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Gyrokinetic particle simulations show that electrostatic convective cell (CC) can be generated by

kinetic Alfv�en waves and plays a dominant role in the nonlinear interactions underlying

perpendicular spectral cascade. The CC growth rate increases linearly with the field amplitude of

the pump waves and has a small but finite threshold, and decreases with the parallel wavevector.

The CC growth is proportional to the perpendicular wavevector when there are two pump waves,

but proportional to the square of the perpendicular wavevector when there is a single pump wave.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4964146]

I. INTRODUCTION

The nonlinear interactions of Alfv�en waves cause wave

energy to cascade, which is anisotropic by observation,1,2

through the intermediate spatial scale, and then dissipate to

the background plasma through smaller spatial scale.

Theoretical and numerical attempts were made to understand

this anisotropic cascade,3–5 which may be caused by the

magnetic field.6–10 At a high frequency and spatial scale of

approximately the size of ion gyroradius, the spectrum at the

dissipation range steepens.11–13 Many hypotheses to explain

the steepened power spectrum at dissipation range were pro-

posed. These include ion cyclotron damping,14 Landau

damping of kinetic Alfv�en wave (KAW),15 stochastic heat-

ing by dispersive Alfv�en waves,16,17 weakly damped magne-

tosonic and whistler waves.18–20

The basic nonlinear process underlying the Alfv�en cas-

cade is three-wave coupling that leads to parametric decay

instability.21,22 A possible mechanism preferring perpendicu-

lar cascade is the generation of convective cell (CC). The

CC is a two-dimensional plasma wave traveling in the direc-

tion perpendicular to the magnetic field (parallel wavevector

kk ¼ 0).23 It is possible that the parametric instability of

KAW generates CC. The coupling of CC with KAW could

then lead to turbulence in the upper ionosphere.24,25

Furthermore, the large-scale CC could disrupt KAW turbu-

lence and therefore contributes to the evolution of iono-

spheric plasma turbulence.26

There are two types of CC: electrostatic (ESCC) and

magnetostatic (MSCC). The ESCC can be described by the

zonal component (kk ¼ 0) of scalar potential; they could

drive macroscopic plasma convection.23,27,28 On the other

hand, the MSCC can be described by the zonal component

of vector potential; they are tied to magnetic-field bend-

ing.23,29,30 The KAW can excite ESCC and MSCC at the

same time, but only at a short-wavelength limit.31,32 This

process could lead to diffusive isotropization of the perpen-

dicular KAW spectrum. A 3-dimensional ion particle simula-

tion found that a mode with kk ¼ 0 gets excited during

parametric decay instability, which may be related to the

wave energy transfers to larger k? modes to drive large

transport across plasma boundaries.33 A subset of CC is the

zonal field, which is perturbation dependent only of magnetic

flux surfaces.34 A global gyrokinetic particle simulation35

demonstrates that the zonal flow could reduce transport and

regulate the driftwave turbulence in fusion plasma.

The objective of this paper is to understand the role of

CC in the nonlinear interaction of KAW that leads to the

perpendicular cascade of the spectral energy. As emphasized

in the earlier theory and simulation,22,31–34 CC generation by

KAW depends quantitatively and qualitatively on kinetic

effects (such as finite Larmor radius (FLR) and wave-

particle interactions) that break the ideal MHD in purely

Alfv�enic state. Therefore, a kinetic approach such as gyroki-

netic simulation is required for studying the CC generation

and dynamics. Particle simulation results show that a pump

wave energy cascades to waves of shorter wavelengths dur-

ing KAW interactions. There are three (including a CC)

among these daughter waves, which are essential in produc-

ing the energy cascade of a single standing pump wave. In

particular, ESCC was found to play a major role in the non-

linear KAW interaction. The CC growth rate increases line-

arly with the field amplitude of the pump wave and has a

small but finite threshold. It is proportional to the square of

the perpendicular wavevector and reduced by the parallel

wavevector. In the simulations of two pump waves, we

observed that a CC growing exponentially satisfies the wave-

matching condition and the nonlinear E�B convection

in the KAW interactions. The CC growth rate is linearly

proportional to the perpendicular wavevector.

