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Gyrokinetic simulations of the H-mode pedestal in DIII-D discharge 145701 find that the kinetic

ballooning mode (KBM) is the most unstable mode for low toroidal numbers (n� 25) and that the

trapped electron mode (TEM) dominates over the KBM at higher toroidal mode numbers for realis-

tic pressure gradients in the pedestal. Collisions reduce the TEM growth rate but have little effects

on the KBM. KBM has the conventional ballooning mode structure peaking at the outer mid-plane,

while TEM has an unconventional mode structure peaking at the top and bottom of the poloidal

plane. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4972079]

I. INTRODUCTION

Edge instabilities and microturbulence affect the perfor-

mance of tokamaks in the high confinement (H-mode) opera-

tion,1 which is characterized by steep gradients of density

and temperature in the edge region (pedestal). Electrostatic

ion/electron temperature gradient-driven instabilities (ITG/

ETG)2–4 and trapped electron mode (TEM),5–7 electromag-

netic instabilities such as kinetic ballooning mode (KBM)8,9

and micro-tearing modes,4 and magnetohydrodynamic insta-

bilities such as peeling-ballooning mode (PBM) induced

edge localized modes10–14 can be driven by free energy pro-

vided by pedestal gradients. These instabilities may influence

pedestal buildup according to the EPED model,15 which pre-

dicts the H-mode pedestal height and width based upon two

constraints: the PBM with low to intermediate toroidal mode

numbers and the KBM with relatively high toroidal mode

numbers. Understanding pedestal physics is crucial for real-

izing the magnetic confinement fusion energy.

Several simulations using experimental equilibrium pro-

files have partially verified the EPED model.9 However,

quantitative agreement, especially for the KBM, has not

been achieved among simulations and between simulations

and experiments.4 Possible reasons include different equilib-

ria, simulation models, and methods to deal with tokamak

geometry in various simulation codes. Recently, linear elec-

trostatic ITG and TEM instabilities exhibiting unconven-

tional mode structures in the steep gradient region of the

pedestal have been observed by several simulations.6,7 It is

not clear whether electromagnetic modes such as KBM can

exhibit the unconventional mode structure in the steep gradi-

ent region of tokamak plasmas. Thus, microinstabilities in

the pedestal are not well understood, even for the linear

properties. Verification and validation between different

codes and with experiments have not been demonstrated.

Therefore, comprehensive simulations should be carried out

to study the physics of microinstabilities in the pedestal,

such as the role of collisions, the unconventional mode struc-

tures in the steep gradient region, and the electromagnetic

effects.

Using the gyrokinetic toroidal code (GTC),16–18 earlier

simulations6 of the DIII-D discharge 131997 at time 3011 ms

find that the most unstable electrostatic instability in the

peak gradient region is the TEM with a growth rate increas-

ing monotonically with the toroidal mode number n. In the

electromagnetic simulation,19 the most unstable mode is the

KBM for the dominant poloidal wave number kh � 1 cm�1.

For shorter wavelength modes, the dominant instability is

the TEM.

In this work, we continue to use GTC to study the linear

properties of electromagnetic instabilities in the steep gradi-

ent region of the H-mode pedestal in the DIII-D discharge

145701 at time 33 ms, which has more robust KBM signals.

We use realistic magnetic geometry from the VMEC20 equi-

librium solver and include collisions in the GTC simulations.

We neglect equilibrium flows, which may have an influence

on low-n instabilities, and suppress equilibrium current

drive, which may destabilize the peeling and kink modes.

Compressional magnetic effects are also excluded in the sim-

ulations. We find that KBM is the most unstable mode for

low toroidal numbers (n � 25), and TEM dominates over the

KBM at higher toroidal mode numbers for realistic pressure

gradients in the pedestal. Collisions reduce the TEM growth

rate but have little effects on the KBM. KBM has the con-

ventional ballooning mode structure peaking at the outer

mid-plane, while TEM has an unconventional mode structure

peaking at the top and bottom of the poloidal plane. By

increasing the plasma pressure within the ranges inside the

pedestal, we find that the low-n mode (n¼ 15) makes a tran-

sition from TEM to KBM, while the high-n mode (n¼ 40) is

always TEM.

