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Abstract In the present paper, we first derive the eigenmode equation of the ideal ballooning
mode in tokamak plasmas using a gyrokinetic equation. It is shown that the gyrokinetic eigenmode
equation can be reduced to the magnetohydrodynamic (MHD) form in the long wavelength limit
when kinetic effects are ignored. Then, the global gyrokinetic toroidal code (GTC) is applied
for simulations of the edge-localized ideal ballooning modes. The obtained mode structures are
compared with the results of ideal MHD simulations. The observed scaling of the linear growth
rate with the toroidal mode number is consistent with the ideal MHD theory. The simulation
results verify the GTC capability of simulating MHD processes in toroidal plasmas.
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1 Introduction

The performance of tokamaks and other magnetic
fusion devices depends crucially on the dynamics of
the boundary region, i.e., the transition region from
the hot core plasma through the edge to the material
surface of the first wall [1]. The plasma boundary re-
gion has a number of physics attributes which make it
quite distinct from the core: relatively low tempera-
ture, large radial gradients, and high neutral-gas and
impurity densities. The large radial gradients of pres-
sure tend to drive an edge turbulence stronger than the
core turbulence in terms of the density fluctuation as a
percentage of the equilibrium value [2].

It has long been known that edge fluctuations in
tokamak plasmas are large, and that these fluctuations
are related to the degradation of overall confinement [3].
Over the years, many unstable modes have been stud-
ied in order to explain these fluctuations. It has been
shown that the rippling mode [4] and the microtearing
mode [5] will not play a role in driving such fluctuations.
However, there remain other modes that are yet to be
fully understood [6]. Edge localized modes (ELMs) and
the edge pedestal are key issues in fusion plasmas, and
ELMs have been routinely observed in tokamak plasma
operating in a high confinement mode (H-mode). The
planned ITER device will require both a relatively high
pedestal and the avoidance of large ELMs for optimal

performance [7]. ELM onsets are typically associated
with the crossing of plasma instability boundaries. The
ideal ballooning mode, kinetic ballooning mode and
peeling ballooning mode are regarded as important can-
didates for ELMs. These edge localized instabilities are
driven by the large pressure gradient and edge currents.
Pressure gradients drive ballooning instabilities while
edge currents drive peeling modes [8]. There have been
some successes in explaining ELMs and pedestal con-
straints using the peeling-ballooning modes in recent
years [7].

At sufficiently large values of the plasma pressure,
the pressure gradient may become large enough to pro-
duce a “ballooning” instability in regions of bad cur-
vature in a tokamak. Ballooning modes are generally
categorized as being either resistive or ideal, depending
on whether the electron motion parallel to the field is
impeded by collision or induction.

Most previous efforts to investigate the properties of
the ideal ballooning mode (IBM) are magnetohydrody-
namic (MHD) simulations, which do not treat kinetic
effects. In reality, kinetic effects can modify the prop-
erties of the modes by finite Larmor radial effects and
wave-particle resonances. These kinetic effects can be
effectively treated in gyrokinetic simulation. Gyroki-
netic particle simulation is a powerful and reliable tool
for describing plasma turbulence and transport [9], and
can be applied to study the ballooning mode evolution
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and turbulent transport. In the present paper, we re-
port the progress in this direction using the global gy-
rokinetic toroidal code (GTC) [10] for simulations of the
ideal ballooning modes in toroidally confined plasmas.

