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Pushforward transformation is one of the two important transformations in modern nonlinear

gyrokinetic theory. In this work, a gyrokinetic system under electromagnetic fluctuations has been

derived using a purely pushforward transformation, where the finite Larmor radius (FLR) effect is

fully retained. From the perspective of polarization and magnetization, clear physical pictures of

macroscopic equilibrium flow are presented, and the generation of macroscopic perturbed flow is

discussed with the incorporation of the full FLR effect using the systematical analysis of the

gyrocenter gyroradius and the decoupling of particle velocity. Published by AIP Publishing.
https://doi.org/10.1063/1.4989892

I. INTRODUCTION

Gyrokinetic theory was developed as a generalization of

guiding-center theory1 to describe plasma processes over time

scales that are longer than the gyromotion time scale in the

presence of perturbed fluctuations. As an important tool in

plasma physics research, traditional nonlinear gyrokinetic the-

ory was first presented in the pioneering work of Frieman and

Chen,2 which was built upon linear gyrokinetic theory.3–6 To

construct a gyrokinetic theory that inherently holds energy

conservation and Liouville’s theorem, the Hamilton system7

was proposed and introduced to investigate guiding-center

dynamics,8,9 where a Darboux transformation was used in

noncanonical coordinates in phase space. Based on the Lie

transform perturbation method for Hamiltonian systems, mod-

ern nonlinear gyrokinetic theory10–14 was developed using

perturbed gyrocenter Hamiltonian dynamics, which, in princi-

pal, can be easily expanded to any order.

Gyrokinetic theory has been extensively used as a power-

ful analytical tool in both laboratory and space plasma

research to various instabilities, such as electrostatic drift

wave turbulence and transport,15,16 Alfven eigenmodes and

energetic particle modes,17 current-driven kink and tearing

instabilities, and radio frequency (RF) waves.18,19 Meanwhile,

gyrokinetic codes20–23 have served as an important type of

simulation tool that has given a tremendous boost to research

on plasma physics for both low-frequency processes20,24

described by ion gyrokinetic theory and high-frequency pro-

cesses25,26 described by electron gyrokinetic theory.

For low-frequency electromagnetic fluctuations with

short wavelengths perpendicular to the magnetic field, Vlasov-

Maxwell equations can be used to construct a set of self-

consistent gyrokinetic-Maxwell differential equation systems.

This set usually consists of gyrokinetic Vlasov equations given

in terms of Hamilton’s equations in gyrocenter phase space and

the gyrokinetic Maxwell equations or force-balance equations

expressed in terms of moments27 of the gyrocenter phase-space

distribution. In this procedure, first, gyrocenter Hamilton’s equa-

tions are derived from the gyrocenter Hamiltonian using the

Lie-transform perturbation method,10,13,28 which decouples

complete particle dynamics into the fast gyromotion part and

the slow gyrocenter drift motion part. Then, the gyrokinetic

Maxwell equations are obtained through the conventional

approach,11–13,29 the purely pullback transformation approach,30

or the purely pushforward transformation approach..31–34 These

three approaches are equivalent in principle.

In the purely pullback approach, the distribution func-

tion is transformed from gyrocenter phase space to guiding-

center phase space and then to particle phase space. This

approach has been used to construct the high-frequency sim-

ulation model30 for RF waves, where electrons are treated

with a gyrokinetic description and ions are treated with a

fully kinetic description.

In the conventional approach, the distribution function is

transformed from gyrocenter phase space to guiding-center

phase space through a pullback transformation, whereas the

velocity is transformed from particle phase space to guiding-

center phase space through a pushforward transformation.

With this approach, the gyrocenter polarization effect, which

was first discovered by Lee,35 can be extensively investigated

in the electrostatic10 and electromagnetic29,36 cases.

On the other hand, in the purely pushforward transfor-

mation approach, particle velocity is first transformed from

particle phase space to guiding-center phase space and sub-

sequently transformed to gyrocenter phase space through a

two-step pushforward transformation, where the guiding-

center phase-space gyroradius qu and the gyrocenter phase-

space gyroradius qy are introduced, giving rise to thea)Electronic mail: wzhang@iphy.ac.cn
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polarization and magnetization effects. This approach has

been used to derive the moments and to investigate the parti-

cle polarization flux in the electrostatic case.32

In this work, given electromagnetic perturbations and a

local Maxwellian equilibrium distribution, the moments of

the distribution with the finite Larmor radius (FLR) effect

retained are derived through the purely pushforward transfor-

mation approach, which is used to construct our physical

model and which is useful for both code development and

analytic theory. Using the virtue of this approach, i.e., the

very clear physical meaning of moments, we discuss the

macroscopical equilibrium flow and perturbed flow.

The small parameters �B, �x; �jj, and �d are introduced to

track the nonlinear gyrokinetic spatial-temporal orderings.

First, the gyroradius q ¼ vt=X is small compared with the

characteristic lengths L of the equilibrium profiles, such as

the density, temperature, and magnetic field

q
L
� �B;

where vt is the thermal velocity, X ¼ ðqB0Þ=ðmcÞ is the parti-

cle cyclotron frequency in an unperturbed magnetic field B0,

and q and m are the charge and mass of a particle, respec-

tively. Second, the temporal ordering of the fluctuating fields

satisfies

x
X
� �x;

where x is the characteristic frequency of the fluctuations.

Additionally, the perpendicular and parallel spatial orderings

of the fluctuating fields meet

k?q � �? � 1 and kjjq � �k � 1;

where �? � �jj. The amplitude of the perturbed quantities is

described by the small parameter �d

dB

B
� df

f
� qd/

T
� �d;

where dB is the amplitude of the perturbed magnetic field,

d/ is the perturbed electrostatic potential, and df is the per-

turbed distribution function. The relationships of these

parameters depend on the characteristics of specific physical

processes. These small parameters that appear ahead of phys-

ical quantities in the rest of this paper act as indexes that

indicate the ordering of these quantities. Although they are

treated approximately equal during the model derivation,

i.e., �x � �jj � �B � �d � �, their properties are retained.

