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The effects of the electron cyclotron current drive on magnetic islands in tokamak plasmas are

studied using gyrokinetic simulations. By investigating the effects of different characteristics of the

driven current, such as current density distribution and deposition location, the factors which can

determine the suppression effect on the resistive tearing modes have been explored. It is found that

an electron cyclotron wave (ECW) driven current with a larger peak value and more focused

deposition region has a better stabilization effect. When the ECW-driven current is closer to the

rational surface, it has a better stabilizing effect. These gyrokinetic toroidal code (GTC) linear sim-

ulations in the electron fluid limit of the tearing modes in the cylindrical geometry agree well with

the magnetohydrodynamic codes. Furthermore, the optimal timing control of the current deposition

on resistive tearing modes is demonstrated. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4996021]

I. INTRODUCTION

Tearing modes are one of the major causes of degrada-

tion of plasma stability and confinement in tokamaks. They

are non-ideal, resonant magnetohydrodynamic (MHD) insta-

bilities, localized around rational flux surfaces. The modes

may lead to violent disruptions when they grow non-linearly

in size,1,2 a particularly dangerous phenomenon for a high

current tokamak reactor. In particular, neoclassical tearing

modes (NTMs),3,4 a special class of tearing modes, can be

triggered by magnetic perturbations, and are expected to

limit the plasma pressure well below that predicted by ideal

MHD stability. Therefore, tearing modes and their suppres-

sion have become one of the vital issues which should be

resolved for the stable operation of tokamaks.

So far, several methods for the mitigation and control of

tearing modes have been implemented in the existing experi-

ments,5 the most successful method being the use of an

external current drive to suppress the magnetic islands.

Electron cyclotron current drive (ECCD) is one of the ways

of the external current drive. Since it can be highly localized

and robustly controlled, ECCD is considered an effective

means of controlling the tearing modes.6–8 The experimental

results of various devices have successfully demonstrated

the stabilizing effect.9–11 Especially, it has been shown that

total stabilization of neoclassical tearing modes is possible

with co-ECCD in ASDEX Upgrade Tokamak.12 Active feed-

back control has also been used to locate islands and drive

time-modulated currents as the island rotates.13

Theoretically, a generalized Rutherford equation has been

used to investigate the influence of the localized current

drive.14–16 Meanwhile, several MHD codes have been devel-

oped to study the ECCD suppression of NTM.17–19 It was

found that NTM is stabilized by a continuous radio frequency

(RF) current drive, and the modulated RF current drive that

deposits the RF current around the island O-point has a stronger

stabilizing effect than a non-modulated one. Nonetheless, some

important physics such as kinetic effects on the tearing mode

remains an unsolved problem. In high temperature plasmas,

kinetic effects, such as orbital effects of both thermal and ener-

getic particles, will play an important role and affect the behav-

ior of the tearing mode.20,21 To accurately predict the behavior

of the tearing mode, more realistic first-principles physics mod-

els in the tokamak geometry should be used. In this work, we

perform kinetic simulations of the tearing mode by using the

gyrokinetic toroidal code (GTC),22,23 which has been exten-

sively applied to study neoclassical transport,24 energetic parti-

cle transport,25 microturbulence,26,27 Alfvén eigenmodes,28,29

kink modes,30 and tearing modes.31 The effects of the localized

current drive on the resistive tearing modes (RTMs) have been

explored in the GTC simulations.

The remainder of this paper is organized as follows. The

physics simulation model of RTM suppression by ECCD is

introduced in Sec. II. The driven current characteristics and its

mechanism for controlling the magnetic island are presented

in Sec. III. Finally, brief conclusions are drawn in Sec. IV.

II. PHYSICS SIMULATION MODEL

The physics model for the simulation of ECCD stabili-

zation in GTC is formulated as follows. For the resistive

tearing mode, the electron dynamics can be described by the

drift kinetic equation. The time evolution of the electron dis-

tribution function fe reads:

d

dt
fe X; l; vjj; t
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Here, X; l; vjj is the electron guiding-center position, the mag-

netic moment and the parallel velocity. A Krook collisional

operator, ð@@t feÞcollsion ¼ gðfe � fe0Þ, is used, where fe0 is the

equilibrium distribution function of the electron. me and Xe

are the electron mass and the cyclotron frequency, and

B� ¼ B0 þ
B0vjj
Xe

r� b0 þ dB: (4)