The remainder of this paper is organized as follows:

Section II describes the simulation setup. The electromag-

netic simulation results are presented in Sec. III. We also dis-

cuss collisional effects on these electromagnetic instabilities.

Finally, a summary of this work is given in Sec. IV.
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II. SIMULATION SETUP

In GTC electromagnetic particle-in-cell simulations,21

the plasma is treated as a set of marker particles interacting

with each other through self-generated electromagnetic fields.

Electrostatic potential is solved by gyrokinetic Poisson equa-

tion, and magnetic vector potential is solved by Ampere’s

law. For simulations presented in this paper, we use gyroki-

netic equations to deal with ion dynamics, which is valid

for the edge parameters.6 Drift kinetic equation is used for

electron dynamics because of its small gyro-radius. An

electromagnetic fluid-kinetic hybrid model21,22 based on the

expansion of the electron response into adiabatic and non-

adiabatic parts is employed for electrons instead of the drift-

kinetic model to avoid numerical constrains introduced by

electron drift kinetic equations. To reduce particle noise, we

use the df method to solve for perturbed gyrocenter distribu-

tion functions. The perturbed field quantities are zero at both

sides of radial boundary and periodic in poloidal and toroidal

directions. Note that the free-boundary condition would

allow a finite amplitude of the perturbation of the instability

at the radial boundary, which is important for the peeling-

ballooning mode. Collision operators conserving momentum

and energy are also implemented in GTC, with the pitch angle

scattering operator for electron-ion collisions and Fokker-

Planck operator for like-species collisions.23

The plasma equilibrium is based on DIII-D discharge

145701 at time 33 ms, as seen in Fig. 1. To identify local insta-

bilities in the peak gradient region, our simulation domain

includes the whole pedestal with the normalized poloidal mag-

netic flux wn from 0.9 to 1.0 (normalized by its value at the

separatrix). Density, temperature, and their gradients are con-

stant values in the whole simulation domain (analogous to the

uniform loading scheme in Ref. 24), which are taken from a

local point at wn ¼ 0:984 in the peak gradient region, seen as

the vertical dashed line in Fig. 1. Full q-profile and realistic

non-circular, up-down asymmetric magnetic geometry from

VMEC reconstruction20 are used. The parameters in the steep

gradient region are: electron temperature Te ¼ 197 eV, ion

temperature Ti ¼ 396 eV, density ne¼ni¼2:48�1013 cm�3,

and their gradients R0=LTe
�144, R0=LTi

�8, R0=Ln�64,

gi¼Ln=LTi
�0:13, and ge�2:25. The scale length Lf for a

radial function f ðrÞ is defined by L�1
f ¼dlnf ðrÞ=dr. Safety

factor is q¼3:6 and be is around 0.07%, where be¼8pneTe=
B2

0. The total plasma b is defined as b¼beþbi. Other parame-

ters are: the major radius R0¼1.77m, the aspect ratio e¼a=R0

¼0.37, where a is the minor radius of the tokamak, the toroi-

dal magnetic field B0¼1.68T, and the deuterium to electron

mass ratio mD=me¼3672. Collisions with effective charge

number Zef f ¼1:5 are also included in our simulation since

collisional effects may be important in edge plasmas with rela-

tively low temperature. The present global simulations focus

on the study of the properties of electromagnetic modes. The

comparison with local gyrokinetic simulation results should

be carefully done in the future, since KBM is very sensitive to

equilibrium, physics model, and boundary conditions.

III. SIMULATION RESULTS

All the linear results presented in this paper are from

simulations of a single toroidal mode number n, due to toroi-

dal symmetry. To identify the most unstable mode in the

peak gradient region, we first use a higher be ¼ 0:14% at the

inner part of the pedestal, shown in panel 3 of Fig. 1. The

dependence of linear growth rate and frequency on n is

shown in Fig. 2. We can see two branches of instabilities:

one propagates in the ion diamagnetic direction (negative

real frequency) and the other is in the electron diamagnetic

direction (positive real frequency). We identify the lower-n
(n � 25) branch as KBM and the higher-n branch (n> 30) as

TEM according to their propagation direction, mode struc-

ture, and growth rate dependence on be, and electron kinetic

effects. KBM is insensitive to electron kinetic effects and

still unstable even when electrons are treated as a massless

FIG. 1. Plasma profiles in the pedestal

region of DIII-D discharge 145701 at

time 33 ms as functions of normalized

poloidal flux (wn). The panels, from

left to right, show normalized tempera-

tures (Ti and Te), and density (ni¼ ne)

profiles, inverse temperature and den-

sity scale length, be values, and safety

factor (q). The vertical black dashed

line indicates the radial position of the

peak gradient region of pedestal and

be ¼ 0:14% at the dotted line position.

