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The effects of nonadiabatic electrons on ion temperature gradient drift instabilities have been
studied in global toroidal geometry using the gyrokinetic particle simulation approach. Compared to
the nonlinear global simulations based on only the adiabatic response of the electrons, we have
found that the cross-field ion heat transport is two to three times larger in the presence of trapped
electrons as compared to the purely adiabatic electron case, and that the zonal component of the
electrostatic potential has a shorter wavelength. The numerical methods for calculating both the
adiabatic and the nonadiabatic responses for the electrons are presented. © 2006 American Institute
of Physics. �DOI: 10.1063/1.2221931�
I. INTRODUCTION

It is now generally accepted in the fusion community
that low-frequency, small-scale instabilities �e.g., drift
waves, ion temperature gradient-driven �ITG� modes� are
major contenders for the anomalous, cross-field transport ob-
served in tokamaks1 and stellarators.2 Although there has
been a substantial increase in the available computing power
over the past decade, global particle-in-cell simulations of
turbulent plasmas have until very recently solely focused on
ion-temperature gradient turbulence in the presence of adia-
batic electrons. However the impact of the kinetic electrons
on ITG turbulence in global toroidal systems is the most
important topic. One of the reasons why the study of kinetic
electrons in global particle-in-cell �PIC� simulations has
received little attention is mainly due to a computational
difficulty: the electrons, on average, move much faster
���mi /me� than the ions, which translates into a small time
step of integration in PIC codes. An obvious brute force
method to retain electron dynamics in global PIC simulations
is to simply increase the number of electron markers and to
decrease the time step of integration; however the computa-
tional �and accuracy� requirements implied by this approach
for large-scale, global PIC simulations far exceed the exist-
ing available computing resources. Therefore we must devise
new computational methods, based on physical intuition
�and sometimes not!�, to make the simulations of electrons in
global PIC simulations accessible to existing massively par-
allel supercomputers.

As mentioned above, the treatment of kinetic electrons
in particle-in-cell simulations is made difficult due to the fact
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that the electrons move much faster than the ions. However,
for drift-type modes,3–10 the bulk of the electrons respond
adiabatically to the waves and it may be advantageous to
focus on the nonadiabatic part of the electron response.
Based on this observation, a new scheme for the treatment of
kinetic electrons that captures all the low-frequency phenom-
ena of interest has recently been developed12 and generalized
to include the Boltzmann response for the adiabatic part for
completeness.11 It has been shown in one-dimensional simu-
lations of drift waves that this type of scheme is more accu-
rate than the �f scheme.11,13 This paper is a generalization of
this type of the treatment of the electrons to toroidal geom-
etry and its implementation to the global gyrokinetic code
GTC.28 Using an electrostatic version of the fluid-kinetic hy-
brid electron model,22 kinetic electrons have also recently
been implemented in GTC.18 We would like to point out that
many new ideas and numerical schemes have recently pro-
posed to include kinetic electron dynamics in PIC simula-
tions in the presence of electromagnetic effects.20–26,30

This paper is organized as follows: in Sec. II the exten-
sion of the splitting scheme to toroidal geometry is pre-
sented; linear benchmarks and preliminary nonlinear results
are reported in Sec. III, followed by concluding remarks in
Sec. IV.

II. TREATMENT OF NONADIABATIC RESPONSE
OF THE ELECTRONS

A. Preliminary remarks

In this section we describe a numerical technique for the
treatment of the kinetic electrons in the simulation of micro-
turbulent plasmas in toroidal geometry. The scheme, as
stated earlier, is based on physical intuition: essentially the
idea is to remove the adiabatic response of the electrons ana-

lytically and to resolve the nonadiabatic response numeri-
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cally. One important feature of this type of scheme is that it
allows for the suppression of unwanted high-frequency os-
cillations. The dependence of the thermal fluctuation level on
the plasma � ��kinetic pressure/magnetic pressure� in a
gyrokinetic plasma30 and the presence of strange attractors in
electrostatic drift-wave turbulence with kinetic electrons31

are examples of phenomena that can only be addressed using
the scheme. For a one-dimensional model problem the elec-
tron probability distribution function �PDF�, in terms of the
Boltzmann response can be written as

