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Gyrokinetic simulations of electrostatic microturbulence in the edge plasmas of DIII-D shot

131997 find that the geodesic acoustic mode (GAM) is generated after nonlinear saturation

both at the pedestal top and in the peak gradient region, and in turn, regulates the turbulence

in both regions. Collisions significantly reduce the GAM amplitude and the associated GAM

modulation of the turbulence in both regions. Collisions have little effects on the ion temper-

ature gradient turbulent transport level at the pedestal top. On the other hand, collisional

damping of the TEM significantly reduces the turbulent transport level in the peak gradient

region. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4972080]

I. INTRODUCTION

Anomalous cross-field particle, energy and momentum

transport in tokamak plasmas is generally believed due to

microturbulence excited by drift wave instabilities.1 The

turbulent transport mechanism for ions and electrons in

core plasmas is relatively clear thanks to intensive studies

of turbulence in experiment, theory, and simulation in the

past decades.2,3 Recently, more attention has been shifted

to the studies of turbulence and transport in the tokamak

edge, since they is more complicated and crucial for the

high confinement mode (H-mode).4 The H-mode operation

is characterized by steep gradients of density and tempera-

ture in the edge region, which can provide a source of free

energy to drive a number of instabilities, such as electro-

static ion/electron temperature gradient driven modes (ITG/

ETG),5,6 trapped electron mode (TEM),7–9 and electromag-

netic kinetic ballooning mode (KBM).10–12 The ITG, TEM,

and KBM are long wavelength instabilities with khqi < 1

and ETG is short wavelength instability with khqi � 1,

where kh is the poloidal wavenumber and qi is the ion

gyroradius.

A number of experiments and simulations have found

that zonal flows,2,13 which are self-generated by the turbu-

lence, play a very important role in modulating and setting

the level of turbulence and transport because of their shear-

ing effects on turbulence. There are two types of zonal

flows: one is the low frequency zonal flow (LFZF), mainly

seen in the core plasmas; and the other is the higher fre-

quency geodesic acoustic mode (GAM),14 usually seen in

the edge plasmas with a higher safety factor. We know bet-

ter the characteristics of LFZF and its effects on turbulence

in the core plasmas.2 However, the role of the GAM in

turbulence and transport in the edge plasmas especially in

the pedestal region is less well understood. Moreover, colli-

sions can play important roles in the edge turbulence and

transport.

In this work, we use the gyrokinetic toroidal code

(GTC)2,15,16 to study the electrostatic turbulence, the generation

of GAM, and its effects on turbulence and transport in a DIII-D

(shot 131997) H-mode pedestal plasma.5,8,12 Collisions are

included in our simulations using the Lorentz pitch angle scat-

tering operator for electron-ion collisions and the Fokker-

Planck operator for electron-electron and ion-ion collisions.17

Our simulations find that GAM is generated after nonlinear sat-

uration both at the pedestal top and in the peak gradient region,

and in turn, regulates the turbulence in both regions. Collisions

significantly reduce the GAM amplitude and the associated

GAM modulation of the turbulence in both regions. In the ped-

estal top with a relatively high temperature, collisions have

little effects on the ITG turbulent transport level. In the peak

gradient region, collisional damping of the TEM significantly

reduces the turbulent transport level. We emphasize that the

current simulations do not cover the separatrix and scrape-off

layer (SOL) and do not include the mechanism sustaining the

tokamak H-mode.

The remainder of this paper is organized as follows:

Section II describes the simulation model. The nonlinear

simulation results are presented for the pedestal top and the

peak gradient region in Sec. III. Finally, conclusions are

given in Sec. IV.

II. SIMULATION MODEL

In GTC particle-in-cell simulations, the plasma is

treated as a set of marker particles interacting with each

other through self-generated electromagnetic fields. The

electrostatic version of gyrokinetic equations describing

toroidal plasmas in GTC is formulated as follows:18
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Here, fa is the distribution function in terms of gyrocenter

position X, magnetic moment l, and parallel velocity tk. Za
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n is the particle pitch with respect to magnetic field line

n ¼ tk
t ; �ei is the electron-ion collision frequency, dfa is

the perturbed distribution function, t? is the perpendicular

velocity, and P accounts for the momentum and energy con-

servation. The definitions of all the collision coefficients

� can be found in Ref. 17. B0 is the equilibrium magnetic

field, B ¼ B0 þ dB, and

B� ¼ B�0 þ dB ¼ B0 þ
B0

tkXa
r� b0 þ dB;

where VE, Vc, and Vg are E� B the drift velocity, magnetic

curvature drift velocity, and grad-B drift velocity,

respectively.
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B0;
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t2
k

Xa
r� b0;

Vg ¼
l

maXa
b0 �rB0:

The electrostatic potential / is given by the gyrokinetic

Poisson equation

4pZ2
i ni

Ti
/� ~/
� �

¼ 4p Zini � eneð Þ; (4)

where ~/ is the second-gyroaveraged potential,19 density na

is the fluid moment of the corresponding distribution func-

tion, and Xa is the cyclotron frequency.

