the growth rate

are approximately the same as the scan with dEjj ¼ 0. As a

third scan, the ion temperature is varied while the electron

temperature remains constant with be¼ 0.4%, and dEjj ¼ 0.

The mode growth rates change is about the same as the pre-

vious two scans.

As a further check to see if this reduction of the growth

rate is physical, Figure 8 shows a test excluding ion kinetic

effects near the magnetic axis, while retaining kinetic effects

in the rest of the simulation domain. In this test, if a particle

crosses the boundary between the kinetic region and the

region where thermal ion motion is suppressed, it will be

reflected back into the kinetic region. When kinetic effects

are removed near the q¼ 1 surface, the internal kink mode

growth rate jumps from the gyrokinetic growth rate to the

fluid growth rate. The kinetic effect that reduces the growth

rate is located near the resonant surface, which verifies that

this effect is physical.

The fact that the growth rate of the internal kink mode

with the parallel electric field turned on and off are about

the same suggests the parallel electric field plays little role.

The reduction of the growth rate in kinetic simulations is

due to ion kinetic effects, even though the banana orbit is

much smaller than the MHD current layer. The ion kinetic

effects that could cause this stabilization include trapped

ions, wave-particle interactions, and polarization drift. Note

that while the gyrokinetic eigenvalue calculation by Qin

et al.30 was in a regime where the ratio of the banana orbit

width to fluid current layer Drbanana/Drkink is much larger

than our simulation, they also observed that the ion trapped

particle orbit can significantly affects the internal kink

growth rate.

FIG. 7. The growth rate vs. the ion beta bi.

FIG. 8. Internal kink mode growth rate is plotted against the kinetic effects

radial cutoff, where kinetic effects are kept only outside the radial cutoff

position. Inside the radial cutoff domain, the ion thermal motion is sup-

pressed. Outside of the radial cutoff domain, all kinetic effects are kept.

FIG. 6. The poloidal cross section of d/ mode structure is plotted for the

lowest-order tokamak equilibrium in (a), and for the realistic tokamak equi-

librium in (b).
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While this paper has focused on uniform pressure pro-

files, in simulations with a finite pressure gradient, the pres-

sure gradient can destabilize the internal kink mode.

V. CONCLUSION

In this paper, a method extending the simulation domain

to the magnetic axis was implemented in GTC. With this

capability, the internal kink mode was simulated in both cy-

lindrical and toroidal geometry. In the cylindrical geometry,

the simulations were benchmarked and showed good agree-

ment with ideal MHD. In the toroidal geometry, fluid simula-

tions have a similar growth rate compared to the fluid

simulations in the cylindrical geometry. However, for the re-

alistic toroidal geometry model there is a change in mode

structure due to the change in magnetic field configuration.

When ion kinetic effects are added to the toroidal geometry

simulation, the internal kink mode growth rate is signifi-

cantly reduced even when the radial width of the perturbed

current layer is an order of magnitude larger than the banana

orbit width. This reduction of growth rate is attributed fully

to the ion kinetic effects.

The follow-up paper39 will discuss the verification of a

resistive tearing model in GTC. It will then examine how ion

kinetic effects interact with the resistive tearing mode. The

future work will extend simulations to the nonlinear regime

in order to examine nonlinear effects such as the kink satura-

tion mechanism and generation of zonal fields. The gyroki-

netic capabilities developed in these works will also be

applied to study more dangerous modes such as fishbone

modes and neoclassical tearing modes.
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