B0; dB;/;Ajj denote the equilibrium magnetic field, the per-

turbed magnetic field, the electrostatic potential, and the par-

allel vector potential, respectively. b0 ¼ B0=B0 is the unit

vector of the equilibrium magnetic field. The equilibrium

magnetic field is much larger than the island magnetic field,

B0 � dB. Assuming that there is no equilibrium electric

field, and /;Ajj can be written as their perturbed part,

d/; dAjj, and dB ¼ r� dAjjb0. We use the toroidal magnetic

coordinate system ðw; h; fÞ, where w is the poloidal magnetic

flux function, h is the poloidal angle, and f is the toroidal

angle. The equilibrium magnetic field can be represented as

the covariant form32

B0 ¼ drWþ Irhþ grf; (5)

or the contravariant form

B0 ¼ qrW�rh�rW�rf; (6)

and the Jacobian is

J�1 ¼ rW � rh�rfð Þ ¼ B2
0

gqþ Iq
: (7)

Assuming a shifted Maxwellian for the equilibrium

electron distribution function that satisfies the 0th order

electron drift kinetic equation, we can derive the perturbed

fluid continuity equation using the electron drift kinetic

Eqs. (1)–(3)

@

@t
dne ¼ �B0 � r

ne0dujje
B0

� �
� dB � r ne0ujje0

B0

� �
; (8)

where ujje¼ ujje0þdujje, the parallel flow is defined as the

fluid moments of the corresponding distribution functions,

naujja ¼
Ð
dvvjjfa; na ¼

Ð
dvfa; here, the index a¼e, i stands

for the particle species electron or ion, and the massless elec-

tron momentum equation is

@dAjj
@t

¼ �cb0 � rjjd/þ c

ne0e
b0 � rdpe þ gne0edujje: (9)

To close the system of the fluid equation, we use the iso-

thermal electron model, i.e., Te¼constant, pe¼ neTe,
then,

dpe ¼ dneTe þ dr � rðne0TeÞ: (10)

The ions are described by the standard gyrokinetic

equation23

d
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fi X; l; vjj; t
� � ¼ @

@t
þ _X � r þ _vjj

@

@vjj

" #
fi ¼ @

@t
fi

� �
collision

;

(11)

_X ¼ vjj
B

B0

þ cb0 �r/
B0

þ
v2jj
Xi

r� b0 þ l
miXi

b0 �rB0;

(12)

_vjj ¼ � 1

mi

B�

B0

� lrB0 þ qir/ð Þ � q

mic

@Ajj
@t

; (13)

mi and Xi are the ion mass and the cyclotron frequency, B� for
ions have the same form as Eq. (4), in which the electron cyclo-

tron frequency is replaced by the ion cyclotron frequency. The

collision operator ð@@t fiÞcollision has been implemented in GTC.

However, like Ref. 23, we will omit it in this work.

The electrostatic potential / is calculated from the gyro-

kinetic Poisson equation23

4pZ2
i

Ti
d/� d~/
� �

¼ 4p Zidni � edneð Þ: (14)

The electron flow dujje is calculated from the parallel

Ampere law

dujje ¼ c

4pene0
r2

?dAjj þ Zini0
ene0

dujji: (15)

The guiding center density of ion ni and current ujji can be

calculated from the standard gyrokinetic model.25 The fluid

electrons (8)–(10) and the gyrokinetic ions are coupled

through the gyrokinetic Poisson equation (14) and Ampere’s

law (15). These equations form a closed system, which can

simulate the low frequency MHD instabilities.

During the ECCD/MHD interaction processes, the

momentum transfer rate from the RF field to the electron,

Frf
e , could be calculated as Eq. (A4) in Ref. 33

Frf
e ¼

ð
mevQðfeÞd3v: (16)

Here, QðfeÞ is the quasilinear operator, which contains the

physics process that electrons are affected by the quasilinear

diffusion due to the RF injection. The fluid equation which

includes the Frf
e term could give a formalism for modeling

the RF-induced ponderomotive force on electrons.