FIG. 2. Toroidal mode number n dependence of the linear growth rate (top

panel) and real frequency (bottom panel) using be ¼ 0:14% . The cIBM in the top

panel is the ideal ballooning mode drive defined as cIBM ¼ khqevthe=
ffiffiffiffiffiffiffiffiffiffi
R0Ln

p
.
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fluid. TEM can be observed only when we use kinetic elec-

tron model in both electromagnetic and electrostatic simula-

tions. The results presented in this paper are qualitative and

can partially verify the EPED model (KBM is the most

unstable mode in the pedestal recovery stage).15 The growth

rate of the KBM peaks at n¼ 15, and the growth rate of the

TEM increases with n. The frequency of the KBM is around

100 kHz in the plasma frame, and the poloidal wave number

for n¼ 15 is khqi¼ 0.15, which is consistent with DIII-D

experimental results.25 The TEM has a higher frequency

around 350 kHz. The growth rate of the low-n KBM is com-

pared to the ideal ballooning mode drive cIBM ¼ khqevthe=ffiffiffiffiffiffiffiffiffiffi
R0Ln

p
as shown in Fig. 2. We see that the ideal MHD

growth rate is a good approximation to the KBM growth

rate for low-n modes (n � 10), but is inaccurate for high-n
modes of n> 10. The diamagnetic drift frequency defined as

x� ¼ khqevthe=Ln is much larger than the real frequency.

Poloidal mode structures of the electrostatic potential

and parallel vector potential of these two branches are quite

different as shown in Fig. 3. The KBM has a typical balloon-

ing structure peaking at the outer mid-plane, which is in con-

trast with the unconventional mode structure of the KBM in

helical plasmas.26 The mode structure of the TEM peaks at

the top and bottom of the poloidal plane because of the steep

pressure gradient. The unconventional mode structures are

similar to those reported by the electrostatic simulations in

Refs. 6 and 7 and can possibly be explained by the eigen-

states transition or non-zero ballooning angle theories in

Refs. 7 and 27. The radial profiles of the electrostatic

potential for the poloidal harmonics are also shown in Fig. 3.

We can see that for the TEM with unconventional mode

structure, the spectra of neighboring poloidal numbers have

the opposite phase /m ’ �/mþ1, which leads to the destruc-

tive interference at the outer mid-plane. On the other hand,

the phase between neighboring poloidal numbers /m ’ /mþ1

is the same for the KBM with the conventional mode struc-

ture. The unconventional structure with the opposite phase

of neighboring poloidal harmonics has also been observed in

HL-2A edge electrostatic simulation in Ref. 7.

To find the critical be threshold for the KBM instability,

we keep a constant toroidal number n and scan be by

changing the electron density while keeping the gradient

d ln ne=dwn unchanged. For n¼ 40, the dependence of linear

growth rate and frequency on be is shown in Fig. 4. We can

see that the TEM is the most unstable instability at low be.

The growth rate of the TEM is independent of be since paral-

lel electric field has little effects on trapped electrons, in con-

trast to the familiar b-stabilization of the ITG mode in earlier

simulations.19 As be increases to around 0.35%, the KBM

takes over the TEM to be the dominant instability with an

estimated stability threshold at be � 0.28%, and its growth

rate increases monotonically with be. Also, KBM has a con-

ventional mode structure with electrostatic potential peaking

at h ¼ 0, while the TEM mode structure peaks at h � 6p=2.

Collisions with an effective charge number Zef f ¼ 1:5 are

considered in this case. The effective collision frequency for

electron-electron collision is ��e ¼ 0:58 and the ion-ion colli-

sion is ��i ¼ 0:16. Here, the effective collision frequency is

FIG. 3. The poloidal structure of electrostatic potential (/) and parallel vector potential (Ajj) of n¼ 15 (top panel, KBM) and n¼ 40 (bottom panel, TEM) using

be ¼ 0:14% (left columns) and radial profiles of the electrostatic potential for the poloidal mode numbers (right columns).
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defined as �� ¼ e�3=2�
ffiffiffi
2
p

qR0=vth, and vth ¼
ffiffiffiffiffiffiffiffiffi
T=m

p
is the

thermal velocity. The results are also shown in Fig. 4. We

can see that collisions reduce the TEM growth rate by about

15%, while have little effects on the growth rate of KBM.

