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A finite-mass electron fluid model for low frequency electromagnetic fluctuations, particularly the

collisionless tearing mode, has been implemented in the gyrokinetic toroidal code. Using this fluid

model, linear properties of the collisionless tearing mode have been verified. Simulations verify

that the linear growth rate of the single collisionless tearing mode is proportional to De
2, where De

is the electron skin depth. On the other hand, the growth rate of a double tearing mode is propor-

tional to De in the parameter regime of fusion plasmas. VC 2016 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4941094]

I. INTRODUCTION

The tearing mode is a dangerous current-driven magneto-

hydrodynamic instability in magnetized plasmas.1–3 It may

destroy the topology of the equilibrium magnetic field and

lead to severe transport of plasmas from the core to the bound-

ary of magnetically confined plasmas in a tokamak. The tear-

ing mode in the tokamak core is believed to be responsible for

the major crash.4–6 In the boundary region, such as the plas-

mas pedestal of a tokamak in H-mode discharges, the micro-

tearing mode is suspected to be responsible for anomalous

transport of electrons in high-beta plasmas.7–10 Nonlinearly,

there are strong couplings between the tearing mode and other

plasma modes, such as Alfv�en waves and drift waves. The

tearing mode-induced magnetic islands change the shape of

continuous spectrum and the gap structure of shear Alfv�en

waves,11,12 which then influence the behavior of Alfv�en

eigenmodes such as toroidal Alfv�en eigenmode (TAE) and

beta-induced Alfv�en eigenmode (BAE).13,14 Furthermore, the

tearing mode can modify the equilibrium pressure profile of

tokamak plasmas. Inside the magnetic island, the pressure

tends to flatten, which decreases the drive for the drift waves

such as ion or electron temperature gradient modes. Near the

boundary of the magnetic island, the pressure gradient

becomes sharper, which increases the drive for the drift

waves.15–18

The tearing mode is also considered to be the origin of

the seed island for neoclassic tearing modes, which are dan-

gerous modes in the future ITER experiments.19 To control

these modes, one can modulate the current profile using

lower hybrid current drive or electron cyclotron current drive

to minimize the tearing mode drive.20 Finally, in burning

plasmas, energetic particles have been shown to stabilize the

macro tearing mode in numerical simulations.21–23

To understand these physics problems in tokomaks

experiments, one needs to investigate carefully the properties

of the tearing mode. However, the tearing mode is difficult to

be solved analytically because it is a nonlinear problem that is

multi-scale in both time and space. As to the collisionless tear-

ing mode, which is more relevant in high temperature plas-

mas, one needs to resolve the electron dynamics in the

electron skin depth scale. Several physics models have been

constructed for tearing mode simulations,24–26 which still

need to overcome the severe numerical constraints of the fast

electron motion. Noticing that the basic physics of the colli-

sionless tearing mode can be introduced by the electron iner-

tial in a fluid model, one only needs to calculate the electron

inertial in the fluid model instead of describing the fast elec-

tron motion precisely with kinetic theory.24 Higher order ki-

netic effects of electrons can then be incorporated

perturbatively.

In a tokamak geometry, the gyrokinetic toroidal code

(GTC) simulation of the resistive tearing mode has been car-

ried out by retaining the resistivity in Ohm’s Law.3 For the

high temperature plasmas, the collisionless tearing mode

may be more relevant than the resistive tearing mode. In this

paper, we present in Section II the toroidal implementation

of a finite-mass electron fluid model for the collisionless

tearing mode, which is coupled to the gyrokinetic ions

through gyrokinetic Poisson’s equation and Ampere’s law.

Using the GTC,2,3,27–33 we have verified the linear behaviors

of the collisionless tearing mode in cylindrical geometry

where analytic results are available for verification of simu-

lation results. The results of GTC simulations agree with

analytic eigenvalue calculations, as shown in Section III. In

Section IV, conclusions and future plans are given.