Therefore, we incorporate the RF effects by simply adding

this term to the electron momentum equation:

@dAjj
@t

¼�cb0 �rjjd/þ c

ne0e
b0 �rdpeþg

c

4p
r2

?dAjj � Frf
e

njqej :
(17)

We assume that electrons E�B drift cancels with that of

ions and neglect the second term of the right hand side of

Eq. (15). The term in Eq. (17) is written as:
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Frf
e

njqej ¼ � gkBf r; tð Þ
l0

: (18)

Here, k has a unit of the inverse length and is associated with

the ECCD amplitude, and

f r; tð Þ ¼ exp � r � r0ð Þ2
W2

rf

 !Y
n0;DnECð Þ

� 1

2
tanh

t� t0
tp

� �
þ tanh

t0
tp

� �� �
; (19)

where Wrf denotes the characteristic width, r0 is the central

RF deposition point, and
Qðn0;DnECÞ is a square box func-

tion for taking into account the wave deposition profile along

the helical angle. We define
Qðn0;DnECÞ ¼ 1 for

non < n0 < noff , and
Qðn0;DnECÞ ¼ 0 elsewhere. In our cal-

culations, we set non ¼ �p; noff ¼ p, namely, the fast elec-

tron source rotates along all the helical angle corresponding

to a continuous ECCD in time, and we call this case the non-

modulated current drive or continuous current drive.34 Here,

t0 is an offset time. tp is the time scale, tp�sR, where

sR¼ a2l0=g is the plasma resistive time scale. In this paper,

we solve the Eqs. (8)–(15) in the GTC framework, and get

the d/; dAjj, as well as the magnetic flux, to study the evolu-

tion of a magnetic island. The effect of ECCD on the mag-

netic island is implemented by adding Eqs. (17)–(19). Thus,

a resistive electron fluid model is used here, and only the

thermal ion is treated as gyrokinetic. Although Alfvén

eigenmodes exist in our model, they are stable in our RTM

simulations. Note that since the electron fluid equations are

based on the drift kinetic equation, our calculations assume

that the resistivity is sufficiently large, so that the width of

the current layer is much bigger than the electron gyroradius,

however, the fundamental condition for gyrokinetic descrip-

tion is satisfied, i.e., x
X � kjj

k?
� dB

B0
� e/

T � e�1, where x; kjj
and k? are the typical frequency, parallel and perpendicular

wave numbers of the instability of interest and X is the ion

cyclotron frequency.

The gyrokinetic particle simulation uses the particle-in-cell

(PIC) method to solve the gyrokinetic equation. In order to mini-

mize the Monte-Carlo noise caused by the PIC method, the so-

called df scheme is introduced.35 We define df¼ f �f0, where f
is the time-evolving distribution function of the system and f0 is
the equilibrium distribution function, which remains fixed and

includes the initial density and temperature profiles. Then, the

gyrokinetic equation can be rewritten, so that df/f is now evolv-

ing in time rather than the full f. This scheme greatly reduces the

statistical fluctuations in the calculations. Moreover, a finite ele-

ment method (FEM)36 is used to solve the gyrokinetic Poisson

equation; this method is efficient for the non-adiabatic electron

response, for both the electrostatic and electromagnetic simula-

tions, and is suitable for dealing with complicated geometries.

We have a load of 1000000 ions for the kinetic calculation. In

order to solve the fluid equations, a Runge-Kutta method of sec-

ond order is used in the time domain and a finite element tech-

nique is also adopted in the space domain. Thus, the second-

order accuracy is retained in the fluid part of the simulations.

The time step size is 1.04� 10�8 s (1N). Since our calculation

is linear, the growth rate of resistive tearing modes becomes

constant after 1000 steps. Therefore, 1000 time steps are calcu-

lated in our simulations.

III. SIMULATION RESULTS

We investigate the (m/n¼ 2/1) resistive tearing mode

behavior in the cylinder with q¼ 1.6155–0.327r/R0þ4.232(r/

R0)
2. The other simulation parameters are: the inverse aspect

ratio e¼ r/R0¼ 0.349 at the rational surface with q¼ 2/1, the

major radius R0¼ 100 cm, the magnetic field B0¼ 1 T, the

equilibrium electron density on the magnetic axis ne0¼ 1014/

cm3, the plasma temperature Ti ¼Te¼ 100 eV, the plasma

resistivity g ¼ 4:0� 10�5X=m, the electron beta be¼ 0.004,

the magnetic Reynolds number Rm ¼ 0:8� 106, with the ini-

tial island width of 0.1a, and the shape of the initial field per-

turbation given as �2.632� 10�3 (r/R0)
2(1-r/R0)

2, and the

equilibrium safety factor profile is shown in Fig. 1. Figure 2

shows the mode structures of the parallel vector potential

dAjj and the electrostatic potential d/ on the poloidal plane.