This is due to the larger collision frequency for trapped elec-

tron, which is the main drive for the TEM, and the smaller

collision frequency for ion, which is the main drive for the

KBM.

For a lower toroidal mode number n¼ 15, where KBM

has the maximal growth rate, the be dependence of the

linear growth rate and real frequency is shown in Fig. 5.

We can see that the transition from TEM to KBM is at

be� 0.09%, within the range of the pedestal region

(be < 0:2%). The KBM stability threshold can be estimated

at be � 0.07% from the top panel of Fig. 5. For a higher

toroidal mode number n, the TEM-KBM transition occurs

at a higher be, since KBM is linearly stabilized at the higher

toroidal mode numbers, while the TEM growth rate

depends monotonously on n for the low-n modes. A purely

growing mode (with zero frequency) is observed when we

take the ideal MHD limit (using only electron fluid

model28) for this case, as shown in Fig. 5. This zero fre-

quency mode is the ideal ballooning mode, which was pre-

dicted by local ballooning mode theory and has an identical

critical pressure value (and its gradient) to that for the

KBM at gi ¼ 0 limit.29 In our simulations, the total plasma

b ¼ be þ bi and bi ¼ 2:02be for the KBM simulations, but

bi ¼ 0 for the IBM simulations, which gives stability

threshold bKBM
c � 1:9bIBM

c . However, the ballooning mode

is mainly driven by the pressure gradient, which is

b0KBM
c � b0IBM

c , i.e., the critical pressure gradient for the

KBM is similar to that for the IBM. This result agrees with

the local theory at gi ¼ 0 limit.29 Furthermore, collisions

are not important for the KBM, as shown in Fig. 5. Mode

structures of the KBM and IBM at be ¼ 0:14% are shown

in Fig. 6. The IBM has a conventional mode structure simi-

lar to that for the KBM, with electrostatic potential peaking

at h ¼ 0.

FIG. 4. be dependence of the linear growth rate (top panel) and real fre-

quency (bottom panel) of n ¼ 40 mode in the peak gradient region.

FIG. 5. be dependence of the linear growth rate (top panel) and real fre-

quency (bottom panel) of n ¼ 15 instability in the peak gradient region.

The dashed horizontal line for the TEM growth rate is from an electrostatic

simulation.

FIG. 6. The poloidal structure of electrostatic potential (/) and parallel vec-

tor potential (Ajj) of n¼ 15 mode in kinetic simulation (the top panel) and

ideal MHD simulation (the bottom panel).
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IV. CONCLUSION AND DISCUSSION

In this study, gyrokinetic simulations of electromagnetic

instabilities have been carried out with real tokamak geome-

try and local parameters taking from the steep gradient

region in the pedestal of DIII-D experiments. We find that

the kinetic ballooning mode (KBM), which has a conven-

tional mode structure peaking at the poloidal angle h ¼ 0 , is

the dominant instability for moderate toroidal mode numbers

(n � 25). For larger toroidal mode numbers (n> 30), the

most unstable mode is the trapped electron mode (TEM),

which has an unconventional mode structure peaking at

h � 6p=2. We observe a KBM-TEM transition by increas-

ing toroidal mode number at a fixed plasma pressure or by

increasing plasma pressure with a fixed toroidal mode num-

ber. For a higher n, the transition from TEM to KBM occurs

at a higher pressure. The ideal ballooning mode is also

observed when we take the ideal MHD limit, which has a

similar threshold of the pressure gradient to that for the

KBM. Collisions slightly damp the TEM and have little

effects on the growth rate of the KBM. The toroidal mode

number and frequency range of the KBM are consistent with

DIII-D experimental observation. To fully understand edge

instabilities and quantitatively compare with experimental

results, more realistic global simulations should be carried

out with full plasma profiles and equilibrium radial electric

fields as well as the nonlinear effects.

