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Global gyrokinetic particle simulation of resistive tearing modes has been developed and verified

in the gyrokinetic toroidal code (GTC). GTC linear simulations in the fluid limit of the kink-tearing

and resistive tearing modes in the cylindrical geometry agree well with the resistive magnetohydro-

dynamic eigenvalue and initial value codes. Ion kinetic effects are found to reduce the radial width

of the tearing modes. GTC simulations of the resistive tearing modes in the toroidal geometry find

that the toroidicity reduces the growth rates. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4905074]

I. BACKGROUND

Since the early 1960s, macroscopic tearing modes have

drawn widespread attention from plasma physicists in both

space and laboratory plasmas. In space plasmas, tearing

mode is considered to be the underlying mechanism for the

solar flare in the sun1 and the substorm in the earth magneto-

sphere.2,3 In laboratory plasmas, especially for magnetic

fusion plasmas, macroscopic tearing mode may cause the

sawtooth oscillations and induce disruptions in tokamak dis-

charge.4 Tearing mode is driven by plasma current and will

release the free energy of non-uniform magnetic field. In

fusion experiments, one can usually control the equilibrium

current profile to avoid the q¼ 1 rational surface, where the

parallel wave number kk¼ 0 for (m¼ 1, n¼ 1) mode; here, q

is the safety factor, m is the poloidal mode number, and n is

the toroidal mode number. In this way, the most dangerous

(1, 1) tearing mode can be avoided. However, other macro-

scopic tearing modes, for example, (2, 1) and (3, 2) modes,

could remain unstable. Even if the classical tearing modes

are stable, their neoclassical version, neoclassical tearing

modes, could still be unstable and pose a severe threat to the

plasma confinement. So the control of the tearing modes is

crucial to the future fusion experiment in ITER5 and need to

be carefully investigated.

The tearing mode has been studied in fusion plasmas for

several decades.6,7 However, important physics such as ki-

netic effects on the tearing mode remains as an unsolved

problem. The reason is that tearing mode is characterized

with both multi-spatial scale, which spans from electron skin

depth De to tokamak size, and multi-time scale, which varies

from plasma Alfv�en time sA to collisional dissipation time

1/�ei. Because of the multiscale nature, it is difficult to make

accurate theoretical analysis of the tearing mode. Theorists

typically separate the problem into two regions, an ideal

magnetohydrodynamic (MHD) region and an inner region,

where the non-ideal effects, such as plasma resistivity and

electron inertial,8,9 play the role as the releasing channel of

free magnetic energy. By matching the inner and outer solu-

tions, the method can provide an estimate of the dispersion

relation of the tearing mode.6 Some of the simulation work

of the tearing mode have been performed on large parallel

simulation codes, such as M3D10 and NIMROD.11 In these

codes, the background plasma is modeled as a resistive

MHD, and the energetic particles are simulated as guiding

centers. Indeed, using these codes, one can investigate the

fluid behavior of the tearing mode and study the kinetic

effects of energetic particles on the tearing mode.

In the high temperature tokamak discharge, kinetic

effects, such as orbital effects of both thermal and energetic

particles, will become important and affect the behavior of

the tearing mode. The time and spatial scales of particle

characteristic motion will give rise to more complexity in the

tearing mode study.12,13 To accurately predict the behavior

of the tearing mode in fusion plasmas, one needs to start

from the more realistic first-principles physics model in the

tokamak geometry, which is the motivation of this work. We

utilize the Gyrokinetic Toroidal Code (GTC),14,15 which has

been extensively applied to study neoclassical and turbulent

transport,16,17 energetic particles,18 and Alfv�en eigenmo-

des.19,20 The implementation of the equilibrium current21

enables simulation of current-driven instabilities in the toroi-

dal geometry with kinetic effects, such as the kink mode22

and the tearing mode in this paper.

To efficiently treat the electron dynamics in the simula-

tion of the ion scale turbulence, a fluid-kinetic hybrid elec-

tron model has been implemented in GTC,23 by assuming x/

kkvte� 1; here, x is the mode frequency of interest, kk is the

parallel wave number, and vte is the thermal speed of elec-

trons. It can efficiently simulate the low frequency MHD

modes in the lowest order massless fluid model, and calcu-

late the wave-electron interaction in the higher orders bya)E-mail: zhihongl@uci.edu
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solving the drift kinetic equation. In order to recover the tear-

ing mode, we need to resolve the singularity near the mode

rational surface via some non-ideal MHD effects, such as the

resistivity or finite electron inertia. In this paper, we will

focus on the classical tearing mode excited by the resistivity.