The rest of this paper will be displayed in the following

order: Section II introduces the simulation model. Section III

shows the simulation results on the role CC plays during

KAW interaction. Section IV summarizes simulation results

and discusses future work.

II. SIMULATION MODEL

We are interested in studying KAWs that have a fre-

quency x much lower than the ion cyclotron frequency

ðXi � eB0=mi=cÞ due to strong background magnetic field.

Here, e is the ion charge, B0 is the background magnetic field

strength, mi is the ion mass, and c is the speed of light. The
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spatial scale of background plasmas is much larger than the

ion gyroradius. However, the finite Larmor radius (FLR)

effects could greatly affect nonlinear physics, since k?qi

� 1, where qi is the ion gyroradius. The compressional

modes are not important for low-b (plasma-to-magnetic pres-

sure ratio) plasmas. It is difficult to excite large kk modes

due to field-line bending effects. Therefore, k? is much big-

ger than kk. We assume that perturbed potential energy and

perturbed magnetic field strength dB is much smaller than

kinetic energy and B0, respectively.

A. Gyrokinetic formulation

The KAW and CC can be most efficiently studied using

nonlinear gyrokinetic theory,36 which eliminates the uninter-

esting gyro-motion of ions by averaging over cyclotron orbit,

while keeping all low-frequency interesting physics. In gyro-

kinetic theory, the orderings are

x
Xi
� q

L
� kkqi �

ed/
Te
� dB

B0

� �;

k?qi � 1; (1)

where q is the length scale of the wave of interest, L is the

equilibrium scale length of the magnetic field, d/ is the per-

turbed scalar potential, Te is the electron temperature, and � is

the smallness number. In this work, the background plasma is

assumed to have a uniform magnetic field B0 � B0b0, parti-

cle density n, and temperature T.

In the gyrokinetic theory, the phase space coordinates

are transformed from particle coordinates ðx; vÞ to gyrocen-

ter coordinates ðX; l; vk; hÞ, where x is particle position, v is

the particle velocity, X is the gyrocenter position, l is the

magnetic moment, vk is the gyrocenter velocity along the

magnetic field and h is the gyroangle. With the transformed

coordinate system, the gyroangle-averaged Vlasov equation

becomes the nonlinear gyrokinetic equation for species a36

@

@t
þ _X � r þ vk

: @

@vk

 !
fa X; l; vk; h
� �

¼ 0; (2)

where fa is the gyrocenter distribution function for the spe-

cies a. More specifically

_X ¼ vk
B

B0

þ vE; (3)

vk
: ¼ � qa

ma

B

B0

� rd/þ 1

c

@

@t
dAk

� �
: (4)

Here B � Bb ¼ B0 þ dB as total magnetic field, dB as per-

turbed magnetic field, vE as E�B drift, dAk represents the

vector potential along B0. ma and qa as the particle mass and

charge of species a, respectively.

We also made the assumption that dB has no compres-

sional component for b� 1. Therefore, dB can be expressed

as dB � dB? � r? � dAk. The gyrocenter distribution

function for species a could be expanded to distinguish equi-

librium distribution and perturbed distribution: fa ¼ f0a þdfa.

Here, f0a is the distribution of background and satisfies the

equilibrium equation: vkb0 � rf0a ¼ 0. f0a is uniform in real

space and Maxwellian in velocity space

f0a ¼
n0a

2pT0a=mað Þ3=2
exp

�2lB0 � mav2
k

2T0a

 !
: (5)

The dfa is the perturbed distribution function for species a.

In the nonlinear gyrokinetic simulation, the perturbed

particle distribution is governed by the gyrokinetic equation

@

@t
þ _X � r þ vk

: @

@vk

 !
dfa ¼ � vk

: @

@vk
f0a: (6)

In the perturbative (df) simulation, ion weight wi is

defined to represent the perturbed distribution function

wi � dfi=fi. The dynamic expression for wi can be expressed

using gyroaveraged scalar potential hd/i and gyroaveraged

vector potential hdAki

dwi

dt
¼ � 1� wið Þ e

mi

vk
v2

i

rkhd/i þ 1

c

@

@t
hdAki

� �
: (7)

vi is the ion thermal speed.