Fe = ee�/TeF0 + h , �1�

where � is the electrostatic potential, F0 is the equilibrium
electron PDF, and h is the nonadiabatic response of the elec-
trons. As is apparent from the above equation, one can ex-
pect that by numerically evolving h only, the linear and non-
linear properties of the simulated plasmas will be improved,
since the response associated with the electrons that respond
adiabatically to the waves has been analytically removed. To
make connection with the conventional �f method32–34,36 one
can write Eq. �1� as Fe=F0+�f , where

�f � �ee�/Te − 1�F0 + h . �2�

Since the fluctuations are small, �e� /Te��1, one is tempted
to expand the right-hand side of Eq. �2� as

�f 	
e�

Te
F0 + h . �3�

In the linear regime, the two approaches11,12 described by
Eqs. �2� and �3� are equivalent. In order to systematically
remove all the terms involving the parallel dynamics in the
evolution equation for h, it is preferable to retain the full
form given in Eq. �2�. However one must now solve a non-
linear Poisson equation; such nonlinear elliptic PDE can be
solved iteratively using Newton’s method. However, the
present gyrokinetic formalism widely used in the magnetic
fusion community always assumes that e� /Te�1 and this
type of iteration is not necessary. However, at the tokamak
edge, the small amplitude assumption may not be valid and
a new type of gyrokinetic formalism along with the full
Boltzmann response may be needed.

B. Model equations for treating nonadiabatic
electrons in toroidal geometry

This section is devoted to the formulation of the scheme
of separating the electron adiabatic response from its nona-
diabatic counterpart in toroidal geometry, which is essen-
tially a generalization of the methodology presented earlier
in Refs. 11 and 12. The main differences are the appearance
of terms related to the magnetic field inhomogeneity, the
local variation of plasma parameters and the treatment of
zonal flows �which are of course absent in a one-dimensional
model�. In the absence of collisions and in the electrostatic
limit, the distribution function for species j is governed

37–39
by
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�Fj

�t
+ 
v��b̂ + ��b̂ � �� +

�

�cj
b̂ � �B + VE�

· �Fj − �b̂ + ��b̂ � �� · 
� � B +
qj

mj
� ��
g� �Fj

�v�

= 0,

�4�

where ��
g is the gyrophase averaged electrostatic potential,

VE=cb̂����
g /B is the E�B drift velocity, �� =v� /�cj is
the parallel gyroradius, �cj = �qjB� / �mjc� is the cyclotron
frequency, �=v�

2 / �2B� is related to the magnetic moment,

�= �b̂ ·��b̂ is the magnetic curvature and b̂=B /B is a unit
vector in the direction of the confining magnetic field. For
the electrons, the gyrophase averaged potential that appears
in Eq. �4� is replaced by the potential evaluated at the par-
ticle position itself; the replacement ��
g�� �for the elec-
trons only!� implies that terms of order O����k�

2 �e
2� and

higher are neglected �here � • � denotes an appropriate norm�.
The ion dynamics are modeled using the standard �f
scheme,33,36 which is a Monte Carlo method known as the
control variate method.3 The ion distribution function is writ-
ten as Fi=FMi+�f i, where FMi is a Maxwellian with tem-
perature Ti�r� and density n0�r�, and �f i is a perturbation
�assumed to be small�; substitution in Eq. �4� then yields an
expression for the marker weight W��f i /Fi,

dW

dt
= �1 − W�
VE · Gi −

e

Ti
Vgci · ���
g� , �5�

where Gi=�n�1+	i�
 /Vthi
2 −3/2��, �n�−�n0 /n0, 	i

���Ti /Ti� / ��n0 /n0�, 
�v�
2 /2+�B, and Vgci=v�b̂+�ci

−1b̂
� �v�

2�+��B�+c�E
g�B /B2 is the ion guiding center ve-
locity. The first term on the right-hand side of Eq. �5� repre-
sents the tapping of free energy from the ion pressure gradi-
ent, whereas the second term accounts for the work of the
electric field on the ion guiding center motion. One main
goal of this paper is to develop a viable algorithm to treat the
electron dynamics. The method presented below is a gener-
alization of the earlier schemes.11,12 In Ref. 11 a systematic
method for treating the electron dynamics was presented for
a simple one-dimensional problem; essentially it was sug-
gested to formulate an ansatz for the electron PDF of the
form Fe=H���FMe+h, where H��� is an unknown function
and h represents the nonadiabatic response of the electrons.
The specific form of the function H��� can be found by
demanding that all terms involving the parallel velocity dis-
appear. Following Refs. 11 and 18 we can generalize the
scheme to general toroidal geometry by writing