ACKNOWLEDGMENTS

The authors would like to thank useful discussions with

W. L. Zhang, H. S. Xie, J. Bao, and GTC Team. This work

was supported by ITER-China Program (Grant Nos.

2013GB111000 and 2013GB112006), National Natural

Science Foundation of China (Grant No. 11275162), and

U.S. DOE theory Grant No. DE-SC0010416. This research

used resources of the Oak Ridge Leadership Computing

Facility at Oak Ridge National Laboratory (DOE Contract

No. DE-AC05-00OR22725), and the National Energy

Research Scientific Computing Center (DOE Contract No.

DE-AC02-05CH11231), and the National Supercomputing

Center in Tianjin.

1F. Wagner, G. Becker, K. Behringer, D. Campbell, A. Eberhagen, W.

Engelhardt, G. Fussmann, O. Gehre, J. Gernhardt, G. v. Gierke, G. Haas,

M. Huang, F. Karger, M. Keilhacker, O. Kl€uber, M. Kornherr, K. Lackner,

G. Lisitano, G. G. Lister, H. M. Mayer, D. Meisel, E. R. M€uller, H.

Murmann, H. Niedermeyer, W. Poschenrieder, H. Rapp, H. R€ohr, F.

Schneider, G. Siller, E. Speth, A. St€abler, K. H. Steuer, G. Venus, O.

Vollmer, and Z. Y€u, Phys. Rev. Lett. 49(19), 1408–1412 (1982).
2J. M. Canik, R. Maingi, S. Kubota, Y. Ren, R. E. Bell, J. D. Callen, W.

Guttenfelder, H. W. Kugel, B. P. LeBlanc, T. H. Osborne, and V. A.

Soukhanovskii, Phys. Plasmas 18(5), 056118 (2011).
3J. M. Canik, W. Guttenfelder, R. Maingi, T. H. Osborne, S. Kubota, Y.

Ren, R. E. Bell, H. W. Kugel, B. P. LeBlanc, and V. A. Souhkanovskii,

Nucl. Fusion 53(11), 113016 (2013).
4E. Wang, X. Xu, J. Candy, R. J. Groebner, P. B. Snyder, Y. Chen, S. E.

Parker, W. Wan, G. Lu, and J. Q. Dong, Nucl. Fusion 52(10), 103015

(2012).
5F. Liu, Z. Lin, J. Q. Dong, and K. J. Zhao, Phys. Plasmas 17(11), 112318

(2010).
6D. P. Fulton, Z. Lin, I. Holod, and Y. Xiao, Phys. Plasmas 21(4), 042110

(2014).
7H. Xie and Y. Xiao, Phys. Plasmas 22(9), 090703 (2015).
8W. Wan, S. E. Parker, Y. Chen, R. J. Groebner, Z. Yan, A. Y. Pankin, and

S. E. Kruger, Phys. Plasmas 20(5), 055902 (2013).
9D. Dickinson, S. Saarelma, R. Scannell, A. Kirk, C. M. Roach, and H. R.

Wilson, Plasma Phys. Controlled Fusion 53(11), 115010 (2011).
10J. W. Connor, R. J. Hastie, H. R. Wilson, and R. L. Miller, Phys. Plasmas

5(7), 2687 (1998).
11P. T. Lang, G. D. Conway, T. Eich, L. Fattorini, O. Gruber, S. G€unter, L.

D. Horton, S. Kalvin, A. Kallenbach, M. Kaufmann, G. Kocsis, A. Lorenz,

M. E. Manso, M. Maraschek, V. Mertens, J. Neuhauser, I. Nunes, W.

Schneider, W. Suttrop, H. Urano, and ASDEX Upgrade Team, Nucl.

Fusion 44(5), 665–677 (2004).
12P. B. Snyder, H. R. Wilson, J. R. Ferron, L. L. Lao, A. W. Leonard, T. H.

Osborne, A. D. Turnbull, D. Mossessian, M. Murakami, and X. Q. Xu,

Phys. Plasmas 9(5), 2037 (2002).
13S. J. Fielding, P. G. Carolan, J. W. Connor, N. J. Conway, A. R. Field, P.

Helander, Y. Igitkhanov, B. Lloyd, H. Meyer, A. W. Morris, O. Pogutse,

M. Valovic, and H. R. Wilson, Nucl. Fusion 41(7), 909 (2001).
14H. R. Wilson, P. B. Snyder, G. T. A. Huysmans, and R. L. Miller, Phys.