We first introduce a resistive electron fluid model that can

recover the classical tearing mode in Sec. II. We then verify

GTC simulation results of the classical tearing mode using

an eigenvalue code in cylinder in Sec. III. Finally, we incor-

porate ion kinetic effects on the tearing mode and extend the

simulation of the tearing mode to the realistic tokamak ge-

ometry in Sec. IV. GTC simulation of collisionless tearing

mode driven by the electron inertia has also been verified

and will be reported in a follow-up paper.

II. PHYSICS MODEL AND GEOMETRY

In the resistive tearing mode, the width of the perturbed

current layer increases with larger resistivity. In this work,

we assume that the resistivity is sufficiently large such that

the width of the current layer is much bigger than the elec-

tron gyroradius. The electron dynamics can, thus, be

described by the drift kinetic equation. In guiding center

coordinates (R, l, vk), time evolution of electron distribution

function fe follows:

d

dt
fe R; l; vjj; t
� � ¼ @

@t
þ _R � r þ _vjj

@

@vjj

 !
fe

¼ @

@t
fe

� �
collision

; (1)

where R is the position of electron guiding center, l and vk
are the magnetic moment and velocity along the magnetic

field of electron. Here, we will use the Krook collisional op-

erator @
@t fe

� �
collision

¼ ��ei fe � fe0ð Þ in the following deriva-

tion, where fe0 is the equilibrium distribution function of

electron. The drift velocity of electron guiding center, which

includes the parallel, electric, magnetic gradient, and curva-

ture drifts, reads

dR

dt
¼ vjj

B

B0

þ cb0 �r/
B0

þ
v2
jj

Xe
r� b0 þ

l
meXe

b0 �rB0:

(2)

The parallel acceleration due to the mirror force and the elec-

tric field is

dvjj
dt
¼ � 1

me

B�

B0

� lrB0 þ qer/ð Þ � qe

mec

@Ajj
@t

; (3)

where

B� ¼ B0 þ
B0

Xe
r� b0 þ dB: (4)

Here, R, vk, l, me, qe, and Xe denote guiding center position,

the parallel velocity, the magnetic moment, the mass, the

electric charge, and cyclotron frequency of the electron, and

B0, dB, /, and Ak denote the equilibrium magnetic field, the

perturbed magnetic field, the electrostatic potential, and par-

allel vector potential, respectively. b0 ¼ B0

B0
is the unit vector

of equilibrium magnetic field, c and t denote the light speed

and the time. Assuming there is no equilibrium electric field,

/ and Ak can be replaced by their perturbed part d/ and dAk,
respectively, then dB can be written as dB ¼ r� dAkb0

approximately. Assuming a shifted Maxwellian for the equi-

librium electron distribution function that satisfies the 0th

order electron drift kinetic equation, we can calculate the

moments of the drift kinetic equation order by order, and

derive the perturbed fluid continuity equation of electron21

@

@t
dne þ B0 � r

ne0dujje
B0

� �
þ B0dvE � r

ne0

B0

� �

� ne0 dv�e þ dvEð Þ � rB0

B0

þ dB � r
ne0ujje0

B0

� �

þ cr� B0

B2
0

� �rdpe

e
þ ne0rd/

� �

þ
�

dB � r
ne0dujje

B0

� �
þ B0dvE � r

dne

B0

� �

þ cr� B0

B2
0

� dnerd/

	
NL

¼ 0 (5)

and the parallel momentum equation

ne0me
@

@t
dujje þ ne0meujje0 � rdujjeb0

¼ �ne0e �rjjd/� 1

c

@dAjj
@t

� �

� dB

B0

� rpe0 �rjjdpe � ne0me�eidujje: (6)

Here, the total electron density ne, parallel flow uke, and pres-

sure pe are the sum of their equilibrium and perturbed parts,

i.e., ne ¼ ne0 þ dne, uke ¼ uke0 þ duke, and pe ¼ pe0 þ dpe.