Fe = exp�e�� − ��
�/Te�FMe + h , �6�

where FMe denotes a Maxwellian with temperature Te�r� and
density n0�r�. Here ��
 denotes the flux surface average of
the electrostatic potential �or zonal flow28,40�

��
 �
1

�����0

2


d��
0

2


J�d� , �7�
where
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���� � �
0

2


d��
0

2


Jd� .

Here J���� · ��������−1 is the Jacobian of the transfor-
mation from the magnetic coordinates �� ,� ,�� to the Carte-
sian coordinates. As before h represents the nonadiabatic
electron response. The dynamics of the nonadiabatic part of
the electron distribution function is obtained by substituting
Eq. �6� in dFe /dt=0, which can be also be written in terms of
the weight W�h /Fe,

dW
dt

= �1 − W�
Ge · VE − � + Vde ·
e

Te
� ��
� , �8�

where Ge=�n�1+	e�
 /Vthe
2 −3/2��, Vde=�ce

−1b̂� �v�
2�

+��B� is the curvature drift velocity for the electrons, and
Vthe=�Te /me. By construction11, and unlike the conventional
�f scheme, there is no contribution from the free streaming
of the electrons along the magnetic field lines. As in
the one-dimensional version of the scheme11,12, one must de-
termine the so-called scalar polarization field,11

���e /Te��� /�t. In addition, we must also determine the
electrostatic potential itself. For this purpose we employ the
gyrokinetic Poisson equation15,16

�

�D
2 �� − �5 � = 4
e��n̄i − �ne� , �9�

where

�5 �x� =
1

2
n0
� ��
g�R�FMi�R,�,v��

���R − x + ��dRdvd� , �10�

��
g�R� =
1

2

� ���x − R − ��dxd� , �11�

and �ne is the perturbed part of the electron density response
of �Fdv, and F is given by Eq. �6�. Therefore, Eq. �9� be-
comes a nonlinear equation. However, people in the fusion
community, by following the gyrokinetic ordering, generally
solve the linearized version of the equation by assuming
that e� /Te is small. Therefore, the existing Poisson solver
in GTC �Ref. 28� can be readily used for our purpose. Here
x and R are the particle and guiding center positions,
respectively; � is the gyroradius vector with magnitude
�=v� /�ci, � is the local gyrophase, � is the electron-to-ion
temperature ratio, and �D is the plasma Debye length. The
electrostatic potential �Eq. �9�� is obtained by using a gener-
alized gyrokinetic Poisson solver27,28 that is based on the
physical process of gyrophase averaging in configuration
space �rather than in Fourier space�. In order to determine �
that appears in the weight equation for the electrons, we
proceed as in the one-dimensional case11,12 by operating with
� /�t on the gyrokinetic Poisson Eq. �9�, and by taking the
appropriate velocity moment of the Vlasov equation, Eq. �4�.
However, in contrast to the one-dimensional case, one must
pay special attention to the curvature and the finite Larmor

radius �FLR� effects; in the limit of �k��i��2, with
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�̃̃= I0�b�e−b�	�1−�i
2��

2 �−1�, the procedure outlined above
yield

n0��i
2��

2 � = �1 − �i
2��

2 � � · � , �12�

where �=�gc+�FLR,

�gc �� �b̂v� + VE + Vde�hdv +
e

Te
�� − ��
�

�� VdeFMedv −
1

2


�� 
v�b̂ +
c

B2 �E
g � B + Vdi�
��f i��R − x + ��dRdvd� , �13�

and

�FLR � c� FMe
E � B

B2 dv

−
c

2

� FMi

�E
g � B

B2 ��R − x + ��dRdvd� .