B. Electron model

The electron dynamics are hybrid, with the 0th order

motion treated as a massless fluid and higher orders as

kinetic.37 We treat electrons as a massless fluid in this work

because electron beta be in our simulation satisfies bemi/me

	 1, where ve 	 vA� vi and thus the ion Landau damping

effect is dominant compared to electron Landau damping.

Note that ve is electron thermal speed and vA is the shear

Alfv�en wave speed.

In the lowest order of the hybrid electron model, elec-

tron responses are adiabatic, kkve 	 x, then

e�edw=Te ¼ 1þ dne

n0

: (8)

dw is defined as the effective potential of perturbed parallel

electric field

�rkdw ¼ �rkd/� 1

c

@

@t
dAk: (9)

If we integrate Eq. (6) in the velocity space and keep terms

of up to the 2nd order, then the time evolution of the electron

charge density dne can be described by the electron continu-

ity equation

@

@t
dne þ n0b � rduke þ

cb0 �rd/
B0

� rdne ¼ 0; (10)

where duke represents the perturbed parallel electron current

density.

C. Field equations

When calculating the field equations, the ion density dni

and ion current density n0duki are in particle positions.
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However, the gyrokinetic equation (Eq. (6)) is defined in

gyro-center position. The gyro-averaged ion density and ion

current density could be converted from gyro-center position

to particle position.

Any field quantity can be found by adding both zonal

and nonzonal (NZ) components together. For example, dAk
is equivalent to dAk ¼ dANZ

k þ dAk . The dynamic equation

that solves for the time evolution of dANZ
k can be obtained

with the definition of parallel electric field

1

c

@

@t
dANZ
k ¼ b0 � r dw� d/NZ

� �
: (11)

d/NZ represents the scalar potential and could be solved

using the gyrokinetic Poisson’s equation38

s
kD

d/� d~/
� �NZ ¼ 4p

X
a

qadnNZ
a ; (12)

where d~/
NZ

is the 2nd gyrophase-averaged potential and

dnNZ
a is the particle density of species a that contributes to

the NZ scalar potential. s is the electron-to-ion temperature

ratio ðs � Te=TiÞ, and kD is the Debye length.

D. Zonal fields

The zonal fields are composed of zonal density d/ and

zonal current dAk . The overbar represents kk ¼ 0 compo-

nent. Derivations of d/ and dAk were shown by Holod

et al.39 and Wang40 in their electromagnetic formulation of

the electron hybrid model in toroidal geometry.

d/ is very straight-forward to obtain, and it is similar to

the expression on d/NZ (see Eq. (12)). Therefore, d/ could

be expressed as

s
kD

d/� d~/
� �

¼ 4p
X

a

qadna : (13)

In Wang’s formulation on zonal fields,40 for dAk with scale

length k�1 larger than electron collisionless skin depth de,

the Ampère’s law for zonal field is expressed as

dAk ¼
4pe

c
d2

e

ð
GC

dfivkdv �
ð

GC

dhvkdv

 !
;

�c

ð
dB

B0

� rd/dt; (14)

where dh is the higher order non-adiabatic response, and

GC represents the gyrocenter trajectory. The first term on

the right-hand-side of Eq. (14) is parallel current screened

by de. The second term is a nonlinear ponderomotive force

arising from derivation of ideal MHD. However, this new

term does not play a major role to the overall simulation

outcome.40 Since electrons are adiabatic in our simulation,

dh¼ 0.

The flow velocity duke can be expressed in the form

duke ¼ duNZ
ke þ duke . Using the gyrokinetic Ampère’s law

duke ¼ duNZ
ki þ

c

4pen0

r2
?dANZ

k

� �
þ e

mec
dAk ; (15)

where the fluid electron response associated with dAk is

4pen0

c
duke ¼

1

d2
e

dAk : (16)

III. SIMULATION RESULTS

A. Direction of energy cascade of a pump wave

The plasma in this simulation is composed of gyroki-

netic ions and fluid electrons, with be¼ 0.16 and s¼ 1.0.