To reduce the particle noise, we use the perturbative (df Þ
method20,21 to solve for the perturbed distribution functions in

the full DIII-D geometry. For simulations presented in this

paper, we use gyrokinetic equations to deal with ion dynamics,

which are valid for the present edge ordering VE

tth
� k?qi

qid/
T

� x
Xi
� qi

Lp
� Lp

R � e	 1:8. Here, tth is the thermal velocity,

k? is the wavenumber perpendicular to the equilibrium

magnetic field, qi is the charge of the main ion species, d/
is the perturbed electrostatic potential, T is the temperature,

x is the instability frequency, Lp is the pressure gradient scale

length, and R is the major radius. Drift kinetic equations are

used for electron dynamics because of their small gyro-radius.

An electrostatic fluid-kinetic hybrid model based on the

expansion of the electron response into adiabatic and non-

adiabatic parts is employed for electrons instead of the drift

kinetic model to avoid numerical constrains introduced by

electron drift kinetic equations.22 The boundary conditions for

field quantities are zero at the radial boundary so that all

turbulence-driven fluctuations go smoothly to zero at the radial

boundaries and periodic in the poloidal and toroidal directions.

Particles going out of the radial boundary are put back into the

simulation domain but with the negative sign of the poloidal

angle with the domain of [�p,p].

The equilibrium profiles are based on DIII-D discharge

131997 at time 3011 ms,23 which is a pedestal recovery period

in the Edge Localized Mode cycle, as seen in Fig. 1. The equi-

librium is implemented in GTC by using the same process

presented in Ref. 8, that is, the full plasma profiles, density,

temperature, and their gradients d lnðn; TÞ=dwn are replaced

by constant values taken from local points of interest within

the entire simulation domain, where wn is the poloidal mag-

netic flux normalized by its value at the separatrix. Full q-pro-

file and realistic non-circular, up-down asymmetric magnetic

geometry are used in the simulations. The metrics entering the

Poisson equation is calculated by the distorted DIII-D mesh

points while the kinetic equations are still solved in a flux

coordinate system. We focus on two radial locations: the top

of the pedestal at a normalized magnetic poloidal flux wn

¼ 0:95, where the electron temperature gradient first begins

to rapidly increase, and the peak gradient region of the pedes-

tal (maximum dP=dw, where P is the total pressure) at

FIG. 1. Plasma profiles in the pedestal region of DIII-D discharge 131997 at

time 3011 ms as functions of normalized poloidal flux (wn). The upper panel

shows density (ni ¼ ne) and safety factor (q) profiles, and the lower panel

shows ion and electron temperature (Ti and Te) profiles. The vertical black

dashed lines indicate the radial position of the pedestal top (wn ¼ 0:95) and

peak gradient region ðwn ¼ 0:98Þ.
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wn¼ 0.98, shown as the vertical black dashed lines in Fig. 1.

Comparisons of the parameters of these two positions are

listed in Table I. Here, the effective collision frequency is

defined as ��a ¼ e�3=2�a

ffiffiffi
2
p

qR0=ttha, and ttha ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ta=ma

p
is

the thermal velocity. The main differences between the two

positions are that the density, electron temperature gradients,

and collisional frequency are much larger in the peak gradient

region than in the pedestal top. For the simulations presented

in this paper, a small radial simulation domain size is used,

with wn¼ 0.8–1.0, which includes the whole pedestal. The

density and temperature gradients are set constant within the

entire simulation domain by single parameters taken from the

two radial positions in Fig. 1. A wider radial domain size

should be used in the future to quantitatively compare with

experimental measurements since boundary conditions would

affect the turbulent transport level. Other parameters are:

major radius R0 ¼ 1:76 m, minor radius defined by the hori-

zontal distance from the axis to the separatrix a¼ 0:72 m,

toroidal magnetic field B0¼ 2.03 T, and deuterium to electron

mass ratio mD=me¼ 3672. The relationship between minor

radius r and normalized poloidal flux wn is shown in Fig. 2.

Collisions are included in our simulations since collisional

effects may be important in edge plasmas with a relative low

temperature.