�14�

Here Vdj��cj
−1b̂� �v�

2�+��B� is the curvature drift veloc-
ity for particle species j and �E
g is the local gyrophase
averaged electric field. The contribution �FLR arises due to
the fact that the ion Larmor gyroradius is finite. Equation
�12� cannot be solved with the Poisson solver in GTC. In-
stead, we have used the latest finite-element interface devel-
oped by Nishimura et al.17 to link GTC with PESTc �Ref. 35�
for solving Eq. �12�. Note that the first term on the right-hand
side of Eq. �13�, which is related to the electron flux along
the magnetic field lines, dominates over the remaining terms;
the parallel electron flux, however, does not contribute to the
zonal component of � and other terms are important as far as
the computation of ��
 is concerned. To show this, we con-
sider the case of a plasma with circular �or nearly circular�
magnetic surfaces. As shown in the Appendix, Eq. �12� can
be used to approximately calculate the zonal component of
the polarization field

n0���i
2


d

d�

�g��


d

d�
����
�� + n0���i

2

1

�

d

d�
����g���N
��
�

= −
d

d�
�����
� ,

where ��=�� ·�, �N is the normal component of the mag-
netic curvature, and g��=�� ·�� is a metric element. Con-
sidering the right-hand side of the above equation we clearly
see that the parallel electron flux term in Eq. �13� does not
contribute to the radial flux �� since, for a plasma with
nested magnetic surfaces, B ·���0. In summary the com-
putational procedure for treating the nonadiabatic response
of the electrons in toroidal geometry is as follows: time ad-
vancing Eqs. �5� and �8� for the ion weight, W=�f i /Fi, and
the electron weight, W=h /Fe �which is associated with the
nonadiabatic electron response�, one can compute the right-

hand side of the gyrokinetic Poisson equation �9� and solve
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this integral equation for the electrostatic potential � �note
that the electron density perturbation contains a nonlinear
term in the electrostatic potential; taking into account that
e��− ��
� /Te�1, at least in the plasma core, this term can
be solved iteratively, or simply linearized as done in Ref.
18�; then determines the fluxes given by Eqs. �13� and �14�
and inverts Eq. �12� to obtain the polarization field �. It is
worth noting that the equation for the electron weight W
requires both scalar fields � and �, whereas the equation
governing the ion weight W depends on the electrostatic po-
tential � alone.

III. LINEAR BENCHMARKS AND PRELIMINARY
NONLINEAR RESULTS

In this section, the numerical method for the nonadia-
batic electron response in toroidal geometry and its imple-
mentation in the global toroidal code �GTC� �Refs. 18 and
41� are briefly discussed. As has been described in the pre-
vious section the scheme requires the global �toroidal� solu-
tion of an elliptic equation �12� for the new scalar field,
�� /�t. The extension of the scheme to finite � gyrokinetic
plasmas would also require the solution of such global ellip-
tic equations in toroidal geometry. Therefore, it is crucial to
develop an efficient elliptic solver for inverting equations of
the form ��

2 �=S, where S is a known “source term.” As
mentioned earlier, a finite difference formulation of the per-
pendicular Laplacian ���

2 � and its approximate inverse,
�=��

−2S, is a nontrivial exercise since the GTC code uses a
field-aligned mesh for computational efficiency. The conse-
quence of using the field line following coordinates19,42 is
that the �discrete� computational mesh on a given poloidal
plane displays an amount of “twisting” that reflects the shear
in the confining magnetic field B. Given the structure of the
computational mesh, it is best to use the finite element
method �FEM�. In this paper, we have used the FEM with
triangular elements; as a result the original elliptic problem
can be cast in matrix form as A ·�=S, where � and S are
column vectors and A denotes the sparse matrix containing
the geometric information pertaining to the perpendicular
Laplacian. The solution, �=A−1 ·S, is computed using the
scalable routines of PETSc �Portable, Extensible Toolkit for
Scientific Computation�.35 The Poisson solver for the inver-
sion of the elliptic PDE ��

2 �=S has been successfully
implemented in the GTC code and the details of the imple-
mentation have recently been reported.17

As just mentioned, the global gyrokinetic code GTC is
based on a computational mesh in configuration space that is
approximately aligned with the pitch of the magnetic field
line. For the strongly anisotropic modes �k� /k��1� that
characterize the ITG turbulence, this results in a considerable
improvement in the overall computational efficiency. The
consequence of using a field aligned mesh is that the FEM
decomposition is unique to a given poloidal plane. Following
Nishimura et al.,17 Fig. 1 shows a typical FEM grid, based
on triangular elements, on a specific poloidal plane with
4608 triangular elements corresponding to 2400 vertices.
Note that the low-resolution grid of Fig. 1 is used for illus-

trative purposes only, and the actual FEM grid used in the
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turbulence simulations covers most of the radial domain and
possesses a much higher resolution.