The coordinate system used here is the Cartesian coordinate

system, with the z-axis being parallel to B0. The conver-

gence parameters include a number of particles per (shortest)

wavelength Np¼ 6400, a number of grids Ng¼ 64 for each

direction, and a size of each time step xADt¼ 0.049. xA

¼ kkvA, where kkqs ¼ 0:002.

To test the energy channel of a KAW into other waves, a

pump wave with an initial magnetic field perturbation of dB/

B0¼ 0.012 is introduced into the plasma. This pump wave is

a standing wave and has a wavevector of kxqs ¼ k?qs

¼ 0:2; kyqs ¼ 0 and kkqs ¼ 0:002. All other waves have no

amplitudes at initial time t¼ 0. The energy of the pump wave

is allowed to transfer into waves with wavevectors 0, 0.5, 1.5,

and 2.0 times of the pump wave. A wave along any axis in

the Cartesian coordinates with wavelength equal to the size

of the simulation box is labeled as mode with index 1, wave-

length equivalent to half the size of the simulation box is

labeled as mode with index 2, etc. Hence, the pump wave is

labeled as wave of mode 202.

As Figure 1 demonstrates, energy transfers mostly to

waves with shorter wavelengths. The daughter waves that

get the highest growth rate c are modes 040, 242, and 444.

The growth rates of those three dominant modes are dis-

played in Table I, which shows that their c are approximately

the same. Theoretically all three daughter waves should

have identical growth rates due to wave-wave interaction.

However, the measured values are slightly different (less

than 1%). The discrepancy among growth rates may have to

do with the numerical noise or the measurement method.

FIG. 1. Time history of scalar potential d/ of the pump wave 202 and

daughter waves with the highest amplitudes in the simulation keeping all

daughter waves.
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The next step is to set up pump wave with the same

wavevector as earlier (kxqs ¼ k?qs ¼ 0:2; kyqs ¼ 0; kkqs

¼ 0:002) and reduce the simulation box size by half. That

way, the pump wave energy is limited to transfer to waves

with higher k, up to 2 wavelengths fitted in each direction in

the Cartesian coordinate system. Since the simulation box

size is halved, the pump wave is labeled as mode 101. The

growth rates of the three dominant modes are listed in Table

I, and they are higher by at most 3% compared to the ones

from Figure 1. Therefore, even when the pump wave energy

is allowed to transfer to waves with longer wavelengths, it

preferably cascades to waves with shorter wavelengths in the

KAW turbulence.

B. Role of convective cell

To identify which mode plays a dominant role in the

nonlinear interactions of KAW, we first filter all the modes

except for the pump wave of mode 101, and daughter waves

of mode 020, 121, and 222. The time history of the jd/j of

the pump wave and three daughter waves are displayed with

solid lines in Figure 2, and the growth rates of the daughter

waves are measured and listed in Table I. If we compare the

growth rates of the daughter waves in this case with the

same waves when all the modes with ka of up to 2 are kept,

they are almost identical. The discrepancy between the

growth rates from those two simulations is at most 1.2%.

Therefore, these three daughter waves were proven to be the

ones that received the majority of the energy from the pump

wave.

The next step is to determine the importance of each

daughter wave in different sets of wave-wave coupling.

According to wave-matching condition, mode 101 could

couple to daughter waves of modes 020 and 121. Hence, one

of the simulation tests we performed is to filter out all the

modes except the pump wave of mode 101 and daughter

waves of mode 020 and 121. The time history in this case

shows that daughter waves would not grow exponentially.

In the other simulation, we filter out all the modes

except the pump wave (mode 101) and daughter modes 121

and 222. The time history of the scalar potential of those

three modes is displayed with dash lines in Figure 2. This

shows that although daughter waves 121 and 222 grow expo-

nentially, the growth rate is less than half of the case when

mode 020 is included in the simulation.