Plasmas 9(4), 1277 (2002).
15P. B. Snyder, R. J. Groebner, A. W. Leonard, T. H. Osborne, and H. R.

Wilson, Phys. Plasmas 16(5), 056118 (2009).
16Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, and R. B. White, Science

281, 1835 (1998).
17W. Zhang, Z. Lin, and L. Chen, Phys. Rev. Lett. 101(9), 095001 (2008).
18Y. Xiao and Z. Lin, Phys. Rev. Lett. 103(8), 085004 (2009).
19I. Holod, D. Fulton, and Z. Lin, Nucl. Fusion 55(9), 093020 (2015).
20S. P. Hirshman and J. C. Whitson, Phys. Fluids 26(12), 3553 (1983).
21I. Holod, W. L. Zhang, Y. Xiao, and Z. Lin, Phys. Plasmas 16(12), 122307

(2009).
22Z. Lin and L. Chen, Phys. Plasmas 8(5), 1447 (2001).
23Z. Lin, W. M. Tang, and W. W. Lee, Phys. Plasmas 2(8), 2975 (1995).
24Y. Xiao, I. Holod, Z. Wang, Z. Lin, and T. Zhang, Phys. Plasmas 22(2),

022516 (2015).
25Z. Yan, G. R. McKee, R. J. Groebner, P. B. Snyder, T. H. Osborne, and K.

H. Burrell, Phys. Rev. Lett. 107(5), 055004 (2011).
26A. Ishizawa, T. H. Watanabe, H. Sugama, S. Maeyama, and N. Nakajima,

Phys. Plasmas 21(5), 055905 (2014).
27T. Xie, Y. Z. Zhang, S. M. Mahajan, and A. K. Wang, Phys. Plasmas

19(7), 072105 (2012).
28Z. Li, G. Sun, I. Holod, Y. Xiao, W. Zhang, and Z. Lin, Plasma Sci.

Technol. 15(6), 499–505 (2013).
29C. Z. Cheng, Phys. Fluids 25(6), 1020 (1982).

122507-5 Liao et al. Phys. Plasmas 23, 122507 (2016)

http://dx.doi.org/10.1103/PhysRevLett.49.1408
http://dx.doi.org/10.1063/1.3592519
http://dx.doi.org/10.1088/0029-5515/53/11/113016
http://dx.doi.org/10.1088/0029-5515/52/10/103015
http://dx.doi.org/10.1063/1.3496981
http://dx.doi.org/10.1063/1.4871387
http://dx.doi.org/10.1063/1.4931072
http://dx.doi.org/10.1063/1.4803890
http://dx.doi.org/10.1088/0741-3335/53/11/115010
http://dx.doi.org/10.1063/1.872956
http://dx.doi.org/10.1088/0029-5515/44/5/010
http://dx.doi.org/10.1088/0029-5515/44/5/010
http://dx.doi.org/10.1063/1.1449463
http://dx.doi.org/10.1088/0029-5515/41/7/312
http://dx.doi.org/10.1063/1.1459058
http://dx.doi.org/10.1063/1.1459058
http://dx.doi.org/10.1063/1.3122146
http://dx.doi.org/10.1126/science.281.5384.1835
http://dx.doi.org/10.1103/PhysRevLett.101.095001
http://dx.doi.org/10.1103/PhysRevLett.103.085004
http://dx.doi.org/10.1088/0029-5515/55/9/093020
http://dx.doi.org/10.1063/1.864116
http://dx.doi.org/10.1063/1.3273070
http://dx.doi.org/10.1063/1.1356438
http://dx.doi.org/10.1063/1.871196
http://dx.doi.org/10.1063/1.4908275
http://dx.doi.org/10.1103/PhysRevLett.107.055004
http://dx.doi.org/10.1063/1.4876960
http://dx.doi.org/10.1063/1.4731724
http://dx.doi.org/10.1088/1009-0630/15/6/03
http://dx.doi.org/10.1088/1009-0630/15/6/03
http://dx.doi.org/10.1063/1.863858

	s1
	l
	n1
	s2
	s3
	f1
	f2
	f3
	f4
	f5
	f6
	s4
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29