The inventory of this paper is as follows: Section II

reviews modern nonlinear gyrokinetic theory14 and phase-

space transformation. Section III presents the exact solution

of the gauge scalar field S1. In Sec. IV, with the preparation

of the pushforward transformation, the gyrocenter phase-

space gyroradius qy is derived through the guiding-center

gyroradius qu and S1. In Sec. V, with the purely pushforward

transformation approach, the gyrocenter moments are pre-

sented. In Sec. VI, from the perspective of polarization

and magnetization, the relationships between single-particle

motion and macroscopic flow are analyzed. In Sec. VII, the

results with a long wavelength limit are listed. In Sec. VIII, a

discussion is given.

II. PERTURBED HAMILTONIAN DYNAMICS

According to modern nonlinear gyrokinetic theory,14 a

two-step procedure is used in the dynamic reduction of a

single-particle Hamiltonian system to decouple the fast time

scale gyromotion from the slow gyrocenter motions deter-

mined by the relevant electromagnetic field. A very efficient

method for deriving the reduced Hamilton’s equations is the

Lie-transform perturbation method,37,38 which is the founda-

tion of modern nonlinear gyrokinetic theory. This method

includes two-step near-identity transformations in extended

phase space

T61
� � exp 6

X1
n¼1

�nLn

 !
;

where Ln is the nth-order Lie derivative generated by the

nth-order generating vector field Gn. The positive symbol

denotes pullback transformation T�, and the negative symbol

denotes pushforward transformation T�1
� .

With the careful choice of Hamiltonian representation, it

is feasible to zero out the non-zero-order symplectic struc-

ture of the system Lagrangian in the extended gyrocenter

phase space, �Cn � 0 for n > 0, and

�C0 ¼
q

c
A0 þ �pjjb̂

� �
� d �X þ �lB0

X
d�h � �wdt;

where A0 is the unperturbed vector potential and b̂ is the unit

vector of the unperturbed magnetic field B0. The extended

gyrocenter phase-space coordinates �Zð�X; �pjj; �l; �h; �w; tÞ are

transformed from extended guiding-center phase-space coor-

dinates ZðX; pjj; l; h;w; tÞ via gyrocenter transformation,

where (w, t) are the canonically conjugate guiding-center

energy-time coordinates. The guiding-center coordinates

ZðX; pjj; l; h; tÞ are obtained from particle phase-space coor-

dinates zðx; p0jj; l0; h0; tÞ via guiding-center transformation.

The particle phase-space coordinates are defined as follows:

x is the particle position, l0 ¼ mv2
?=ð2B0Þ is the magnetic

moment, h0 is the phase angle, and p0jj ¼ mvjj is the kinetic

momentum parallel to the unperturbed magnetic field.

The gyrocenter Hamiltonian in extended gyrocenter

phase space is

�Hy ¼
1

2m
�p2
jj þ �lB0 þ �dqhd/�ui � �w:

The choice of Hamiltonian representation determines that the

gyrocenter parallel momentum �pjj is the canonical momentum

�pjj ¼ pjj þ q=cdAjj. The effective potential

d/�u ¼ d/u �
dAu

c
�

pjj
m

b̂ þ X
@qu

@h

� �

includes the perturbed scalar potential d/uðX; tÞ and

vector potential dAuðX; tÞ in guiding-center phase space.
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qu ¼ ð2lB0=mÞ1=2
q̂=X is the guiding-center gyroradius

derived by guiding-center phase-space transformation,9,14

and q̂ is the basis vector of qu. Accordingly, the Poisson

bracket for two arbitrary functions F and G in the extended

gyrocenter phase space is defined as

F ;Gf g ¼ q

mc

@F
@�h

@G
@�l
� @F
@�l

@G
@�h

� �
þ B�0

B�jj

� �rF @G
@�pjj
� @F
@�pjj

�rG
 !

� cb̂

qB�jj
� �rF 	 �rG

þ @F
@ �w

@G
@t
� @F
@t

@G
@ �w

� �
;

where B�0 is the modified magnetic field

B�0 ¼ B0 þ �B

B0�pjj
mX

�r 	 b̂;

and B�jj ¼ b̂ � B�0.

The gyrocenter Hamiltonian equations are

_�p jj ¼ �
�jj�d

�B
q

b�

b�jj
� �rhd/�ui � �l

b�

b�jj
� �rB0; (1)

_�X¼
�pjj
m
þ�d

@hqd/�ui
@�pjj

 !
b�

b�jj
þ�d

c

B�jj
b̂	 �rhd/�uiþ�B

c�l
qB�jj

b̂

	 �rB0; (2)

where b� ¼ b̂ þ �B �pjj �r 	 b̂=ðmXÞ and b�jj ¼ b̂ � b�. The per-

turbed linear gyrocenter dynamics contained in Eq. (2) include

the curvature drift velocity �p2
jj

�r 	 b̂=ðm2XÞ, the linear elec-

trostatic perturbed E	 B0 velocity dvE ¼ cb̂ 	 �rd/=B0, the

perturbed magnetic-flutter velocity �pjjdB?=B0, and the per-

turbed grad-dBjj velocity cb̂ 	 �rdBjjðqB0Þ. For convenience,

these types of drifts, which are independent of the time deriva-

tive of perturbed fields, are denoted by VD. Due to the choice

of the Hamiltonian gyrokinetic model, the absences in Eq. (2)

are the drifts depending on the time derivative of perturbed

fields, such as the polarization drift velocity 1=ðXB0ÞdE=dt,
the linear induced perturbed E	 B0 drift velocity cb̂=B0

	@dA=@t, and the drift velocity related to ddB=dt.