In the ion frame, the current is carried by parallel electron

flow. We ignore the ion flow in this work, i.e., the simulation

is performed in the plasma frame ignoring the flow shear

effects. Then, the equilibrium Ampère law can be written

approximately as

ne0qeujje0 � Jjj0 ¼
4p
c
r� B0ð Þjj: (7)

To close the system of the fluid equation, we use the isother-

mal electron model, i.e., Te¼ constant, pe ¼ neTe, then

dpe ¼ dneTe þ dr � rðne0TeÞ; (8)

where dr is the displacement of the fluid elements. One can

also apply a more rigorous energy equation for electron, but

needs to calculate the higher order moment from the electron

drift kinetic equation.15 Since we are focusing on resistive

tearing mode in this work, we will neglect the electron iner-

tial term, which will be discussed in the follow-up paper on

collisionless tearing mode. Then, we can use the massless

electron momentum equation to evolve the parallel vector

potential as
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@

@t
dAjj ¼ �cb0 � rd/þ c

ne0e
b0 � rdpe

þ c

ne0e

dB

B0

� rpe0 þ
mec

e
�eidujje: (9)

The electrostatic potential is calculated from the gyrokinetic

Poisson’s equation24

4pZ2
i

Ti
d/� d~/
� �

¼ 4p Zidni � edneð Þ: (10)

Here, the left-hand-size of Eq. (10) represents the ion polar-

ization density and d~/ is the second gyrophase-averaged

potential as defined in Ref. 24.

The electron flow is calculated from the parallel

Ampère’s Law

dujje ¼
c

4pene0

r2
?dAjj þ

Zini0

ene0

dujji: (11)

In these equations, the ion guiding center density ni and cur-

rent uki can be calculated from the standard gyrokinetic

model.25

The fluid electrons (5), (8), (9) and the gyrokinetic ions are

coupled through the gyrokinetic Poisson’s equation (10) and

Ampère’s law (11). These equations form a closed system,

which can simulate the low frequency electromagnetic MHD

waves and the interactions between these modes and particles.

As the first step to investigate the tearing mode, we need

to recover the MHD behavior of the tearing mode via the

resistive fluid part of this model and verify the new capability

of GTC. Then, we will study kinetic ion effects on tearing

mode with the gyrokinetic ions. We will use magnetic flux

coordinates (W, h, f) convenient for tokamak, where W is the

poloidal magnetic flux, h and f are, respectively, poloidal and

toroidal angles. Using this coordinate system, the equilibrium

magnetic field26 can be represented as either covariant form

B0 ¼ drWþ Irhþ grf (12)

or contravariant form

B0 ¼ qrW�rh�rW�rf; (13)

and the Jacobian is

J�1 ¼ rW � rh�rfð Þ ¼ B2
0

gqþ I
: (14)

III. CYLINDRICAL GEOMETRY SIMULATION

A. 1D model for kink mode and resistive tearing mode

The low-mode-number tearing modes, such as, (1, 1)

and (2, 1) tearing modes are very dangerous macroscopic

MHD instabilities in tokamak discharge. We will focus on

these two modes in the following discussions. To verify the

capability of GTC for tearing mode simulation, we have

developed a simple 1D (in minor radius direction) initial

value code and an eigenvalue code using resistive MHD in

the cylindrical geometry.

Applying an initial perturbation: dAjj ¼ dÂjjðWÞ
cos ðmh� nfÞ, and calculating the m and n harmonics of per-

turbed quantities, we can get a simplified one-dimensional

model.21 Expending the ~/ with the modified Bessel function

and neglecting the gyrokinetic ion contribution, the gyroki-

netic Poisson’s equation (10) in the long wave length limit

approximation q2
ir2
? � 1 becomes

q2
s

k2
De

r2
?d/ ¼ �4pdneqe: (15)

Here, qs is the ion gyroradius defined using ion sound wave

speed and kDe is the electron Debye length.