In summary, the daughter waves that gained the most

energy from the pump wave 101 are modes 020, 121, and

222. The CC (mode 020) enhances energy transfer from the

pump wave into the daughter modes. Four waves (101, 020,

121, 222) are required minimal waves to model the energy

cascade of a single pump wave (101). A conjecture is that

the resonant three-wave interaction of (101, 121, 222) gener-

ates the 121 mode, which may provide a sideband for the

modulational instability of (101, 121, 020). In addition, these

four modes exhibit behavior of standing waves: the time his-

tory of all modes are sinusoidal. The real frequency of mode

121 is about the same as the real frequency of the pump

wave, which is about 1.03xA. The amplitude oscillations of

mode 020 is due to the pump wave being a standing wave,

whose amplitude is oscillating with the wave frequency. On

the other hand, the real frequency of mode 222 is approxi-

mately twice the frequency of the pump wave.

The CC 020 is composed of zonal density (ESCC) and

zonal current (MSCC). The removal of zonal current from

mode 020, which turns it into an ESCC, shows a small

increase in growth rates; the growth rates of mode 020, 121,

and 222 are c/xA¼ 0.262, 0.262 and 0.265, respectively.

This shows that, by comparing to the growth rates in Table I,

linear MSCC could barely affect KAW wave-wave interac-

tion. Note that the nonlinear part of the MSCC, dANL
k , is

not included in this simulation because Wang has shown that

the nonlinear term is not important in the wave-wave

interaction.40

C. Parametric dependence of convective cell
generation

In this section, we scan the pump wave parameters to

provide further insights into the CC generation. A scan of

the pump wave amplitudes is displayed in Figure 3(a). The

perpendicular wavevector k?qs is fixed at 0.2 and parallel

wavevector kkqs at 0.002. A linear fit, c=xA ¼ 35:08

jdB?=B0j � 0:17, is plotted on top of the simulation results,

which indicates that the threshold for CC generation is at

dB?/B0¼ 0.005. The linear fit is qualitatively consistent with

the theory of modulational instability, in which the zonal

TABLE I. Growth rates of the dominant daughter waves generated by pump

wave 101 (top 5 rows) and by pump wave 202 (bottom 2 rows).

c020/xA c121/xA c222/xA

Keep all daughter waves up to ka¼ 2 0.248 0.249 0.247

Keep modes 101, 020, 121, and 222 0.248 0.250 0.250

Keep modes 101, 020, and 121 N/A N/A N/A

Keep modes 101, 121, and 222 N/A 0.136 0.137

c040/xA c242/xA c444/xA

Double box sizes keep all daughter

waves up to ka¼ 4

0.241 0.242 0.243

FIG. 2. Time history of the scalar potential d/ of the pump wave 101 and

daughter waves. Solid lines represent the simulation in which mode 101,

020, 121, and 222 are kept; while dash lines represent the simulation in

which mode 101, 121, and 222 are kept.
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flow can be spontaneously excited by KAW with a growth

rate linearly dependent on the wave amplitude, as long as the

amplitude is above the threshold value.

A scan of the parallel wavenumbers is displayed in

Figure 3(b). The perpendicular wavevector k?qs is fixed at

0.2 and the perturbed magnetic field dB/B0 at 0.012. At

lower-kkqs values, c is independent of kkqs as expected,

since the dominant nonlinear term vE�B only involves k?.

The growth rate decreases as kk increases.

A scan on the perpendicular wavenumber is displayed in

Figure 3(c). The parallel wavevector kkqs is fixed at 0.002 and

dB/B0 at 0.012. The growth rate’s dependency on ðk?qsÞ2 can

be fitted into a linear function, c=xA ¼ 5:90ðk?qsÞ2.

D. Generation of convective cell by two pump waves

Considering the importance of CC in the energy cascade

of KAW, we now study the generation of CC by two pump

waves. This could be the meaningful first step towards the

fully nonlinear simulation of the CC interaction with a self-

consistently determined KAW turbulence. In this respect, the

CC generation by two pump waves is just a variant of the

same process with one pump wave only. Nonetheless, there

are specific requirements in order for the three-wave interac-

tion to occur. According to the three wave matching condi-

tion, the waves have to satisfy the following matching

conditions: k1 þ k2 ¼ k3 and x1þx2¼x3. In addition, the

dominant nonlinear term that controls the three-wave inter-

action shows that E�B nonlinear term is proportional to

kx1ky2 – kx2ky1. If two pump waves are coherent with suitably

chosen perpendicular wave vectors, it could maximize the

nonlinear interaction. In our simulation, we use sinðkx1x
þ kz1zÞ as pump wave (�1, 0, �1) and its complex conjugate