III. NONLINEAR SIMULATION RESULTS

A. Pedestal top

The dominant electrostatic instability in the pedestal top

is ITG with a typical ballooning structure in the linear

phase.12 To verify the validity of nonlinear simulations,

noise-driven transport should be small enough so as not to

influence the physical transport. The noise-driven heat con-

ductivity can be calculated by using a quasilinear theory,

which scales with the square of the particle weight.24 The

noise-driven transport can be reduced by increasing the parti-

cle number in the simulations. Time history of volume-

averaged heat conductivity and noise-driven heat conductiv-

ity for both electrons and ions is shown in Fig. 3 for 200

particles per cell. Here, the heat conductivity is calculated by

v ¼ QLT =T , Q is the heat flux measured from simulations,

Q ¼
Ð

1
2

mt2dtrdfd3t, where dtr is the radial E� B drift and

t is the velocity. We can see that ITG first grows exponen-

tially and then saturates around time t ¼ 17R0=vi. After the

saturation, the noise-driven heat flux is about three-orders of

magnitudes smaller than the turbulence-driven heat flux for

both ions and electrons. Ions have a higher transport level

than electrons, consistent with the fact that the ITG is the

most unstable mode in the pedestal top of this DIII-D

experiment.

Time evolutions of zonal electric field Er (m¼ n¼ 0,

m and n are poloidal and toroidal mode numbers, respec-

tively) at a fixed radial location are shown in Fig. 4 (blue

dotted-dashed curve). The zonal flow is spontaneously

generated by the ITG turbulence in the nonlinear stage and

oscillates at a constant frequency. We identify this finite fre-

quency mode as the geodesic acoustic mode (GAM). In the

edge region with a high q value, GAM dominates over low

frequency zonal flow because of its low damping rate.25 The

frequency of the GAM is given by25

x2
GAM ¼

7

4
þ s

� �
2v2

i

R2
1þ 46þ 32sþ 8s2

7þ 4sð Þ2q2

" #
: (5)

By using function ErðtÞ ¼ A1e�ct cos ðxGAMtþ aÞ to fit

the curve, the GAM frequency calculated from the simula-

tion is about 2.71 vi=R0, roughly 39.3 kHz, which is close to

2.47 vi=R0 from the analytic calculation using Equation (5).

Here, A1 is the amplitude of Er, xGAM, and c are the GAM

real frequency and damping rate, and a is the initial phase.

TABLE I. Parameters from DIII-D shot 131997 at wn¼ 0.95 (pedestal top)

and wn¼ 0.98 (peak gradient region).

wn ¼ 0.95 wn ¼ 0.98

Ti=Te 0.92 1.28

R0=Ln 2 50

R0=LTe 25 120

R0=LTi 30 60

q 3.17 3.53

��i 0.07 0.14

��e 0.05 0.20

FIG. 2. The relationship between minor radius r and normalized poloidal

flux wn.

FIG. 3. Time history of volume-averaged total heat conductivity (solid line)

and noise-driven heat conductivity (dashed line) for both electrons and ions.
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Time evolutions of volume-averaged heat conductivities

for electrons and ions and particle diffusivity are also

shown in Fig. 4. Here, particle diffusivity is defined by

D ¼ CLn=n0, C is the particle flux measured from simula-

tions, C ¼
Ð

dtrdfd3t. We can see that turbulence grows first

and drives the GAM, which has a time delay from the turbu-

lence. The GAM amplitude grows up while the turbulence

intensity decays due to GAM, and then turbulence grows

again while the GAM decays. Both positive and negative

peaks of the GAM correspond to a reduction of heat conduc-

tivities, so the heat conductivities oscillate at approximately

twice that of the GAM frequency.

The time-radial structure of the GAM electric field Er is

shown in Fig. 5. The upper panel is with no collisions and

lower panel with collisions. The GAM oscillation is very clear.

By comparing GAM amplitudes between collisionless and col-

lisional cases, we can see the collisional damping of the GAM.

Ion-ion collisions contribute to most of the GAM damping26 as

the Landau damping by ions27 and trapped electrons28 is small

in the edge plasmas with high q. The dynamics of the GAM

can be characterized by the wavenumber-frequency spectrum

Eðkr; f Þ of the GAM electric field E(r, t), which is defined

as Eðkr; f ¼ x=2pÞ ¼ j
Ð Ð

Eðr; tÞe�ixte�ikrrdtdrj. The contour

plot of Eðkr; f Þ of the GAM at the pedestal top without colli-

sions is shown in Fig. 6. We can see that the GAM propagates

mostly inward, which is probably due to the stronger GAM

damping at the smaller radial location with a lower q value and

the fact that uniform marker particle temperature is used in the

simulations.

Time evolutions of volume-averaged heat conductivities

for both electrons and ions are shown in Fig. 7 for the cases

with or without collisions. We can see that collisions have

little effects on the averaged level of the heat transport for

both electrons and ions although they slightly reduce the lin-

ear growth rate. However, because of the collisional damp-

ing effects, GAM amplitudes are significantly reduced and

the periodic oscillation of the heat conductivities is sup-

pressed in the collisional cases.