In order to verify the GTC capability of the resistive tearing

mode simulation, we calculate the radial mode structures

with a 1D eigenvalue code and a GTC code with the same

input parameter. The results are shown in Fig. 3, which dem-

onstrates that the GTC fluid simulation result agrees well

with the eigenvalue result. Therefore, Figs. 2 and 3 have

accurately recovered the (2, 1) resistive tearing mode

structures.

FIG. 1. The safety factor q as a function of minor radius.

FIG. 2. Mode structures of (a) dAjj and d/ (b) from GTC simulation of the

(2,1) resistive tearing mode in the cylindrical geometry.
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A. Effect of driven current amplitudes

In order to study the effect of driven current on RTM sta-

bilization, we change the amplitude of the electron cyclotron

wave (ECW) driven current with all other parameters being

held constant and Wrf ¼ 0:06a. Figure 4 gives the ECW-

driven current density profiles with various peak values. The

simulation results are depicted in Fig. 5. It is demonstrated

that the m/n¼ 2/1 magnetic island width at the time step

t¼ 1000N decreases as Icd increases. For a larger Icd (Icd is

approximately at 0.04I, where I is the initial toroidal current),
the island width even goes to zero and the magnetic island dis-

appears. We conclude that a larger magnitude of the driven

current results in a better suppression and a smaller magnetic

island width. This is consistent with the MHD simulations.18

The island width becomes smaller when ECCD is injected,

indicating that the new current density has the stabilization

effect, and thus decreases the growth of the island width, even

leading to the disappearance of the magnetic island.

B. Effect of deposition profiles

As shown in Eq. (16), a current with a Gaussian distribu-

tion is driven by ECW. The stabilization effect depends not

only on the current magnitude but also on the deposition

width. Thus, it is necessary to study the effect of the deposi-

tion region on the RTM suppression. Figure 6 shows the pro-

file of f(r) and the magnetic island width at t¼ 1000N versus

various Wrf.values: Wrf¼ 0.06a, 0.10a, 0.14a, 0.16a, 0.18a,

and with Icd ¼ 0:04I. Fig. 6 shows that the island width

increases with Wrf, which means that the stabilizing effect

decreases for a larger Wrf . The island width has been reduced

to zero when the Wrf is set as sufficiently small. This result is

slightly different from Yu’ s study,18 where the island width is

not zero. The results indicate that more concentrated ECW-

driven current has a better suppression effect. So, for the

RTM stabilization, the toroidal injection angle for ECW

should be as small as possible in order to get a more localized

current profile for a better suppression efficiency.

Due to technical limitations in experiments, it is usually

very hard to deposit the ECW-driven current just on the

rational surface. So, it is necessary to investigate the depen-

dence of the stabilizing effect on the radial deposition posi-

tion. Figure 7 shows the relationship between the magnetic

island width at t¼ 1000N and the normalized radial

FIG. 3. Comparison of the radial mode structure of the (2, 1) resistive tear-

ing mode between GTC fluid simulation and fluid eigenvalue calculation in

the cylindrical geometry.

FIG. 4. The ECW-driven current density with different peak values.

FIG. 5. The magnetic island sizes for different peak values of the current

drive: (a) Icd ¼ 0, (b) Icd ¼ 0:01I, (c) Icd ¼ 0:02I, and (d) Icd ¼ 0:04I.

FIG. 6. (a) The profile of f(r), (b) the magnetic island width versus various

Wrf values.
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deposition position of the ECW-driven current. Here,

Wrf ¼ 0:16a and other parameters are the same as in Fig. 6.

It is shown that when the ECW-driven current is closer to

the rational surface, the stabilizing effect is better.

From these simulations, we can see that the value of cur-

rent density at the rational surface is the key to the stabilizing

resistive tearing mode. Therefore, the ratio of the ECW-

driven current density and the plasma current density,

gRTM¼ JEC/JP, at the rational surface, can be used as a figure

of merit for RTM stabilization. A higher value of gRTM,
namely, higher driven current density and narrower driven

current density profiles, can enhance the suppression effect.