II. PHYSICS MODEL

Since the frequency and growth rate of tearing modes

are much smaller than ion cyclotron frequency, we can uti-

lize the nonlinear gyrokinetic simulation method,34 which

removes unwanted high frequency modes and rigorously

retains all the linear and nonlinear wave-particle resonances

and finite Larmor radius effects. In the low-beta plasmas

where parallel magnetic perturbation can be neglected, thea)E-mail: zhihongl@uci.edu

1070-664X/2016/23(2)/022502/7/$30.00 VC 2016 AIP Publishing LLC23, 022502-1

PHYSICS OF PLASMAS 23, 022502 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  128.200.44.221 On: Fri, 05 Feb

2016 16:10:56

http://dx.doi.org/10.1063/1.4941094
http://dx.doi.org/10.1063/1.4941094
http://dx.doi.org/10.1063/1.4941094
mailto:zhihongl@uci.edu
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4941094&domain=pdf&date_stamp=2016-02-05


gyrokinetic equation in canonical form for the species a of

charged particles reads35,36

@fa
@t
þ _Xc � rfa þ _pk

@fa
@pk
¼ 0; (1)

_Xc ¼
1

ma
pk �

qa

c
dAk

� �
b0 þ

cpk
maqaB0

pk �
qa

c
dAk

� �
r

� b0 þ
cb0

qaB0

� r d/�
pkdAk
mac

� �
þ lrB0

� �
; (2)

_pkc ¼ � b0 þ
c

qaB0

pkr � b0

� �

� qar d/�
pkdAk
mac

� �
þ lrB0

� �
: (3)

Here, Xc, pk, l, ma, and qa denote gyrocenter position, the

canonical parallel momentum, the magnetic moment, the

mass, and the electric charge, and B0, dAk, d/, and dB
denote the equilibrium magnetic field, the perturbed parallel

vector potential, the perturbed electrostatic potential, and

the perturbed magnetic field, respectively. b0 ¼ B0

B0
is the

unit vector of equilibrium magnetic field, c and t denote the

light speed and the time, and dB can be written as

dB ¼ r� dAkb0. The electric potential d/ and parallel

magnetic vector potential dAjj are all gyro-averaged.

Assuming that perturbed distribution function dfa and equi-

librium distribution function fa0 satisfy dfa=fa0 � oðdÞ, we

can solve the Vlasov equation above order by order

D

Dt
fa ¼ L0 þ dLð Þ fa0 þ dfað Þ ¼ 0; (4)

where

L0 ¼
@

@t
þ

pk
ma

b0 þ
cp2
k

maqaB0

r� b0 þ
cl

qaB0

b0 �rB0

 !
� r

� b0 þ
cpk

qaB0

r� b0

� �
� lrB0

@

@pk
; (5)
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Here, fa0 satisfies the 0th order of the above gyrokinetic

equation

L0fa0 ¼ 0; (7)

which is approximated as a shift Maxwellian function

fa0 ¼
na0

2pTa0=mað Þ3=2
exp �

2lB0 þ ma pk � vk0ð Þ2

2Ta0

" #
:

The 1st order of the kinetic equation reads

L0dfa ¼ � dLfa0 ¼
qadAk
mac

b0 þ
cpk
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r� b0

� �
� cb0
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� r d/�
pkdAk
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If one uses the perturbative method to reduce the discrete particle noise, the evolution of the weight of perturbed distribution

function for ion species wa ¼ dfa=fa satisfies

Dwa

Dt
¼ 1� wað Þ

qadAk
mac

b0 þ
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qaB0

r� b0

� �
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8>>>><
>>>>:

9>>>>=
>>>>;
: (9)

One can get the perturbed density and current by integrating the perturbed distribution
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dna ¼
ð

dfad3V;

duakc ¼ n0a

ð
1

ma
pkdfad3V:

Since the electron gyroradius are much smaller than those of

ions, the motion of electrons can be represented by the guid-

ing center motions for electromagnetic waves with the wave-

length on the order of ion gyroradius or collisionless skin

depth De, which is much larger than qe for typical fusion pa-

rameters. The gyrokinetic equation can be reduced to the

drift kinetic equation for electrons. Integrating the linearized

drift kinetic equation for the 0th and 1st order moments with

the following tokamak plasmas ordering: rlnðn0Þ � 1=a,

rlnðB0Þ � 1=R, rlnðp0Þ � 1=a,3,24 and a=R� 1, one can

derive the continuity and parallel momentum equation of

electrons. We focus on linear formulation and simulation in

this paper. The linearized continuity equation is

@dne

@t
þ B0 � r

ne0duek
B0

� �
þ B0vE � r

ne0

B0

� �

� ne0 v� þ vEð Þ � rB0

B0

þ dB � r
ne0uejj0

B0

� �

þ cr� B0

B2
0

� �
rdpek

e
þ ne0rd/

� �
¼ 0: (10)