The gyrokinetic toroidal code (GTC) is a well bench-
marked full torus particle-in-cell code for simulations of
multiple physics processes including microturbulence,
energetic particle physics, and kinetic modes in fusion
plasmas. A fluid-kinetic hybrid electron model that
overcomes the numerical difficulty for simultaneously
treating the dynamics of ions and electrons has been
developed based on an expansion of the electron re-
sponse using the electron-ion mass ratio as a small pa-
rameter [11]. A nonlinear gyrokinetic simulation model
incorporating an equilibrium current has been formu-
lated for studying kinetic-MHD processes in magne-
tized plasmas [12]. This complete formulation enables
the gyrokinetic simulation of both pressure-gradient-
driven and current-driven instabilities as well as their
nonlinear interactions in multiscale simulations. The
gyrokinetic simulation model recovers the ideal MHD
theory in the linear long wavelength regime including
ideal and kinetic ballooning modes, kink modes and
shear Alfven waves. The implementation of this model
in the global gyrokinetic particle code has been veri-
fied for the simulation of the effects of equilibrium cur-
rent on the reversed shear Alfven eigenmode in toka-
maks. A single GTC version is capable of both full-f
and δf simulations, kinetic electrons and electromag-
netic fluctuations, general toroidal geometry and ex-
perimental plasma profiles, multiple ion species, neo-
classical effects with Fokker-Planck collision operators,
equilibrium current and radial electric field, plasma ro-
tations, sources/sinks and external antenna. GTC has
recently been applied to simulate the Alfven eigenmode
in a tokamak [12∼15]. Simulation of the edge-localized
ideal ballooning mode instability using global gyroki-
netic toroidal code GTC is presented. The obtained
mode structure is compared with the results of ideal
MHD simulations. The observed scaling of the linear
growth rate with the toroidal mode number is consis-
tent with the ideal MHD theory. The simulation results
verify the GTC capability of simulating MHD processes
in toroidal plasma.

This paper is organized as follows. The simulation
model and formulation of the ideal ballooning mode is
described in section 2. In section 3, the simulation re-
sults are presented, and some comparisons will be made
against the results of ideal MHD codes simulation. Sec-
tion 4 is the conclusion.

2 Model and formulation

We start by describing the electromagnetic simu-
lation model used in the GTC code. In gyrokinetic
particle simulations, the plasma is treated as a set of
marker particles interacting with each other through
self-generated electromagnetic fields. The field equa-

tions are discretized on the three-dimensional spatial
grids of a field-aligned mesh, and the particle equations
of motion are formulated in the magnetic coordinates.
Electromagnetic simulations are computationally more
challenging, compared to the electrostatic simulations,
due to the required resolution of the fast electron dy-
namics and the calculation of higher velocity moments
of the particle distribution function.

The gyrokinetic equation describing plasmas in the
inhomogeneous magnetic field, using the gyrocenter po-
sition X, magnetic moment µ, and parallel velocity v‖
as a set of independent variables in the five dimensional
phase space, reads [16]

d
dt

fα

(
X, µ, v‖, t

) ≡
[

∂

∂t
+ Ẋ · ∇+ v̇‖

∂

∂v‖
− Cα

]
fα = 0,

(1)

Ẋ = v‖
B
B0

+ vE + vd, (2)

v̇‖ = − 1
mα

B∗

B0
· (µ∇B0 + Zα∇φ)− Zα

mαc

∂A‖
∂t

. (3)

Here index α = e, i stands for the particle species (elec-
tron or ion), Cα is the collision term, omitted from now
on for collisionless plasmas. mα and Zα are the parti-
cle charge and particle mass, respectively. B ≡ B0b0

is the equilibrium magnetic field, B = B0 + δB, with
δB = ∇× δA being the perturbed one. B∗ is given by

B∗ = B∗
0 + δB = B0 +

B0v‖
Ωα

∇× b0 + δB. (4)

Other terms in Eq. (2) are the E×B drift velocity,

vE =
cb0 ×∇φ

B0
, (5)

and the magnetic drift velocity,

vd = vc + vg, (6)

with magnetic curvature drift vc and grad-B drift vg

given as,

vc =
v2
‖

Ωα
∇× b0, (7)

vg =
µ

mαΩα
b0 ×∇B0, (8)

respectively.
To simulate the electron dynamics, the fluid-kinetic

hybrid electron model [11,17∼19] is adopted, which is
built upon the expansion of the electron response into
the lowest order adiabatic part and a higher-order ki-
netic response, based on the electron-ion mass ratio as
a small parameter. With this fluid-kinetic hybrid elec-
tron model, the nonresonant current is fully retained in
the fluid equations with no need to resolve the individ-
ual particle dynamics of these nonresonant electrons.
Meanwhile, the wave-particle resonances and the nona-
diabatic response of magnetically trapped electrons are
recovered by the higher order kinetic correction.