III. GAUGE FIELD OF GYROCENTER PHASE-SPACE
TRANSFORMATION

The generating vector function Gn for the phase-space

transformation is obtained by choosing a special symplectic

form of the gyrocenter phase-space Lagrangian. As a result, it

affects the choice of phase-space gauge function Sn that has

no effect on the Poisson bracket structure. In the Hamiltonian

gyrokinetic model, for example, the first-order generating

vector field is

Ga
1 ¼ S1;Zaf g0 þ �d

q

c
dAu � Xþ �Bqu;Zaf g:

The first-order gauge scalar field S1 is chosen as S1;H0uf g
¼ �dqd~/

�
u to ensure that the first-order gyrocenter Hamiltonian

�H1y � �dqd/�u � S1;H0uf g ¼ �dqhd/�ui (3)

is independent of the gyrocenter gyroangle, whereH0u ¼ H0u

�w is the unperturbed extended guiding-center phase-space

Hamiltonian and d~/
�
u � d/�u � hd/�ui is the gyroangle-

dependent part of d/�u. According to the transformation of the

first-order gyrocenter Hamiltonian (3), a possible solution of

S1
33 is

S1 ¼
q

X
~U
�
u � �B

q

X2

ð
~U
�
u;H0u

n o
� Xd~/

�
u

� �
d�h

þ�2
B

q

X3

ð ð
~U
�
u;H0u

n o
� Xd~/

�
u

� �
d�h;H0u

� 	�

�X ~U
�
u;H0u

n o
� Xd~/

�
u

� ��
d�h þ � � � ; (4)

where ~U
�
u ¼

Ð
d~/
�
ud�h, and its detailed expression is

~U
�
u ¼

X�1

�1
þ
X1

1

 !
ileilaJl

exp ilhð Þ
il

d/�
�pjj
cm

dAjj

� �

� 1

2c

ffiffiffiffiffiffiffiffiffiffiffi
2�lB0

m

r ( X�2

�1
þ
X1

0

 !
ileilaJl

	 exp i lþ 1ð Þh
lþ 1

dAx �
exp i lþ 1ð Þh

i lþ 1ð Þ dAy

� �

�
X0

�1
þ
X1

2

 !
ileilaJl

	 exp i l� 1ð Þh
l� 1

dAx þ
exp i l� 1ð Þh

i l� 1ð Þ dAy

" #)
: (5)

The fundamental ordering of S1 is �d�B since S1;H0uf g is

proportional to the first-order Hamiltonian.

In this work, two types of local coordinate systems are

used as a generalization of a Euclidean space, which moves

along the unperturbed curved magnetic field line:39 One type

is the local right-handed Cartesian coordinate system ðx; y; zÞ
with the unit basis vectors ðêx; êy; b̂Þ, and the other type is

the rotating left-handed cylindrical coordinate system. The

cylindrical coordinate system includes the guiding-center

cylindrical coordinate system ðq; h; zÞ with the unit basis

vectors ðq̂; ĥ; b̂Þ and the gyrocenter cylindrical coordinate

system ð�q; �h; zÞ with the unit basis vectors ð�̂q ; �̂h ; b̂Þ, and the

relationships between their basis vectors and Cartesian basis

vectors are

q̂ ¼ cos hêx � sin hêy; ĥ ¼ @q̂
@h

;

�̂q ¼ cos �hêx � sin �hêy; �̂h ¼ @
�̂q

@�h
:

Incidentally, according to the appendix in Ref. 6, Littlejohn’s

gyrogauge vector field R ¼ rêx � êy, which represents the

spatial dependence of a perpendicular basis vector, would

modify the operator r in the Poisson bracket structure but

has no effect on Hamilton’s equations, and the modification

of the gyrocenter gyroradius qy in this work is on the high

order. Therefore, the vector field R is directly neglected in
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this work. Moreover, a denotes the angle between the wave

vector k and êx in Eq. (5).

IV. GYROCENTER GYRORADIUS

The gyroradius qy in the gyrocenter phase space is nec-

essary for the pushforward transformation. It is the distance

from the particle position cðzÞ ¼ x to the gyrocenter position

cð �ZÞ ¼ �X under a total electromagnetic field, whereas the

guiding-center gyroradius qu is the distance from the particle

position cðzÞ ¼ x to the guiding-center position cðZÞ ¼ X

under an equilibrium magnetic field, where the function c is

defined to choose the position coordinate. They satisfy the

equation

qu Zð Þ þ c Zð Þ � qy
�Zð Þ þ c �Zð Þ:

When qu and qy are compared in gyrocenter phase space, it

is found that they possess the relationship

qy
�Zð Þ � T�1

y c �Zð Þ þ �Bqu
�Zð Þ

� �
� c �Zð Þ

¼ �Bqu � �dG1 � �X þ �Bqu


 �
;

where the guiding-center phase-space gyroradius quðZÞ has

been expressed by the gyrocenter phase-space coordinate

quð �ZÞ. With the detailed expressions of the first-order gauge

scalar field (4) and the gyroangle-dependent part of the effec-

tive potential (5), qy becomes

qy ¼ �Bqu � �B�d
q

mc

@S1

@�h

@qu

@�l
� @S1

@�l
@qu

@�h

� �
þ �B�d

@S1

@�pjj

B�0
B�jj

¼ �Bqu � �B�d
q

B0X
d~/
�
u

ffiffiffiffiffiffiffiffiffi
B0

2m�l

s
�̂q �

ffiffiffiffiffiffiffiffiffiffiffi
2�lB0

m

r
@ ~U
�
u

@�l
�̂h

0
@

1
A

þ �B�d
q

X
@ ~U
�
u

@�pjj

B�0
B�jj
; (6)

and the gyroaveraged part is

hqyi ¼ �
q

B0X
iJ1

ffiffiffiffiffiffiffiffiffi
B0

2m�l

s
þ iB0k?