For simplicity, we will consider the uniform equilibrium

pressure and keep the equilibrium current driven term for

tearing mode. As electrons E� B drift cancels with that of

ions, the electron continuity equation can be simplified to

@dne

@t
þ B0 � r

ne0dujje
B0

� �
þ dB � r

ne0ujje0

B0

� �
¼ 0: (16)

Together with the massless electron parallel momentum

equation

@dAjj
@t
¼ �cb0 � rd/þ c

ne0e
b0 � rdpe þ

mec

e
�eidujje (17)

and parallel Ampère’s law

dujje ¼
c

4pene0

r2
?dAjj; (18)

where r2
? ¼ 1=rð@ðr@=@rÞ � m2=r2Þ, rjj ¼ ðn� m=qÞBT=

RB0, and dB ¼ r� dAkb0. Using this 1D model, an initial

value code and an eigenvalue code have been developed.

Before the simulation of tearing mode, we reproduced (1, 1)

kink mode in the cylindrical geometry, which has already

been studied via gyrokinetic simulation.22,27,28

B. GTC simulation in fluid limit

The (1, 1) tearing mode is also called the kink-tearing

mode because of the strong coupling between the kink mode

FIG. 1. Radial mode structures of (1, 1) kink mode from both GTC simula-

tion and eigenvalue calculation in the cylindrical geometry. The position of

the mode rational surface q¼ 1 is at r/R0¼ 0.25.
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and the tearing mode. The resistivity can increases the

growth rate of the (1, 1) ideal kink mode. We use a q profile,

q ¼ 0:8þ 3:2ðr=R0Þ2, where r is the minor radius. The other

simulation parameters are: inverse aspect ratio e¼ a/

R0¼ 0.5, major radius R0¼ 100 cm, magnetic field

B0¼ 10 000G, equilibrium electron density on magnetic axis

ne0¼ 1014/cm3, and equilibrium electron beta

be¼ pe0=ð8pB2
0Þ¼ 0.004. Note that the position of q¼ 1

mode rational surface is r¼ 0.25R0. For ideal MHD, in

which @dAjj=@t ¼ �cb0 � rd/, we get the ideal kink mode

structures in Fig. 1.

In Fig. 1, the red and blue curves are the radial mode

structures of dAk and d/, respectively. The radius mode

structures are measured at h¼ 0 and each of the curves is

normalized to their maximum values, since the absolute val-

ues of the mode amplitudes are not important in the linear

simulations. The growth rate of eigenvalue method ceig and

growth rate of GTC cgtc equal to 0.043xA and 0.038xA,

respectively. Because of the ideal MHD approximation, the

mode structure of dAk is always 0 and d/ is steep on the

mode rational surface with q¼ 1 (i.e., r/R0¼ 0.25), which

are consistent with the typical mode structures of (1, 1) kink

mode.22,27

When the equilibrium current profile satisfies the criteria

D0> 0, the classical tearing mode is unstable. Here, D0 is

defined as the logarithmic jump of the perturbed magnetic

flux in the outer ideal MHD region.6,11

D0 ¼ ½@dwðrs þ drÞ=@r � @dwðrs þ drÞ=@r�=dwðrsÞ; here, rs

is the radius position of rational surface, and dr is the width

of the inner resistive region. The (1, 1) ideal kink mode is a

typical ideal MHD mode driven by equilibrium current.

When the resistivity is considered in the electron parallel

momentum equation, Eq. (9), (1, 1) kink mode will appear as

the kink-tearing mode.

Due to the finite resistivity, there will be finite parallel

electric field on the mode rational surface where kkðrÞ ¼ 0.

In contrast to the ideal MHD kink mode, the parallel induc-

tive vector potential dAk is not zero on the mode rational sur-

face, which can be seen in Fig. 2 for the �ei¼ 0.02Xp

kink-tearing case. The finite dAk induces the finite dBr on the

rational surface, which reconnects the field line and tears the

magnetic surface. Because the finite resistivity will resolve

the singularity of ideal MHD, the mode structure of the tear-

ing mode will be broader near the mode rational surface,

which can also be seen in Fig. 2, compared with the mode

structure of the ideal kink mode. The half width of the per-

turbed current for the tearing mode is about 0.1R0, which is

much larger than the thermal ion gyroradius 0.0022R0 for the

above parameters. In Fig. 3, the left and right panels are the

(1, 1) kink-tearing mode structures of dAjj and d/. They are

typical (1, 1) kink-tearing mode structure and show poloidal

symmetry in cylinder simulation. For the specific

�ei¼ 0.02Xp case, the growth rate of tearing mode from ei-

gen value, GTC and 1D initial value are ceig¼ 0.074 xA,

FIG. 2. Comparison of the radial mode

structures between (1, 1) ideal kink

and kink-tearing mode from GTC sim-

ulation (-gtc represents GTC results),

1D eigenvalue (-eigen represents

eigenvalue results), and initial value (-

1D represents initial value results) cal-

culations in the cylindrical geometry

with the mode rational surface of q¼ 1

at r¼ 0.25R0. Panel (a) is for parallel

vector potential and panel (b) is for

electron current perturbation.