In this paper, only the lowest order electron den-
sity response is considered, described by the linear fluid
continuity equation. Extension of the continuity equa-
tion to include nonlinear terms and equilibrium current
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is described in Ref. [12]. Integrating Eq. (1), keeping
terms up to the first order in the perturbation, and as-
suming zero equilibrium plasma current, ∇ × B0 = 0,
we get the continuity equations for the electron and ion
density as,

∂ne

∂t
+ B0 · ∇

(
n0eδu‖e

B0

)
+ B0vE ·

(
n0e

B0

)

−n0e (v∗e + vE) · ∇B0

B0
= 0, (9)

∂ni

∂t
+ B0vE ·

(
n0i

B0

)
− n0ivE · ∇B0

B0
= 0, (10)

respectively.
For the ideal ballooning mode, we may assume that

the mode complex frequency is much larger than the
ion transit frequency (|ω| >> k‖vTi)

[20]. Then the ion
current parallel to the magnetic field is much smaller
than the electron parallel current, and can be ignored.
Therefore, in deriving Eq. (10), similar terms as v∗e
and δu‖e appearing in Eq. (9) are neglected by as-
suming Ti = 0 and a vanishing parallel ion cuurnt.
Here, n0α =

∫
dvf0α, nα = n0α + δnα, with

∫
dv ≡

(πB0/mα)
∫

dv‖dµ, and

v∗e =
1

n0emeΩe
b0 ×∇

(
δp⊥e + δp‖e

)
, (11)

where δp⊥e =
∫

dvµB0δfe, δp‖e =
∫

dvmv2
‖δfe, with

δfe = fe − f0e being the perturbed part of the electron
distribution function.

Applying the charge neutrality condition, and as-
suming a single dominant ion species, n0i = n0e/Zi,
Eqs. (9) and (10) can be rewritten as

∂δne

∂t
+ n0B0 · ∇

(
δu‖e
B0

)
+ vE · ∇n0

−n0v∗ · ∇B0

B0
− 2n0vE · ∇B0

B0
= 0, (12)

∂δni

∂t
+

1
Zi

vE · ∇n0 − 2
Zi

n0vE · ∇B0

B0
= 0. (13)

Here, we have abbreviated n0e as n0, and v∗e as v∗,
respectively.

The electrostatic potential can be found from gyroki-
netic Poisson’s equation,

c2

4πe
∇⊥

(
1
v2
A

∇⊥δφ

)
= δne − Ziδni, (14)

where vA is the Alfven velocity and∇⊥ = ∇−b (b · ∇).
Combining Eqs. (12)∼(14), we get,

iωc2

4πe
∇⊥

(
1
v2
A

∇⊥δφ

)
+n0B0·∇

(δu‖e
B0

)
−n0v∗·∇B0

B0
= 0.

(15)
The vector potential satisfies the gyrokinetic Am-

pere’s law,

c

4π

{∇× [(
δA‖b0

)] · b0

}
b0 =

∑
α

δJα‖. (16)

We neglect the δB‖ = 0 component of the magnetic
field perturbation, so the vector potential has only the
parallel component δA = δA‖b0, which is finally de-
termined by the electron parallel fluid velocity δu‖e by
inverting the Ampere’s law,

n0eδu‖e =
c

4π
∇2
⊥δA‖. (17)

We define an effective scalar potential φeff to repre-
sent the parallel electric field,

δE‖ = −b0 · ∇δφ− 1
c

∂δA‖
∂t

= −b0 · ∇δφeff . (18)

Then,

∂δA‖
∂t

= cb0 · ∇δφind, (19)

where we define the inductive potential δφind = δφeff −
δφ.