The linearized parallel momentum equation is

mene0

@duejjc
@t
þ qene0b0 � rd/þ B0 � r

dPejj
B0

� �

þ dB? � r
pe0

B0

� �
¼ 0: (11)

Comparing with the perturbed parallel pressure terms, the per-

turbed perpendicular pressure terms are order of O(1/k?R0)

and thus can be neglected.33 Assuming the electrons are iso-

thermal along perturbed magnetic field line, one can make

fluid closure to close the fluid model in magnetic flux coordi-

nate as

dpe ¼ dneTe þ ne0dw
@

@w
Te þ ne0da

@

@a
Te; (12)

where w is the poloidal magnetic flux, a ¼ qh� f is the mag-

netic field line label with poloidal angle h and toroidal angle

f, and dw and da are the perturbed parts of w and a, respec-

tively.28 The three equations above form a fluid electron

model, which retains the electron inertial. Without consider-

ing the wave particle interaction, the model can describe the

response of electron to the low frequency electromagnetic

waves, such as the collisionless tearing mode, kinetic, and in-

ertial Alfv�en waves.24,37 In the electron fluid model above

duejj ¼ duejjc �
qedAjj
mec

: (13)

The perturbed E�B flow vE is

vE ¼
cb0 �rd/

B0

: (14)

And the diamagnetic flow v* is

v� ¼
b0 �r dP? þ dPjj

� �
ne0meXce

: (15)

To calculate the higher-order wave particle interaction

between the electromagnetic waves with the electron, one can

make the closure of the electron fluid model kinetically by

dpjj ¼
ð

1

m
p2
jjdfd3V; (16)

dp? ¼
ð

lB0dfd3V; (17)

where dpk and dp? are parallel and perpendicular pressures,

and the phase space integral represents

ð
d3V ¼

ð
2pB0

m2
dldpjj:

This kinetic closure is essentially a drift kinetic electron

model, which needs to resolve the fast electron motion.

The background thermal ions and energetic particles can

then be coupled to the fluid electrons through the Poisson’s

equation and Ampere’s Law by

4pZ2
i

Ti
/� ~/
� �

¼ 4p
X

a

naqa: (18)

~/ is the second gyro-averaged electrostatic potential.38

Together with the parallel Ampere’s Law and the kk �
k? approximation

r2
? �

X
a

x2
pa

c2

 !
dAk ¼ �

4p
c

X
a

na0qaduakc; (19)

where xpa is the plasma frequency of a species.

To verify the capability of this electron fluid model for

the collisionless tearing mode without considering the ion’s

finite Larmor radius effects, we can write the Poisson’s equa-

tion (18) into its long wave length limit

q2
s

k2
De

r2
?d/ ¼ �4p

X
a

dnaqa; (20)

where kDe is the electron Debye length. One should note that

this simplification is not necessary in GTC simulation, the

assumption made here is only for simplification of deriving the

linear dispersion relation for the collisionless tearing mode

below.

To derive the dispersion relation of the collisionless

tearing mode in the fluid limit, one can derive the eigenvalue

equation of dAjj from Equations (11), (12), (19), and (20)

r2
? kkv

2
te �

x2

kjj

 !
r2
?dAjj ¼ r2

? k00jjv
2
te �

x2x2
pe

kjjc2

 !
dAjj

þ v2
te

q2
s

kjjr2
? � k00jj

� 	
dAjj; (21)
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where k00jj is the second derivative of parallel wave vector

with respect to the minor radius, vte is the thermal speed of

electrons, and qs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te=ðmiXciÞ

p
. The collisionless tearing

mode is one of the eigenmodes of Equation (21). Separating

Equation (21) into the inner electron inertial region and outer

ideal MHD region and then asymptotically matching the sol-

utions of the two regions, one can easily obtain the disper-

sion relation of the collisionless tearing mode.