The present toroidal scheme has been benchmarked
against the numerical results14 obtained from the FULL code
which is comprehensive one-dimensional �radially local� ei-
genvalue code described in Refs. 43 and 44, and references
therein. The local parameters for the linear benchmark
are45,46 q=1.4 �at r /a=0.5�, R0 /Ln=2.2, R0 /LTe=6.92, global
magnetic shear parameter ŝ=r�dq /dr� /q=0.78 �at r /a=0.5�,
inverse aspect ratio �=a /R0=0.358 �here R0 is the major
radius, Ln is the density scale length, LTe

is the electron tem-
perature scale length, and a is the minor radius�. The safety
factor is of the form q=q0+q1�r /a�+q2�r /a�2 with param-
eters �q0 ,q1 ,q2�= �0.854,0.000,2.184�. The local parameters
for the linear benchmark are the same as the earlier bench-
mark between the FULL code, the GTC code using the fluid-
kinetic hybrid electron model,18 and the three-dimensional
global gyrokinetic GT3D code.29

The linear benchmarks and the nonlinear simulations
presented in this paper have been carried out in a computa-
tional domain with radial width r /a� �0.1,0.9� �the radial
width of the computational domain is about 125 thermal ion
gyroradii across�; the corresponding FEM grid has 81 920
triangular elements and 41 280 vertices. Figure 2 shows the
linear growth rate as a function of the ion temperature gra-
dient parameter 	i�LTi

/Ln for a fixed value of k��i=0.336
�at r /a=0.5�. The dashed line is the trapped electron mode
�TEM� branch obtained using the FULL code, whereas the
dotted line represents the ITG branch, both at r /a=0.5. The
plain line shows the linear growth rate computed using the
toroidal splitting scheme; the overall agreement is good ex-

FIG. 1. Low-resolution finite-element �FEM� grid for one poloidal plane.
The FEM grid has 2400 vertices �or nodes� and 4608 elements. In practice
the FEM grid actually used in turbulence simulations has a much higher
resolution with 41 280 vertices and 81 920 elements covering the radial
domain r /a= �0.1,0.9�.
cept perhaps for larger values of 	i. Figure 3 shows the real
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part of the mode frequency for the same parameters as in Fig.
2. For small 	i the mode rotates in the electron diamagnetic
direction �r�0; as the ion temperature gradient parameter is
increased the mode rotation reverses to the ion diamagnetic
direction. The plain line shows the results obtained using the
splitting scheme. Note that the method to compute the polar-
ization field, ���� /�t, is not unique; in fact it is possible to
use time-centered differences to evaluate �� /�t. The dotted
line shows the results obtained based on the time-centered
differencing technique for the polarization field. The good
agreement between the two methods actually highlights the
efficiency of the present scheme �6� for electron dynamics.
The dashed lines in Fig. 3 are those obtained using the FULL
code. These results are in good agreement with the results
presented in Ref. 18.

Nonlinear global simulations of ITG turbulence in the
presence of kinetic electrons were carried out using the same
parameters as those of Figs. 2 and 3 �in addition R0 /LTi
=6.92�. The turbulent radial heat flux Q averaged over a
radial annulus of volume V

Q �
1

V
� mi
n · c

�E
g � B

B2 FidRdv ,

is used to determine the ion heat diffusivity coefficient
�i=−Q / �dpi0 /dr�; here 
�v�

2 /2+�B is the kinetic energy
per unit mass, n=�� /�g�� is a unit vector normal to a mag-
netic surface and pointing outwards. Figure 4 shows the time
evolution of the ion heat diffusivity coefficient for a simula-

FIG. 2. Linear growth rate as a function of the ion temperature gradient
parameter 	i=Ln /LTi using the splitting scheme �plain line; squares� for a
fixed value of k��i=0.336. The linear growth rates associated with the TEM
branch �dashed line; triangles� and the ITG branch �dotted line; diamonds�
as computed using the FULL code are also shown.