2mX
J0 � J2ð Þ

2
4

3
5

	 cos aêx þ sin aêy


 �
d/�

pjj
cm

dAjj

� �
� J0

B0

dA	 b̂

þ k?
4B0X

ffiffiffiffiffiffiffiffiffiffiffi
2�lB0

m

r
dA � sin 2a êyêy � êxêx


 ���
þcos 2a êyêx þ êxêy


 ��
J1 � J3ð Þ�2J1 êxêy � êyêx


 �
g;
(7)

where Jn is the nth-order Bessel function. The nonzero of

hqyi implies that part of the drift motion is included in

the gyroradius. Next, the particle velocity dx=dt from the

guiding-center and gyrocenter phase space is investigated in

order to analyze the physical meaning of Eq. (7).

In the absence of perturbed electromagnetic fluctuations,

a guiding-center transformation is sufficient. The trans-

formed velocity

T�1
� v ¼ d�X

dt
þ d�qu

dt

is decoupled into guiding-center motion

d�X

dt
¼

pjj
m

b�

b�jj
þ �B

cl
qB�jj

b̂ 	rB0

and particle polarization motion

d�qu

dt
¼

ffiffiffiffiffiffiffiffiffiffi
2lB0

m

r
ĥ:

It indicates that the gradient of B0 produces the guiding-center

drift velocity. v? ¼ ð2lB0=mÞ1=2
ĥ is the Larmor cyclotron

velocity in guiding-center phase space. In the presence of per-

turbed electromagnetic fluctuations, dx=dt should be trans-

formed into gyrocenter phase space

T�1
� v ¼ d� �X

dt
þ

d�qy

dt
; (8)

where d� �X=dt denotes the gyrocenter drift velocity, which is

given by Hamilton’s Equation (2), and the particle polariza-

tion velocity d�qy=dt40 is

d�qy

dt
¼�x�d

@qy

@t
þ qy; �Hy

� �
¼�x�d

@qy

@t
þ

ffiffiffiffiffiffiffiffiffiffiffi
2�lB0

m

r
�̂h 1þ�d

q

B0

@hd/�ui
@�l

� �

��d
q

B0

@

@�h
d~/
�
u

ffiffiffiffiffiffiffiffiffi
B0

2m�l

s
�̂q�

ffiffiffiffiffiffiffiffiffiffiffi
2�lB0

m

r
@ ~U
�
u

@�l
�̂h�@

~U
�
u

@�pjj

B0B�0
B�jj

0
@

1
A

þ�B

�pjj
m
þ�d

@hd/�ui
@�pjj

 !
b�

b�jj
� �rqyþ�B�d

c

B�jj
b̂	 �rhd/�ui
� �

� �rqyþ�2
B

c�l
qB�jj

b̂	 �rB0


 �
� �rqy: (9)

According to the transformation of dx=dt, Eq. (9) shows that

hdqy=dti undertakes the drifts related to the time derivative

of perturbed fields. In addition, it indicates that the perturbed

gyrocenter Hamiltonian �Hgy1 modifies Larmor cyclotron

motion.

Therefore, the slow time-scale drift motion is not fully

decoupled from particle motion in the Hamiltonian gyroki-

netic model; instead, only VD emerges in gyrocenter motion
_�X . In this way, the particle motion can be described such

that VD pushes the gyrocenter position, and the charged par-

ticle performs the cyclotron motion accompanied by drift

motion at the speed of hdqy=dti in the gyrocenter reference

frame.

V. MOMENTS OF GYROCENTER DISTRIBUTION

A closed self-consistent description of the interactions

involving the perturbed electromagnetic field and a gyrocen-

ter Vlasov distribution implies that the gyrokinetic Maxwell

equations are written with moments expressed in terms of the

gyrocenter distribution function. There are three approaches
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to calculating the moments: the conventional approach, the

purely pullback transformation approach, and the purely

pushforward transformation approach.

According to the character of the Lie transform, these

three approaches are identical. For specific distributions, such

as the Maxwellian distribution, the three approaches have

their own advantages and disadvantages. The calculations for

the pullback transformation approach and the conventional

approach are simpler than those for the purely pushforward

transformation approach since the integral of the transformed

distribution over the particle phase space is simpler than that

of the transformed velocity over the gyrocenter phase space,

especially for high-order moments and high-order transfor-

mations. Furthermore, they can avoid the detailed expression

of qy. In this work, the purely pushforward transformation

approach will be used, by which the polarization and magne-

tization of the gyrocenter41 can be visually revealed.

The equilibrium distribution is taken as a Maxwellian,
�F0 ¼ �N0

�FM, where �FM is the normalized Maxwellian distri-

bution. Then, the moment equation of the distribution func-

tion reads

K rð Þ ¼
ð

g vð Þf x; vð Þd x� rð Þdxdv

¼
ð

g T�1
� v


 �
�F �Zð Þd �X þ qy � r

� �
d�p3

¼
X1

0

�1ð Þn 1

n!
�r�ð Þn

ð
�F qy � � � qy

zfflfflfflffl}|fflfflfflffl{n

g T�1
� v


 �
d�p3; (10)

where
Ð

d3 �p ¼
Ð

B�jj=ðm2Þd�ld�pjjd
�h denotes the integrals over

the gyrocenter phase-space canonical momentum �pjj, phase

angle �h, and magnetic moment �l. For the purely pushforward

approach, the particle phase-space velocity is transformed using

a pushforward transformation, and the Dirac delta function is

expanded using the gyrocenter phase-space gyroradius qy.

Nevertheless, for the conventional approach, the gyrocenter

phase-space distribution is transformed through a pullback trans-

formation, and the Dirac delta function is expanded through qu.