By making the ideal MHD approximation, b0 ·
∇δφeff = 0, and applying ∇2

⊥ operator on Eq. (19),
we get,

1
c

∂

∂t

(∇2
⊥δA‖

)
= −b0 · ∇

(∇2
⊥δφ

)
. (20)

Substituting Eqs. (17) and (20) into Eq. (15), we finally
get

ω2

v2
A

∇2
⊥δφ + B0 · ∇

[
1

B0
b0 · ∇

(∇2
⊥δφ

)]

− 8πeiω

meΩec2
b0 · κ×∇δp = 0, (21)

where κ = ∇B0/B0 is the magnetic field curvature in
a low beta case. Here, we have used the lowest order
solution for the electron pressure δp⊥e and δp‖e,

δp⊥e = δp‖e = δp = n0eφ
0
eff +

∂ (n0Te)
∂ψ0

δψ, (22)

where ψ is the poloidal flux label, δφ0
eff is the lowest

order effective potential δφeff which is neglected in the
ideal ballooning mode simulation. Linear normal mode
theory (∂t → −iω, b0 · ∇ → ik‖) is applied in the
derivation. Eq. (21) is the eigenmode equation for the
ideal ballooning mode derived from electromagnetic gy-
rokinetic formalism. It recovers the ideal MHD balloon-
ing equation in Ref. [20], which shows that with the ki-
netic effects turned off and in the long wavelength limit,
the gyrokinetic formulation can be reduced to the ideal
MHD theory. Therefore, the present fluid-kinetic hy-
brid electron model is a superset of the ideal MHD the-
ory. More complete eigenmode equations including the
kinetic ballooning mode and current-driven kink modes
can be found in Ref. [12].
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3 Simulation results and discus-
sion

In this section, we describe results of GTC simula-
tions of the ideal ballooning mode and compare them
with the results of the BOUT++ code [2,21]. BOUT++
is an adaptable, object-oriented C++ code for perform-
ing parallel plasma fluid simulations with an arbitrary
number of equations in 3D curvilinear coordinates using
finite-difference methods. For the purpose of compari-
son with BOUT++ simulation we artificially suppress
the kinetic effects of electrons and ions in the GTC sim-
ulation of ideal ballooning modes.

The edge localized ballooning instabilities can be
driven by the large pressure gradient at the pedestal
region. Here, for comparison and benchmarking, we
adopt the same pedestal pressure and safety factor pro-
files as those of Refs. [1, 2], shown in Fig. 1 and Fig. 2,
respectively. The maximum pressure gradient occurs
at about about ψ = 0.7ψwall, with ψ being the poloidal
magnetic flux function, and ψwall is the maximun value
of ψ. In the simulation, we use an initial perturbation
in δne,

δne = δn̂e

∑
m

m2exp−2|nq−m| cos (mθ − nζ), (23)

where δn̂e is amplitude of the initial perturbation, q
is the safety factor, m and n are poloidal and toroidal
mode numbers, respectively, with m = nq at the mode
rational surfaces. In the GTC we use toroidal magnetic
coordinates, which are poloidal magnetic flux function
ψ, poloidal angle θ, and toroidal angle ζ.

Fig.1 Pedestal pressure profile as a function of the nor-

malized poloidal magnetic flux ψ

We start with the convergence test for spatial and
temporal resolution. The results are shown in Fig. 3.
We can see that convergence requires about 28 poloidal
grid points per wavelength. The time step convergence
is also achieved throughout the simulations.

The results of the GTC simulations of the ideal bal-
looning mode are presented in Figs. 4∼7, where we
show the poloidal contour plots of the electrostatic po-
tential (δφ) and the parallel component of the mag-
netic vector potential (δA‖) for toroidal mode num-
ber n = 10, 20, and 30, respectively. As we can see

from the contour plots in Figs. 5∼7, the mode has a
clear ballooning structure localized on the outer side of
the poloidal cross section, similar for different toroidal
mode numbers. The radial localization occurs at the
region of the maximum pressure gradient, as shown in
Figs. 1 and 4. The magnetic vector potential has only
interchange parity near the mode rational δA‖ surface,
since the tearing mode parity is excluded in the fluid-
kinetic hybrid electron model currently implemented in
the GTC [11].