FIG. 3. Poloidal contour plots of dAjj (panel (a)) and d/ (panel (b)) mode

structure of (1, 1) kink-tearing mode from GTC simulation in the cylindrical

geometry.

FIG. 4. Comparison of the mode struc-

tures of (2, 1) tearing mode from GTC

simulation and 1D eigenvalue calcula-

tion in the cylindrical geometry. The

position of mode rational surface q¼ 2

is at r/R0¼ 0.343.
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cgtc¼ 0.066xA, and cinit¼ 0.074xA. Although the growth

rate of (1, 1) kink-tearing mode is larger than the pure kink

mode, the growth rate of the (1, 1) tearing mode is still domi-

nated by the kink mode.

Furth et al.6 have predicted theoretically that the growth

rate c depends on g3/5 for a pure tearing mode. To verify the

GTC capability of the tearing mode simulation, one needs to

recover this prediction for the pure tearing mode. Since the

(2, 1) kink mode is always stable when g¼ 0, we investigate

the (2, 1) tearing mode behavior in the cylinder with

q ¼ 1:6155� 0:327r=R0 þ 4:232ðr=R0Þ2, e¼ 0.58, and all

other simulation parameters same as those of the above (1,

1) mode simulation. For a specific �ei¼ 0.001Xp, the (2, 1)

tearing mode structures are shown in Fig. 4.

In Fig. 4, the solid lines and dotted lines are the radial

mode structures from eigenvalue calculation and GTC simu-

lation, respectively. All these mode structures are typical (2,

1) tearing mode structure7,29,30 and the growth rate from

GTC and eigenvalue method are ceig¼ 0.0050xA and

cgtc¼ 0.0043xA, respectively. In GTC simulation, the poloi-

dal mode structures of both dAjj and d/ are typical (2, 1)

tearing mode structure as shown in Fig. 5.

In Figs. 4 and 5, the GTC simulations have accurately

recovered the (2, 1) tearing mode structures. The growth rate

dependence of (2, 1) tearing mode on resistivity agrees well

with the theoretical prediction as in Fig. 6.

It can be seen that the simulation result is consistent

with the theoretical prediction when the resistivity is small.

Small resistivity indicates large time scale separation

between the tearing mode growth time 1/c and the dissipa-

tion time 1/�ei. With this time scale separation, theoretical

prediction works properly. However, for the excessively la-

ger resistivity, the modes will also gradually be damped by

the collisional dissipation and the growth rate scaling devi-

ates from the g3/5 dependence.

C. Gyrokinetic simulations

One of the important issues for tearing modes, which

has not been adequately addressed in fusion plasmas, is the

thermal ions kinetic effects. Calculating the integral of per-

turbed distribution function of gyrokinetic ions, we can get

the charge and current density of thermal ions. Then, substi-

tute them into the Poisson’s equation and parallel Ampère’s

Law, we can study the thermal ion kinetic effects on the tear-

ing mode. Using the same parameters as those in the fluid

simulations with Ti¼ Te¼ 500 ev and be¼ 0.004, but treat-

ing thermal ions as gyrokinetic or drift kinetic, we simulate

the (1, 1) kink-tearing mode using �ei¼ 0.02Xp and (2, 1)

tearing mode using �ei¼ 0.001Xp. The mode structures and

growth rates are shown in Fig. 7 and Table I for the (1, 1)

kink-tearing mode and in Fig. 8 and Table II for the (2, 1)

tearing mode.