For the integral of Eq. (10), taking the full FLR effect into

consideration is a challenge. However, in this work, only the

linear moments are considered, and terms in moment equations

that are higher than � are neglected; thus, the calculation diffi-

culties can be settled without ignoring the FLR effect

K rð Þ ¼
X1

0

�1ð Þn 1

n!
�r�ð Þn

ð
�F0 qu � � � qu

zfflfflfflffl}|fflfflfflffl{
ng0d�p3

þ �d
ð

exp �qu � �r

 �

�F1g0d�p3

� �d �r �
ð

�F0 exp �qu � �r

 �

q0yg0d�p3

þ �d
ð

�F0 exp �qu � �r

 �

g1d�p3; (11)

where �d�Bq0y ¼ �Bqy � �Bqu is the perturbed part of the

gyrocenter gyroradius and the subscripts 0 and 1 stand for

the unperturbed and perturbed quantities, respectively. By

setting gðvÞ equal to 1, qT�1
� v, and mT�1

� vT�1
� v, the particle

density, current density, and pressure tensor, respectively,

can be derived as follows:

nðrÞ ¼ �N0 þ �d
q �N0

�T
d/ hJ2

0i�p � 1
� �

� �d
q �N0

c �T

� ffiffiffiffiffiffiffiffiffiffiffi
2�lB0

m

r
iJ0J1

�
�p

k? 	 b̂

k?
� dA?

þ �d
ð

�F1J0d3 �p; (12)

JðrÞ ¼ �B
b̂

B0

	 �r c �N0
�Tð Þ � �d

q2 �N0

cm
dAjjhJ2

0i�p b̂

þ �d
q2 �N0

�T

� ffiffiffiffiffiffiffiffiffiffiffi
2�lB0

m

r
iJ1

b̂ 	 k?
k?

hd/�ui
�

�p

þ �d
ð

q �F1

�pjj
m

J0b̂ � iJ1

k? 	 b̂

k?

ffiffiffiffiffiffiffiffiffiffiffi
2�lB0

m

r" #
d3�p; (13)

PðrÞ¼ �N0
�TIþ �d

ð �p2
jj

m
J0b̂b̂þ �lB0 J0þJ2ð Þ I� b̂b̂ð Þ

" #
�F1d3 �p

þ�d
qB0

�N0

�T
h�l J0þJ2ð Þhd/�ui�d/
� �

I� b̂b̂ð Þi�p ; (14)

where �N0 ¼
Ð

�F0d3�p and hi�p ¼
Ð

�FMd3 �p. In Eq. (13), the

drift currents related to the time derivative of perturbed

fields are on the order of �d�x (9) and are neglected here,

b̂ 	 �rðc �N0
�TÞ=B0 is the diamagnetic current, and the current

ð �N0q2hJ2
0i�pdAjjb̂Þ=ðcmÞ is caused by the choice of the

Hamiltonian gyrokinetic model. In the pressure tensor (14),

the off-diagonal components related to b̂ and terms whose

divergence is a higher-order contribution are neglected.

With the Coulomb gauge r � A ¼ 0, the gyrokinetic

Poisson’s equation and Ampere’s law are obtained

�r2

?d/ ¼ �4p
X

a

qadna; (15)

� �r2

?dA ¼ 4p
c

X
a

dJa; (16)

where a denotes the particle species.

VI. MICROSCOPIC FLOW AND MACROSCOPIC FLOW

Equation (13) embodies the relationship between single-

particle drift motion and macroscopic flow. The drift motion

proportional to particle canonical momentum �pjj does not

produce an equilibrium current. The diamagnetic drift veloc-

ity vanished in Hamilton’s equations because Hamilton’s

equations are derived by single-particle Hamiltonian theory.

The appearance of the diamagnetic current, the disappearance

of the currents produced by curvature drift and grad-B0 drift,

and the perturbed currents all are attributed to the polarization

and magnetization effects of the gyrocenter gyroradius.

Given the definition of the gyrocenter polarization vector

P� ¼ �q
X1

1

�1ð Þn 1

n!
�r�ð Þn�1

ð
�F qy � � � qy

zfflfflfflffl}|fflfflfflffl{n

d�p3 (17)

using the Vlasov equation �F; �Hy

� �
and the gyrocenter

Liouville theorem
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@B�jj
@t
þ �r � B�jj

_�X
� �

þ @

@�pjj
B�jj _�p jj

� �
¼ 0;

the current density can be reformed as34 (refer to the Appendix B)

JðrÞ ¼ �Jy þ Jp þ Jm; (18)

where

�Jy ¼
ð

q _�X �Fd3�p ¼ �B
c �N0

�T

B0

�r 	 b̂ þ �B
c �N0

�T

B2
0

b̂ 	 �rB0

þ �dq �N0

�
� q

cm
dAjjJ0b̂ þ c

B�jj
b̂ 	 �rhd/�ui

�
�p

þ �d
ð

q �F1

�pjj
m

b̂d3 �p (19)

is the gyrocenter drift current density,

Jp ¼
@P�

@t
� O �2ð Þ (20)

is the polarization current, and

Jm¼c �r	M�¼��B
�r	 c �N0

�T

B0

b̂

� �

��d
q2 �N0

cm
dAjjhJ0 J0�1ð Þi�p b̂��d

cq �N0

B�jj
b̂	 �rhhd/�uii�p

þ�d
q2 �N0

�T

� ffiffiffiffiffiffiffiffiffiffiffi
2�lB0

m

r
iJ1

b̂	k?
k?
hd/�ui

�
�p

þ�d
ð

q �F1

�pjj
m

J0�1ð Þb̂� iJ1

k?	 b̂

k?

ffiffiffiffiffiffiffiffiffiffiffi
2�lB0

m

r" #
d3 �p (21)

is the divergence-free magnetization current. The magnetiza-

tion vector M�
42 reads

M� ¼ �d
q

c

ðX1
1

1

n!
�qu � �r

 �n�1 �F0 qu 	 _�X1

� �
d�p3

þ �d
q

c

ðX1
1

1

n!
�qu � �r

 �n�1 �F1 qu 	 _�X0

� �
d�p3

þ�d
q

c

ðX1
1

1

n� 1ð Þ!
�F0 �qu � �r

 �n�1

q0y 	 _�X0

� �
d�p3

þ q

2c

ð
�F0qu 	 _qy


 �
0
d�p3

þ�d
q

c

X1
1

n

nþ 1ð Þ!