Fig.2 Safety factor profile as a function of the normalized

poloidal magnetic flux ψ

Fig.3 Spatial convergence test, with n = 15. Growth rate

γ increases with the number of grid points per wavelength.

Spatial convergence is achieved when the number of grid

points per wave-length exceeds 28

Fig.4 Normalized electrostatic potential intensity (colored

lines) and normalized pressure gradient (black line), as a

function of the normalized poloidal magnetic flux ψ (color

online)
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Fig.5 GTC simulation of ideal ballooning modes: contour plots of the poloidal eigenmode structure of (a) the electrostatic

potential δφ, and (b) the parallel vector potential A‖ for toroidal mode number of n = 10 (color online)

Fig.6 GTC simulation of ideal ballooning modes: contour plots of the poloidal eigenmode structure of (a) the electrostatic

potential δφ, and (b) the parallel vector potential A‖ for toroidal mode number of n = 20 (color online)

Fig.7 GTC simulation of ideal ballooning modes: contour plots of the poloidal eigenmode structure of (a) the electrostatic

potential δφ, and (b) the parallel vector potential A‖ for toroidal mode number of n = 30 (color online)

The typical mode structure of the electrostatic po-
tential on the magnetic surface is shown in Fig. 8. Here
α = q(ψ)θ − ζ is the magnetic field line label. We
can see that the ballooning mode is highly elongated
in the parallel direction. The poloidal profile of root

mean square (RMS) value of the electrostatic potential
is given in Fig. 9, with the horizontal axis being the
poloidal angle θ ranges from 0 to 2π .

The ballooning mode structure obtained in GTC
simulations is similar to that obtained in simulations
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using BOUT++ and several other MHD codes [21,22].
The minor difference between mode structures of GTC
and the fluid codes (see Fig. 11 in Ref. [21]) can be
explained by the different equilibrium geometry: in
the current GTC simulations we use circular magnetic
poloidal cross section, while the fluid codes use elon-
gated poloidal cross section.

Fig.8 The mode structure of the electrostatic potential on

a magnetic surface, with n = 10 (color online)

Fig.9 The poloidal profile of the RMS value of electro-

static potential

The growth rate dependency on the toroidal mode
number n is shown in Fig. 10. Here, the growth rate γ
is normalized to the Alfven frequency ωA = vA/R, with
vA the Alfven velocity and R the major radius. We can
see that the ideal ballooning mode is unstable for the
toroidal mode number from n = 3 to 30, for the given
set of equilibrium parameters. In the simulation we be-
gin with the initial perturbation in the form of Eq. (23),
then the plasma undergoes a transient phase and finally
settles on an eigenmode with a single growth-rate, as
shown in the inset of Fig. 10, where we also plot the
time evolution of the amplitude of electrostatic poten-
tial. The slope of the time evolution curve gives the
growth rate γ of ideal ballooning mode, as indicated by
the red-dash line in the inset. The growth rate of the
ideal ballooning mode instability is increased with in-
creasing n, which is consistent with the result of linear
MHD simulations [22].

Fig.10 Growth rate γ of ideal ballooning mode instability

as a function of the toroidal mode number n. The inset:

time history of the amplitude, the slope of the time evolu-

tion curve gives the growth rate γ

4 Conclusion

We have performed simulations of the ideal balloon-
ing mode using global gyrokinetic toroidal code GTC.
Excitation of the ideal ballooning mode instability is
observed in the region of the maximum pressure gradi-
ent. The linear mode structure is similar to the mode
structure obtained in the fluid simulations, while the
scaling of the linear growth rate with the toroidal mode
number is consistent with the ideal MHD theory. Our
studies confirm the ability of GTC to simulate MHD
types of instabilities. In future work we are going to
include kinetic effects to address the wave-particle in-
teractions and other related physical phenomena.
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