With this figure of merit, criteria for the suppression of resis-

tive tearing modes can be obtained theoretically according to

a specific tokamak configuration.37 It is usually necessary to

analyze this criterion, so as to achieve the RTM suppression

capacity and propose an optimized construction plan before

the installation of the ECW system on tokamaks.

C. Effect of the initial time of deposition

We now study the effect of injection time of the ECW-

driven current on the RTM stabilization. Figure 8 shows the

profile of f(r) with different t0 values in Eq. (19), (b) the

magnetic island width at t¼ 800N versus various t0 values,

where Icd ¼ 0:05I and tp ¼ 250N.
We can see that the magnetic island width changes little

when the t0 is increased, which means that the effects of the

initial time of deposition on the linearly growing islands are

minimal in our simulations.

Our results are different from those obtained in Ref. 38,

which shows that the stabilization efficiency is better when

the current deposition starts at the early phase of resistive tear-

ing mode growth. The reason for this difference may be due

to the different ECW-driven current formats we used. From 8

(a), we can see that in order to keep the total current injected

into the plasma unchanged, the peak of the profile when t0¼ 0

is lower than in the other case, thus, the magnetic island width

is almost unchanged with different t0 values. However, in

Ref. 38, the calculations just push forward the initial time of

deposition. Therefore, we can conclude that the current depo-

sition that begins at an earlier time does not enhance the

suppression efficiency, but the deposition duration should be

important to stabilize the resistive tearing mode.

IV. CONCLUSIONS

The effects of the electron cyclotron current drive on

magnetic islands in tokamak plasmas are studied using gyro-

kinetic simulations. By investigating the effects of different

characteristics of the driven current, such as density distri-

bution and deposition location, the factors which can deter-

mine the suppression effect on the resistive tearing modes

have been explored. It is found that an electron cyclotron

wave driven current with a larger peak value and a more

focused deposition region has a better stabilization effect.

When the ECW-driven current is closer to the rational sur-

face, the stabilizing effect is better. These GTC linear simu-

lations in the fluid electron limit of the resistive tearing

modes in the cylindrical geometry agree well with the mag-

netohydrodynamic codes. Furthermore, the optimal timing

control of the current deposition on resistive tearing modes

is studied. It is found that the effects of the initial time of

deposition on the linearly growing islands are minimal in

our simulations. The current deposition that begins at an

earlier time does not enhance the suppression efficiency;

however, the deposition duration should be important to

resistive tearing mode stabilization. Our work will contrib-

ute to the development of more comprehensive and precise

models for the ECCD-based mitigation and control of neo-

classical tearing modes.
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2G. Giruzzi, M. Zabiégo, H. Zohm, S. Bernabei, and F. Paoletti, “Review

of tearing mode stabilization by RF power in tokamaks,” AIP Conf.

Proceedings 485(1), 35–44 (1999).
3C. C. Hegna, Phys. Plasmas 5, 1767 (1998).
4R. J. La Haye, Phys. Plasmas 13, 055501 (2006).
5A. Isayama, Y. Kamada, N. Hayashi, T. Suzuki, T. Oikawa, T. Fujita, T.

Fukuda, S. Ide, H. Takenaga, K. Ushigusa, T. Ozeki, Y. Ikeda, N. Umeda,

H. Yamada, M. Isobe, Y. Narushima, K. Ikeda, S. Sakakibara, K.

Yamazaki, K. Nagasaki, and JT-60 Team, Nucl. Fusion 43, 1272 (2003).
6J. C. Li, X. Y. Gong, J. Q. Dong, P. W. Zheng, S. D. Song, Q. D. Gao, and

D. Du, Phys. Plasmas 22, 062512 (2015).
7J. C. Li, X. Y. Gong, J. Q. Dong, J. Wang, N. Zhang, P. W. Zheng, and C.

Y. Yin, Phys. Plasmas 23, 122504 (2016).
8M. Maraschek, G. Gantenbein, Q. Yu, H. Zohm, S. Günter, F. Leuterer, A.

Manini, G. ECRH, and ASDEX Upgrade Team, Phys. Rev. Lett. 98(2),
025005 (2007).

9H. Zohm, G. Gantenbein, G. Giruzzi, S. Günter, F. Leuterer, M.

Maraschek, J. Meskat, A. G. Peeters, W. Suttorp, D. Wagner, M. Zabiégo,
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