ð
�qu � �r

 �n�1 �F1qu 	 _qy


 �
0
d�p3

þ �d
q

c

X1
1

n

nþ 1ð Þ!

ð
�qu � �r

 �n�1 �F0qu 	 _qy


 �
1
d�p3

þ�d
q

c

ðX1
1

n2

nþ 1ð Þ! �qu � �r

 �n�1 �F0 q0y 	 _qy


 �
0

h i
d�p3

þ�d
q

c

ðX1
2

n2 � n

nþ 1ð Þ! �qu � �r

 �n�2 �F0

	 _qy


 �
0
� �r

h i
q0y 	 qu

n o
d�p3: (22)

Obviously, Eq. (18) has the same result as Eq. (13).

From the perspective of polarization (17) and magnetization

(22), the relationship between microscopic flow and macro-

scopic flow is clear. For the macroscopic equilibrium flow,

the gyrocenter magnetization produces the diamagnetic cur-

rent and provides a current to cancel out the curvature and

grad-B0 drift current. Spizter43 first discussed this problem

with the guiding-center motion equation and magnetohydro-

dynamic (MHD) equation, and Qin44 discussed this problem

with the gyrokinetic model. However, the physical pictures

of the canceling of curvature and grad-B0 drift current, along

with the generation of macroscopic perturbed flow, are want-

ing. All of them will be presented in this work.

If the charged particles are positive, the trajectories of

particles that move helically along field lines are left-handed

from the view of the equilibrium magnetic field direction, as

shown in Fig. 1. The current produced by the cyclotron

motion of a particle can be treated as a small current coil. It

can be seen that the number of these small current coils

chained by boundary L increases with the gyroradius and par-

ticle number density. In this way, the gap between the current

in the higher density and temperature areas and that in the

lower density and temperature areas produces the diamagnetic

current through the surface S surrounded by the boundary L.

When only the curve of the unperturbed magnetic field

is taken into account, the number of small current coils

chained by boundary L increases along the direction of cur-

vature j, as shown in Fig. 2. Through the surface S in Fig. 2,

the outward current at the upper left exceeds the inward cur-

rent at the lower right, and then, a net outward current is pro-

duced. The direction of this current is exactly opposite to the

gyrocenter drift current produced by the curvature of the

magnetic field, and they cancel each other out.

When only the inhomogeneity of the unperturbed mag-

netic field is considered, as shown in Fig. 3, the Larmor gyro-

radius is smaller at the strong field site. Thus, the number of

small current coils chained by boundary L at the weak field

site is larger. In this way, through the surface S in Fig. 3, the

outward current at the left exceeds the inward current at the

FIG. 1. Particle current coils in a uniform equilibrium magnetic field with

nonuniform pressure.
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right, and then, a net outward current is produced. The direc-

tion of this current is exactly opposite to the unperturbed

grad-B0 drift current, and they cancel each other out.

For the generation of macroscopic perturbed flow, the

gyrocenter drift current originally holds the FLR effect, and

the contribution of the polarization current is a higher-order

effect. Comparison of the drift current with the polarization

and magnetization currents indicates that the magnetization

currents are equivalent to adding an extra FLR effect on the

gyrocenter drift current, in contrast to the counterpart of the

macroscopic equilibrium flow, where the magnetization cur-

rent creates new flow and cancels out the gyrocenter drift flow.

VII. LONG WAVELENGTH LIMIT

Generally, a gyrokinetic system in a long wavelength

limit is widely used and adequate for most physical prob-

lems, and the long wavelength limit is in accordance with

the physical picture in the general case. In this limit, the

gyroaveraged gyroradius (7) becomes

hqyi ¼ �
1

B0

c

X
�r?d/þ

�pjj
mX

dB	 b̂ þ dA	 b̂

� �
; (23)

and the meaning of each term on the right of Eq. (23) is as

follows: The first term is caused by the polarization drift

velocity ð1=XB0ÞdE=dt, the second term is caused by the

drift related to ddB=dt, and the last term is caused by the lin-

ear induced perturbed E	 B0 drift velocity.

Similarly, the moment equations, gyrocenter drift cur-

rent, and magnetization current can be reduced to

n ¼ �N0 þ �d �r � c �N0

B0X
�r?d/

� �
þ

�N0dBjj
B0

" #
þ �d

ð
�F1d3 �p;

(24)

J ¼ ��d
�N0q2

cm
dAjjb̂ þ �d

ð
q

�pjj
m

b̂ �F1d3 �p þ �d
cq �N0

B0

b̂

	 �rd/þ �d
3c2 �N0

�T

2B2
0X

b̂ 	 �r �r2

?d/þ �d
2c �N0

�T

B2
0

b̂

	 �rdBjj þ �B
b̂

B0

	 �r c �N0
�Tð Þ þ b̂ 	 �r

ð
c�l �F1d3 �p;

(25)

P ¼ �N0
�TIþ �d

�N0
�T

B0

2dBjj I� b̂b̂ð Þ þ 3

2

c

X
�r2

?d/ I� b̂b̂ð Þ
� �

þ �d
ð �p2

jj
m

b̂b̂ þ �lB0 I� b̂b̂ð Þ
" #

�F1d3�p: (26)

�Jy ¼��d
�N0q2

cm
dAjjb̂þ �d

c2 �N0
�T

2B2
0X

b̂	 �r �r2

?d/

þ�B
c �N0

�T

B0

�r	 b̂þ �B
c �N0

B0

b̂	 �d
�B

q �rd/þ
�T

B0

�rdBjj

� ��

þ
�T

B0

�rB0

�
þ �d

ð
q

�pjj
m

b0
�F1d3�p; (27)

Jm ¼ �Bb̂ 	 �r c �N0
�T

B0

� �B
c �N0

�T

B0

�r 	 b̂ þ �d
c �N0

�T

B0

b̂ 	 �r
dBjj
B0

þ�d
c2 �N0

�T

B2
0X

b̂ 	 �r �r2

?d/þ �db̂ 	 �r
ð

c�l �F1d3 �p: (28)

In the square bracket of Eq. (24), the first term, i.e., the polar-

ization density, arises from the polarization drift, whereas the

second term stems from the induced E	 B0 drift. The current

density (25) contains the E	 B0 current cq �N0b̂ 	 �rd/=B0,

the current 3cq2 �N0
�T b̂ 	 �r �r2

?d/=ð2B2
0XÞ, and the duple

grad-dBjj current 2c �N0
�T b̂ 	 �rdBjj=B2

0.