Near the mode rational surface which locates at r0, in

the inner electron inertial region ðr � r0Þ � jx=k0jjvtej, where

non-ideal MHD effects resulting from the electron inertial

play the role of magnetic field diffusive term in the evolution

equation of the magnetic field, the equation above can be

reduced to

k2
jjv

2
te � x2

� 	 @2

@r2
dAjj ¼ �

x2x2
pe

c2

� �
dAjj: (22)

While in the outer ideal MHD region ðr � r0Þ � jx=k0jjvtej,
the equation reads

ðkjjr2
? � k00jjÞdAjj ¼ 0: (23)

Matching the two regions near their boundaries

D0o ¼ lim
jxj!0

dA0jj
dAjj
¼ D0I ¼ lim

jxj!1

dA0jj
dAjj

: (24)

One can recover the growth rate for the collisionless tearing

mode24,39

�ix ¼ c ¼ D2
e

p
jk0jjvtejD0o; (25)

where De is the electron skin depth. Theoretically, one can

recover the linear behavior of the collisionless tearing mode

due to the electron inertial using this finite mass electron fluid

model. Other non-ideal MHD effects may also lead to the

magnetic reconnection, for example, the off-diagonal terms of

electron pressure tensor in general Ohm’s Law. Compared

with the electron inertial, these terms are other of O(be)

term.40 For conventional tokamak be� 0.01, these terms can

be neglected for the collisionless tearing mode.

III. FLUID SIMULATION OF (2, 1) COLLISIONLESS
TEARING MODE

Using the finite-mass electron fluid model, we have

studied the linear properties of collisionless tearing modes,

which might be relevant in high temperature tokamak

plasmas.

A. Fluid simulation of the single (2, 1) collisionless
tearing mode

Considering the uniform equilibrium pressure, we apply

the q profile, q ¼ 1:8þ 100ðr=R0Þ2, where r is the minor ra-

dius, and use the parameters of inverse aspect ratio e¼ a/R0

¼ 0.1, major radius R0¼ 1.68 m, magnetic field B0¼ 1.0 T,

equilibrium electron density on magnetic axis ne0¼ 1012/cm3,

and equilibrium electron beta be¼ pe0

8pB2
0

¼ 0.00403. With the

realistic electron mass me¼ 1837mi, the electron skin depth

De¼ 0.0032 R0, and the qs¼ 0.0061 R0, we get the mode

structure of the single (2, 1) collisionless tearing mode from

GTC simulation and eigenvalue calculation shown in Figs. 1

and 2.

Fig. 1 shows the typical (2, 1) single tearing mode struc-

ture. The mode structure from GTC simulation agrees with

that from the eigenvalue calculation. Around the mode

rational surface of q¼ 2 at r¼ 0.045R0, there is a finite dAk,
and the singularity of ideal MHD is resolved by the finite

electron inertial. The corresponding 2D mode structures of

dAjj and d/ on the poloidal plane are shown in the left and

right panels in Fig. 2.

In order to resolve the diffusive scale length De of the

magnetic field, we use 300 grids in the minor radius domain

of [0.04a, a] in our simulation. For the simulation parameters

above, in which De¼ 0.0032R0, there are around 10 grid

points in each De in the minor radius direction. One can

achieve higher resolution by using more grids, which require

more computing resource. To reduce the minor radius grid

point, we have also tested the non-uniform grids to achieve

higher resolution on the mode rational surface where the

mode structure is steep. Using 150 grid points in minor ra-

dius direction, we have found the same mode structure and

growth rate as those with the uniform grids.

For the specific parameters above, the growth rate of

this (2, 1) single collisionless tearing mode from GTC simu-

lation is cgtc¼ 0.0001Xcp, which agrees well with the growth

FIG. 1. Comparison of radial mode structures of the (2, 1) collisionless tear-

ing mode from GTC simulation and 1D eigenvalue calculation in the cylin-

drical geometry.

FIG. 2. Poloidal mode structures of dAjj (left panel) and d/ (right panel) of

the (2, 1) collisionless tearing mode from GTC simulation in the cylindrical

geometry.
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rate from eigenvalue calculation ceig¼ 0.000098Xcp. We per-

form simulations with various De and find the scaling of the

growth rate on De shown in Fig. 3.