The growth rate of the tearing mode decreases for both

drift kinetic and gyrokinetic ions. The finite Larmor radius

(FLR) effects of thermal ions will not affect the growth rate

of the tearing mode for these simulation parameters. When

kinetic thermal ions are considered in the simulation, ion

acoustic wave will be excited and carry parts of the total free

energy away from the tearing mode. As a consequence, the

drive of tearing mode is weakened.30 Moreover, the d/
mode structures of both (1, 1) and (2, 1) modes become

FIG. 5. Poloidal contour plots of dAjj (panel (a)) and d/ (panel (b)) mode

structure of (2, 1) tearing mode from GTC simulation in the cylindrical

geometry.

FIG. 6. The dependence of the (2, 1) tearing mode growth rate c on the resis-

tivity g.

FIG. 7. The mode structures of (1, 1)

kink-tearing mode in the cylindrical

geometry from GTC simulations with

different thermal ions: fluid ion

(iMHD), drift kinetic ions (DKI), and

gyrokinetic ions (GKI).
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narrower than those of the fluid simulations as shown in

Figs. 7 and 8. The reduction of the mode width and the

growth rate are consistent, and probably due to the interac-

tion between ions and tearing mode since the wave-particle

interaction could become important at the edge of the mode

envelop, i.e., r	 0.29R0 and r
 0.4R0, where vti
 c/kk.
Nonetheless, the mechanisms for the reduction of the growth

rate by the kinetic ion effects need to be studied further.

IV. TOROIDAL GEOMETRY SIMULATION

GTC can simulate fusion plasmas in general tokamak

geometry. Implementing our resistive fluid model in the

tokamak geometry, we can investigate the behavior of tear-

ing mode in the realistic tokamak geometry. As a verification

of the code capability, we use the simplest concentric toka-

mak for the fluid simulation of the (2, 1) resistive tearing

mode. Using the same parameter as those of the cylindrical

geometry and keeping the toroidal magnetic field curvature

and gradient, we obtain the mode structure of the (2, 1) tear-

ing mode in Fig. 9 from the tokamak simulations.

The growth rate of the (2, 1) tearing mode is lower in

the tokamak than that in the cylinder. For example, when

�ei¼ 0.001Xp, the growth rate of (2, 1) tearing mode is

0.0028xA in torus verse 0.00365xA in cylinder. The reduced

growth rate in the toroidal geometry is probably due to the

favorable average curvature,31 Fig. 10 shows that mode

structure of (2, 1) tearing mode in the toroidal geometry has

a typical in-out asymmetry, which is the result of the in-out

asymmetry of the toroidal magnetic field line.

V. DISCUSSION

Gyrokinetic simulation of resistive tearing modes has

been developed and verified in the GTC. GTC linear simula-

tions in the fluid limit of the kink-tearing and resistive tear-

ing modes in the cylindrical geometry agree well with the

one-dimensional resistive magnetohydrodynamic eigenvalue

and initial value codes. Ion kinetic effects are found to

reduce the radial width and growth rate of the tearing modes.

GTC simulations of the resistive tearing modes in the toroi-

dal geometry find that the toroidicity reduces the growth

rates. In the future work, gyrokinetic simulation of the resis-

tive tearing modes will be extended to the nonlinear regime.

By treating the tearing mode physics, neoclassical transport,

and microturbulence on the same footing, the global gyroki-

netic capability developed in this work will be applied in the

future work to first-principles simulations of neoclassical

tearing modes, which limit the performance of the burning

plasmas such as ITER experiments.

TABLE I. Growth rate of (1, 1) kink-tearing mode with different thermal

ions from GTC simulations in the cylindrical geometry.

Resistive MHD Fluid ion DKI GKI

0.060xA 0.061xA 0.0467xA 0.0467xA

FIG. 8. The mode structures of (2, 1)

tearing mode in the cylindrical geome-

try from GTC simulation with fluid,

drift kinetic ions, and gyrokinetic ions.

TABLE II. Growth rate of (2, 1) tearing mode with different thermal ions

from GTC simulations in the cylindrical geometry.

Resistive MHD Fluid ion DKI GKI

0.0086xA 0.0098xA 0.002xA 0.0022xA

FIG. 9. Comparison of radial mode structure of dAjj and d/ from GTC fluid

simulations in cylindrical and toroidal geometry. The position of mode

rational surface q¼ 2 is at r/R0¼ 0.343.

FIG. 10. Poloidal mode structures of dAjj (panel (a)) and d/ (panel (b)) of

(2, 1) tearing mode from GTC fluid simulation in tokamak geometry.
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