Finally, the gyrokinetic Maxwell equations are reduced to

�r? � 1þ
X

a

x2
pa

X2
a

 !
�r?d/

" #
þ
X

a

4pqa �Na0

B0

dBjj

¼ �4p
X

a

qa

ð
�Fa1d3 �pa; (29)

� �r? � 1þ
X

a

ba0

� �
�r?dA

� �
þ
X

a

x2
pa

c2
dA � b̂ð Þb̂

�
X

a

x2
pa

cXa
b̂ 	 �rd/�

X
a

3x2
pa

�Ta

2qaB0X
2
a

b̂ 	 �r �r2

?d/

¼ 4p
c

X
a

ð
qa

�pajj
ma

�Fa1d3 �pab̂ þ b̂ 	 �r
ð

c�la
�Fa1d3 �pa

� �
;

(30)FIG. 3. Particle current coils in a nonuniform equilibrium magnetic field.

FIG. 2. Particle current coils in a curved equilibrium magnetic field.
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where xpa ¼ 4p �Na0q2
a=ma is the particle plasma frequency

and ba0 ¼ 8p �Na0
�T a=B2

0 is the ratio of kinetic to magnetic

energy densities.

VIII. DISCUSSION

In this work, a detailed gyrokinetic system is derived via

the purely pushforward transformation approach with both

retention of the FLR effect and a long wavelength limit in

the presence of electromagnetic fluctuations. Compared with

the other two approaches, this approach can intuitively

reveal the properties of gyrokinetic theory and make the

physical mechanism more clear.

With the detailed expression of the first-order gauge scalar

field S1, the systematical analysis on the gyrocenter gyroradius

qy, which is calculated via the pushforward transformation on

the guiding-center gyroradius qu, indicates that the motion of

the gyrocenter does not contain the entire drifts. In other

words, if the gyrocenter motion contains the total drifts in

another devised gyrocenter coordinate system, the gyrocenter

polarization effect will not exist. Therefore, the key to under-

standing the gyrokinetic effect is the gyrocenter gyroradius. In

addition, the way to decouple the particle motion is closely

related to the choice of the gyrokinetic model, which results in

the existence of different expressions of gyrokinetic systems.

However, the fluctuations ultimately derived via diverse mod-

els are coherent with each other.

With these preparations, the moments of distribution are

obtained by the purely pushforward transformation approach.

The moments have the same form as the results from the

purely pullback approach and the conventional approach,

except that the variables are different, i.e., nð�XÞ; nðxÞ and

nðXÞ. This shows that these three approaches are identical

not only in principle but also in practice, at least for the lin-

ear moments.

From the perspective of polarization and magnetization,

the polarization charge density, polarization, and magnetiza-

tion current density are revealed by the polarization vector

and magnetization vector. For the equilibrium flow, the mag-

netization of the gyrocenter produces a diamagnetic current,

and it also provides a current to cancel out the curvature and

grad-B0 drift current. According to the definition of magneti-

zation current, the physical pictures are presented. For the

macroscopic perturbed flow, by incorporating the full FLR

effect, the polarization current makes no contribution to the

macroscopic flow, and the magnetization currents are equiv-

alent to adding an extra FLR effect on the gyrocenter drift

current.

In this work, the derivation of pushforward transforma-

tion only reaches an order of �d. The second-order generating

vector field G2 and the second-order gauge scalar field S2 are

beyond the scope of this work. Thus, the transformed gyro-

center phase-space gyroradius is valid up to the order of

�B�d, and the gyrocenter moments are valid to the order of �d.

For the perturbation analysis on the order of �2
d, the second-

order Hamiltonian including ponderomotive-force-like terms

should be brought back, the second-order gyrocenter trans-

formation should be used, and the high order terms in the

perturbation analysis on the order of �d are needed. In this

way, the calculation of fluid moments with a pushforward

transformation may be very tedious. Moreover, it might be

convenient to derive them by the second-order pullback

transformation of the gyrocenter phase-space distribution.
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APPENDIX A: DERIVATION OF MOMENT EQUATIONS

Using the equation

Q exp qy � �r
� �

d ¼
X1
m¼0

Xm

n¼0

1

m!
QCn

mqn
xq

m�n
y @n

x@
m�n
y d

¼
X1
m¼0

Xm

n¼0

1

m!
@x QCn

mqn
xq

m�n
y @n�1

x @m�n
y d

h i
þ �1ð Þ1

X1
m¼0

Xm

n¼0

1

m!
@x QCn

mqn
xq

m�n
y

� �
@n�1

x @m�n
y d

¼
X1
m¼0

Xm

n¼0

1

m!
@x QCn

mqn
xq

m�n
y @n�1

x @m�n
y d

h i
þ �1ð Þ1

X1
m¼0

Xm

n¼0

1

m!
@x @x QCn

mqn
xq

m�n
y

� �
@n�2

x @m�n
y d

h i

þ � � � þ �1ð Þm�1
X1
m¼0

Xm

n¼0

1

m!
@y @

n
x@

m�n�1
y QCn

mqn
xq

m�n
y

� �
d

h i

þ �1ð Þm
X1
m¼0

Xm

n¼0

1

m!
@n

x@
m�n
y QCn

mqn
xq

m�n
y

� �
d;
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where Q ¼ gðT�1
� vÞ �FB�jj=ðm2Þ, Eq. (10) can be obtained. There are two ambiguities during the derivation of moment equations

when the full FLR effect is retained, the first of which is the infinite summation in Eq. (10). Since we consider only linear

moments and truncate the moments to the order of �, the summation can be converted into the exponential function