Fig. 3 shows that the dependence of the single (2, 1)

tearing mode growth rate c on the electron skin depth De. In

the small De regime, the growth rate approximately follows:

c/De
2, which agrees with the theoretic calculation

c ¼ D2
e

p jk0jjvtejD0o. Defining the inner region scale length as

xe ¼ j c
k0jjvte
j, one can find xe/De

2. The smaller De means

smaller inner region and better scale separation between the

inner and outer region. For the larger De, the inner region

becomes larger and the scaling of the growth rate on De devi-

ates from the theoretical prediction, which requires a large

scale separation between inner and outer regions.24

From the eigenvalue calculation using the finite-mass

electron model verified in the current work, the growth rate

of the (2, 1) single tearing modes as a function of De and �ei

is shown in Fig. 4. We can see that in the pink circle where

De is small and the collisional tearing mode dominates, the

growth rate of (2, 1) single tearing mode depends on g3/5.

While in the green circle where electron-ion collision is

weak, the collisionless tearing mode due to the finite electron

inertial dominates, the growth rate of (2, 1) single tearing

mode depends on De
2. The discussion above indicates that

with this electron fluid model, one can study both resistive

and collisionless tearing modes.

B. Fluid simulation of (2, 1) double collisionless
tearing mode

For the monotonous q profile above, the (2, 1) single

collisionless tearing mode grows slowly. While for a

reversed q profile, which might be relevant in the advanced

tokamak discharge, the two (2, 1) single tearing modes may

couple and result in a (2, 1) double tearing mode, which

grows faster than the (2, 1) single tearing mode. So for model

verification, we also simulate the (2, 1) double tearing mode.

Keeping the simulation parameters of the (2, 1) single

collisionless tearing mode, but applying the reversed q pro-

file shown in Fig. 5, we have investigated the (2, 1) double

tearing mode with GTC simulation and eigenvalue calcula-

tion, as shown in Figs. 5 and 6.

In Fig. 6, most of the mode structure of the (2, 1) double

tearing mode appears in the region [0.38a, 0.68a]. These two

FIG. 4. The dependence of the growth rate c of the (2, 1) single tearing

mode on the electron skin depth De and resistivity from eigenvalue

calculation.

FIG. 5. Reversed q profile for (2, 1) double collisionless tearing mode

simulation.

FIG. 6. Comparison of the radial mode structures of (2, 1) double collision-

less tearing mode from GTC simulation and 1D eigenvalue calculation in

the cylindrical geometry.

FIG. 3. The dependence of the growth rate c of (2, 1) collisionless tearing

mode on the electron skin depth De.
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points r1¼ 0.38a and r2¼ 0.68a are the positions of the q¼ 2

mode rational surfaces. This mode structure is the typical

double tearing mode structure. The 2D mode structures on

the poloidal plane are shown in Fig. 7. The radial profile of

the electrostatic potential of the double tearing mode is much

broader than that of the single tearing mode, which leads to a

much larger growth rate of the double tearing mode. For this

(2, 1) collisionless tearing mode, the growth rate from GTC

simulation is cgtc¼ 0.0040Xcp, which agrees well with the

growth rate from eigenvalue calculation ceig¼ 0.0039Xcp.

The dependence of the growth rate of the (2, 1) double

collisionless tearing mode on electron skin depth is shown in

Fig. 8.

In Fig. 8, the growth rate of this (2, 1) double collision-

less tearing mode in the limit of small De/R0 approximately

follows: c/De, which is different from that of the (2, 1) sin-

gle tearing mode. This scaling follows the calculation of

Coppi et al.41,42 Since the (2, 1) double tearing mode is a

global-type mode and the constant dAjj approximation in the

inner region does not hold, the scaling here is different from

the scaling of the (2, 1) single tearing mode. Instead, the

scaling here follows those of global-typed tearing modes,

such as the (1, 1) tearing mode.

IV. SUMMARY

A finite-mass electron fluid simulation model is imple-

mented in the GTC. The linear behaviors of both slowly

growing single and fast growing double (2, 1) collisionless

tearing modes have been verified. The good agreement

between GTC simulation and eigenvalue calculation demon-

strates the capability of simulating collisionless tearing mode

by GTC. Kinetic effects of thermal plasmas and energetic

ions on the tearing modes, nonlinear evolution of the tearing

mode, and nonlinear interaction between tearing mode and

other Alfv�en eigenmodes will be presented in future publica-

tions. The longer term plan for this work is to build a first-

principles model and self-consistently simulate the neoclassi-

cal tearing mode in the core and micro-tearing mode in the

pedestal of fusion plasmas.
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