(1, 0, 1), and sinðky1yþ kz1zÞ as pump wave (0,1,1) and its

complex conjugate (0, �1, �1). Both of these pump waves

have an initial amplitude dB/B0¼ 0.012 and k?qs¼ 0.2 and

kkqs ¼ 0:002. We can use two pump waves (�1, 0, �1) and

(0, 1, 1) to beat a CC (�1, 1, 0). The complex conjugates of

these waves can also be involved in another set of three-

wave interaction. Figure 4 shows the time history of the

pump waves and two of the selected CC as daughter waves.

Mode (�1, 1, 0) shows a clear exponential growth, and the

growth rate of this convective cell is measured to be c/xA

¼ 0.1. The complex conjugate of CC (�1, 1, 0) is (1, �1, 0),

which is not shown in Figure 4, and its growth rate is identi-

cal to (�1, 1, 0). On the other hand, mode (1, 1, 0) has no

growth throughout the simulation time window.

We also tested how the growth rate of the convective

cell depends on the pump wave parameters. The first pump

wave parameter we scanned is the pump wave amplitudes

dB/B0 for both pump waves, while the wave vectors are

fixed. The result is shown in Figure 5(a). The growth rate is

linearly dependent on the pump wave amplitudes. We made

a linear fit c=xA ¼ 13:15jdB?=B0j � 0:05 to the simulation

measurements, and we found that the threshold to exponen-

tial growth is at dB?/B0¼ 0.004.

The second parameter scan we tried is the parallel wave-

number kkqs of the pump waves. While we scan the parallel

wavenumber, the amplitudes dB/B0 and perpendicular wave-

numbers k?qs are fixed. As shown in Figure 5(b), the growth

rate decreases as kkqs increases, at a trend that closely resem-

bles a linear function.

The third parameter scan we tried is the perpendicular

wavenumber k?qs of the pump waves. The fixed pump wave

parameters in this scan are initial pump amplitudes dB/B0

and parallel wavenumbers kk. The growth rate c/xA vs. k?qs

is shown in Figure 5(c). The growth rate’s relationship

with k?qs can be described using a linear function c=xA

¼ 0:71k?qs � 0:04. This relationship differs from the single

pump wave simulation (see Figure 3(c)).

FIG. 3. Growth rates c/xA of daughter waves with respect to the pump wave

(a) amplitude dB?/B0, (b) parallel wavenumber kk, and (c) square of perpen-

dicular wavenumber k2
?.

FIG. 4. Time history of scalar potential d/ of the pump waves (1, 0, 1) and

(0, 1, 1) along with the daughter waves (�1, 1, 0) and (1, 1, 0).
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IV. CONCLUSION

A gyrokinetic ion, fluid electron model to study the con-

vective cell (CC) in nonlinear KAW interaction is presented

in this paper. A single KAW transfers its energy mainly to

other KAWs with shorter wavelengths. Notably, three

daughter waves, among which is a CC, have the strongest

interaction with the pump wave. The CC generated by the

KAW interaction enhances the energy transfer to the daugh-

ter waves by approximately a factor of two. Specifically, the

ESCC plays a major role to the enhancement of energy trans-

fer, while MSCC plays a minor role.

In the single pump wave simulations, we observed

that the growth rates have a linear dependence on the pump

wave amplitude, with a finite threshold. The growth rates also

have a linear dependence on the square of the perpendicular

wavevector and large-parallel wavevector values. However,

the growth rates show no dependence on small-parallel wave-

vector values. Two pump wave simulations show different

parametric dependencies. The growth rates have a linear

dependence on both pump wave amplitudes (with a finite

threshold) and a perpendicular wavevector.

Further study on the parametric dependence of CC can

provide a better understanding on the current simulation

results. The ultimate goal of this work is to understand the

role of CC in the interaction of multiple KAW leading to

perpendicular energy cascade.
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