K rð Þ ¼
X1

0

�1ð Þn 1

n!
�r�ð Þn

ð
�F0 qu � � � qu

zfflfflfflffl}|fflfflfflffl{n

g0d�p3 þ �d
ð

exp �qu � �r

 �

�F1g0d�p3

��d �r �
ð

�F0 exp �qu � �r

 �

q0yg0d�p3 þ �d
ð

�F0 exp �qu � �r

 �

g1d�p3:

When setting gðvÞ equal to 1, the moment equation stands for the particle density

n rð Þ ¼ �N0 þ �d
ð

�F1J0d3�p þ �d �r �
*

�F0 exp �qu � �r

 � q

B0X
d~/
�
u

ffiffiffiffiffiffiffiffiffi
B0

2m�l

s
�̂q �

ffiffiffiffiffiffiffiffiffiffiffi
2�lB0

m

r
@ ~U
�
u

@�l
�̂h � @

~U
�
u

@�pjj

B�0
b�jj

0
@

1
A+

�p

:

The integral of exp ð�qu � �rÞ~U�u (5) will lead to the second ambiguity, but it can be avoided through integral by partsð
q �F0

B0

@

@�h
exp �qu � �r


 � @ ~U
�
u

@�l
d�h ¼

ð
q �F0

B0

@ ~U
�
u

@�l
d exp �qu � �r


 �
¼ �

ð
q �F0

B0

@d~/
�
u

@�l
exp �qu � �r


 �
d�h:

With

�r �
*

�F0 exp �qu � �r

 � q

B0X
d~/
�
u

ffiffiffiffiffiffiffiffiffi
B0

2m�l

s
�̂q

+
�p

¼ �
*

q �F0

B0

@

@�l
exp �qu � �r


 �
d~/
�
u

+
�p

;

the density is finally derived

n rð Þ ¼ �N0 þ �d
ð

�F1J0d3 �p � �d

*
q �F0

B0

@

@�l
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�
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� dA?:

When setting gðvÞ equal to qT�1
� v, the moment equation stands for the current density
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After some reduction steps, the current density can be obtained,
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When setting gðvÞ equal to mT�1
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� v, the moment equation stands for the pressure tensor
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With the equation
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the pressure tensor can be obtained,

P¼ �N0
�TIþ �d

ð �p2
jj

m
J0b̂b̂þ �lB0 J0þ J2ð Þ I� b̂b̂ð Þ

" #
�F1d3�pþ �r �

*
2�l

q �F0

X
exp �qu � �r

 �

d~/
�
u

ffiffiffiffiffiffiffiffiffi
B0

2m�l

s
�̂q �̂h �̂h

+
�p

�m

*
2�lB0

m

q �F0

B0

exp �qu � �r

 �@d~/

�
u

@�l
�̂h �̂h

+
�p

þm

*
�F0 exp �qu � �r


 � ffiffiffiffiffiffiffiffiffiffiffi
2�lB0

m

r
�̂h

c

B�jj
b̂	 �rhd/�uiþ

c

B�jj
b̂	 �rhd/�ui

ffiffiffiffiffiffiffiffiffiffiffi
2�lB0

m

r
�̂h

"(

þ2
2�lB0

m

q

B0

@hd/�ui
@�l

�̂h �̂h �2
q

m
d~/
�
u
�̂h �̂h � q

m

@d/�u
@�h

�̂q �̂h þ �̂h �̂q

� �
þ2

q

B0

2�lB0

m

@d~/
�
u

@�l
�̂h �̂h

#)+
�p

¼ �N0
�TIþ �d

ð �p2
jj

m
J0b̂b̂þ �lB0 J0þ J2ð Þ I� b̂b̂ð Þ

" #
�F1d3�p�m

*
q �F0

B0

@

@�l
2�lB0

m
exp �qu � �r

 �

d~/
�
u

� �
�̂h �̂h

+
�p

þm

*
�F0 exp �qu � �r


 �

	
ffiffiffiffiffiffiffiffiffiffiffi
2�lB0

m

r
�̂h

c

B�jj
b̂	 �rhd/�uiþ

c

B�jj
b̂	 �rhd/�ui

ffiffiffiffiffiffiffiffiffiffiffi
2�lB0

m

r
�̂h þ2

2�lB0

m

q

B0

@d/�u
@�l

�̂h �̂h � q

m

@d/�u
@�h

�̂q �̂h þ �̂h �̂q

� �" #+
�p

¼ �N0
�TIþ �d

ð �p2
jj

m
J0b̂b̂þ �lB0 J0þ J2ð Þ I� b̂b̂ð Þ

" #
�F1d3�pþ �d

qB0
�N0

�T
h�l J0þ J2ð Þhd/�ui�d/
� �

I� b̂b̂ð Þi�p ;

where the off-diagonal components related to b̂ and terms whose divergence is a higher-order contribution are neglected.
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APPENDIX B: DERIVATION OF POLARIZATION AND MAGNETIZATION

The polarization and magnetization currents can be decoupled from the total current with the help of the Vlasov equation

and the gyrocenter Liouville theorem. If the polarization current is introduced
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where �J ¼ B�jj=ðm2Þ and d �P
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�h, then the current density becomes
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the polarization current clearly provides a higher-order contribution. With this conclusion,
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can be artificially added into the magnetization current, and the magnetization current can be derived as
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