B. Peak gradient region

The current simulations with collisions conclusively

demonstrate that the trapped electron mode (TEM) is the

FIG. 5. GAM electric field Er structure as a function of time and radial posi-

tion at the pedestal top for (a) no collisions and (b) with collisions.

FIG. 6. The radial wavenumber-frequency spectrum Eðkr ; f Þ of the GAM at

the pedestal top without collisions.

FIG. 7. Time evolutions of volume-averaged heat conductivities for both

electrons and ions with or without collisions.

FIG. 4. Time evolutions of the GAM electric field at the flux surface of

r ¼ 0:87a, volume-averaged heat conductivities for ions and electrons, and

particle diffusivity from the collisionless simulation of the pedestal top.
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most unstable electrostatic mode in the peak gradient region,

consistent with our earlier collisionless simulation results

reported in Ref. 12. In the current simulations with colli-

sions, the electron is in the banana regime (�*¼ 0.20 in the

peak gradient region), which significantly reduces the TEM

growth rate. The TEM findings include the linear dispersion

calculated from the linear stage of the nonlinear simulations

and the larger electron entropy and heat fluxes (as compared

to the ion counterparts) from the nonlinear simulations in

Fig. 8. The TEM with a mode structure peaking at poloidal

angles h ¼ 6p=2 (h ¼ 0 at the outboard midplane) is the

most unstable mode in the peak gradient region as observed

in previous linear simulations.8

GAM is generated after nonlinear saturation. We note

that GAM generation by the TEM turbulence has been previ-

ously reported by other gyrokinetic codes (e.g., Ref. 29).

The GAM frequency calculated from the simulations is

about 2.49 vi=R0 (approximately 30.83 kHz), which is close

to 2.39 vi=R0 calculated by Equation (5). Time evolutions of

volume-averaged heat conductivities for both ions and

electrons and particle diffusivity are also plotted in Fig. 8.

We can see clear GAM modulation of the turbulence. The

turbulence and GAM electric field exhibit an almost 180


phase shift, so heat conductivities and particle diffusivity

oscillate at the GAM frequency.

The GAM electric field Er is shown in Fig. 9 as a func-

tion of time and radial position. The upper panel is without

collisions and the lower panel is with collisions. Again, we

can see clear periodic oscillations and significant collisional

damping of the GAM amplitude. Without collisions, there is

no obvious propagation of GAM. Collisions significantly

reduce the GAM amplitude and induce a radial propagation

of GAM.

To investigate the effects of GAM and collisions on tur-

bulence transport, four simulations with or without GAM or

collisions are shown in Fig. 10. The cases without GAM are

set by artificially excluding n ¼ 0 modes to illustrate the

effects of these modes on turbulent transport. With colli-

sions, the linear growth rate is significantly reduced, but the

mode propagation is still in the electron diamagnetic direc-

tion. And, the electron heat transport is larger than the ion

heat transport. In the nonlinear stage, we can see that elec-

tron heat conductivity saturates at a lower level for the two

cases with collisions and saturates at a higher level for the

two cases without collisions. We conclude that collisional

effects play the dominant role in setting the level of turbulent

transport because of the de-trapping processes by electron-

electron and electron-ion collisions, thus effectively remov-

ing the electron drive. We can see strong GAM modulation

of turbulence without collisions. However, the averaged

level of the turbulent transport is less sensitive to the GAM

modulation with collisions.

IV. CONCLUSION

Gyrokinetic simulations of electrostatic microturbulence

in the edge plasmas of DIII-D shot 131997 find that the geo-

desic acoustic mode (GAM) is generated after nonlinear sat-

uration both at the pedestal top and in the peak gradient

region and, in turn, regulates the turbulence in both regions.

Collisions significantly reduce the GAM amplitude and the

associated GAM modulation of the turbulence in both

FIG. 8. Time evolutions of GAM electric field at the flux surface of

r ¼ 0:87a, volume-averaged heat conductivities for ions and electrons, and

particle diffusivity for collisionless case in the peak gradient region.

FIG. 9. GAM electric field Er as a function of time and radial position in the

peak gradient region for (a) without collisions and (b) with collisions.

FIG. 10. Time history of volume-averaged electron heat conductivity from

simulations with or without GAM or collisions.
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regions. Collisions have little effects on the ITG turbulent

transport level in the pedestal top. On the other hand, colli-

sional damping of the TEM significantly reduces the turbu-

lent transport level in the peak gradient region. In the future

work, the effects of sheared flows on the pedestal transport

will be studied so that simulation results can be compared

quantitatively to experimental measurements.
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