FIG. 3. Mode frequency as a function of the ion temperature gradient pa-
rameter 	i=Ln /LTi using the splitting scheme �plain line; squares� and the
hybrid scheme �dotted line; diamonds�. The mode frequency associated with
the TEM branch �dashed line; upper curve� and the ITG branch �dashed line;

lower curve� as computed using the FULL code are also shown.
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tion with Nc
�e�=8 electron markers and Nc

�i�=8 ion markers
per computational cell. The dotted lines show the range of �i

values at cst /a=360 for various adiabatic runs with the same
local parameters and the same number of ion markers; the
multiple adiabatic runs were carried out by slightly altering
the initial location of the ion markers in phase space. From
Fig. 4 we can infer that the ion heat diffusivity in the pres-
ence of kinetic electrons is about 2 to 3 times larger as com-
pared to the case with adiabatic electrons. Figure 5 shows the
instantaneous sheared flow �normalized to the ion sound
speed cs=�Te /mi� at cst /a=360 for the same simulation and
physical parameters as in Fig. 4. The amplitude of the
sheared flow in the presence of kinetic electrons is compa-
rable to that obtained with adiabatic electrons. However,
in contrast to the adiabatic case, the radial structure of
the sheared flow has additional features with much shorter
wavelength. In particular, simulations with kinetic electrons
have shown that sheared flows with �radial� wavelengths
�r��a�i are always present. There are significant differ-
ences between the fully kinetic and adiabatic cases; �a� the
time evolution of the ion heat diffusivity in the presence of
trapped electrons does not show the presence of significant
secondary or tertiary peaks as in the adiabatic case; �b� the
E�B sheared flow has a much finer radial structure in the
presence of trapped electrons; these effects �a� and �b� are
actually related, but this aspect will be addressed in more
detail in a future publication.

FIG. 4. Peak ion diffusivity coefficient as a function of time for simulations
with Nc=8 ions and electrons per cell. The radial extent of the simulated
plasma is equivalent to 125 thermal gyroradii. The horizontal curves show
the range of �i values at tcs /a=360 in the adiabatic limit for various initial
conditions.

FIG. 5. Shear flow at cst /a=360 �fully developed turbulent regime� in the

presence of trapped electrons for the same parameters as in Fig. 4.
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IV. CONCLUSIONS

The efficient numerical scheme which splits the adia-
batic electrons from the nonadiabatic electrons has been suc-
cessfully implemented in a global toroidal code. Linear
benchmarks with the FULL code43,44 show reasonable agree-
ment with the global, initial-value code. For a medium sized
plasma �minor radius a=125�i, where �i is the ion thermal
gyroradius�, the ion heat transport in the presence of kinetic
electrons increases by a factor 2–3 compared with the adia-
batic case. In addition, the E�B sheared flow has a shorter
radial structure for the case with trapped electrons. This pa-
per is part of ongoing work, and further simulations are re-
quired to understand the properties of the ITG turbulence in
the presence of magnetically trapped electrons.
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APPENDIX: ESTIMATE OF ZONAL FLOW
ASSOCIATED WITH THE POLARIZATION FIELD

The equation governing the polarization field
���� /�t is

n0��� − �5 � = � · � , �A1�

where

�5 =
1

2
n0
� ��
gFMi��R − x + ��dRdvd� . �A2�

For the remainder of this Appendix it is convenient to intro-
duce a set of useful definitions. Consider an arbitrary func-
tion F=F�� ,� ,�� specified in terms of the magnetic coordi-
nates �� ,� ,��; the Jacobian of the transformation from the
magnetic coordinates to the Cartesian coordinates is denoted
J���� · ��������−1. The flux-surface average of F is de-
fined as

�F
 �
1

�
�

0

2


d��
0

2


FJd� , �A3�

where

���� � �
0

2


d��
0

2


Jd� , �A4�
whereas the volume average of F is
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F̄ �
�

0

�b

�����F
d�

�
0

�b

����d�

. �A5�

Here �b is the toroidal flux function evaluated at the plasma
boundary. Given the fact that the function F is periodic in the
poloidal and toroidal angles it follows that

� �F

��
� = � �F

��
� = 0, �A6�

and

� �F

��
� =

1

�

d

d�
���F
� . �A7�

A direct consequence of Eqs. �A6� and �A7� is that the flux-
surface average of the divergence of an arbitrary vector field
A assumes the simple form of

�� · A
 = � 1

J
 �

��
�JA�� +

�

��
�JA�� +

�

��
�JA����

=
1

�

d

d�
��A�� , �A8�

where A	�A ·�	 for 	= �� ,� ,��. Assuming that the polar-
ization field � can be written as a linear superposition of
plane waves �a better approach would be to use the Fourier-
Bessel representation as suggested in Ref. 47 although the
lowest-order expression for the zonal component ��
 remains

unaffected� one notes that �̃̃=�0�b�� where b=k�
2 �i

2; here
�0�x�=e−xI0�x� and I0�x� is the modified Bessel function of
order zero with argument x. Writing the Taylor expansion of
�0 as

�0�b� = 1 − b + �
k=2

�

�kb
k, �A9�

and using the transformation of b�−�i
2��

2 from Fourier
space to real space, one obtains

�5 = �I + �i
2��

2 + �
k=2

�

�− 1�k�k�i
2k��

2k�� , �A10�

where I is the identity operator. If kzf denotes the magnitude
of the �radial� wave vector of the zonal component of � and
if k� denotes the typical magnitude of the wave vector asso-
ciated with �− ��
 we note that kzf

2 �i
2�k�

2 �i
2�1. Therefore,

to a very good approximation, we can neglect the last term in
the square brackets in Eq. �A10�. It follows that

��5 
 	 ��
 + ��i
2��

2 �
 	 ��
 + ��i
2
���

2 �
 . �A11�

The last expression in the above equation can be justified as
follows. If LTi

= ��Ti /Ti�−1 is the scale length associated with
the ion temperature profile and LB= ��B /B�−1 is the scale
length of the magnetic field, and noting that �i

2�Ti��� /B2, it
follows that �i

2= ��i
2
+O��i

2LTi
/LB�	��i

2
 �this approxima-
tion breaks down for a flat ion temperature profile for which

LTi

/LB can be of order unity or larger�. The last step of the
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derivation involves the property of �Fg���
=g����F
 for an
arbitrary flux-surface quantity g���. In order to proceed
further we must derive the explicit form of the perpendicular
Laplacian in toroidal geometry. First the perpendicular
gradient of F can be defined formally in operator form as

����I− b̂b̂� ·� �where b̂=B /B is a unit vector along the
magnetic field direction and I is the unit tensor�, or in ex-
plicit �and more practical� form as

��F = �F − b̂
�F

��
, �A12�

where �F /��� b̂ ·�F �the coordinate � is related to the dis-
tance along a given magnetic field line�. Operating with ��

on both sides of Eq. �A12� yields the relation

��
2 F = � · ��F + � · �F = �2F −

�2F

��2 − � · b̂
�F

��

+ � · �F , �A13�

where �=�b̂ /�� is the magnetic curvature. Using Eqs. �A8�
and �A12� we obtain

���
2 F
 	

1

�

d

d�

�g��


d

d�
���F
�� +

1

�

d

d�
����g���N


��F
� , �A14�

where �N= n̂ ·� is the normal component of the magnetic
curvature; here n̂=�� /�g�� is a unit vector orthogonal to B
and normal to the magnetic surface �=const. In deriving
Eq. �A14� we have also made use of the fact that the shape of
the magnetic surfaces do not depart strongly from circularity,
that is

��g�̄�̄�2
1/2 � ��g�̄��2
1/2;��g�̄��2
1/2, �A15�

where �̄�� /�b� �0,1� is the normalized toroidal flux func-
tion. Combining Eqs. �A1�, �A10�, and �A14�, and again us-
ing the relation �A8�, we arrive at the following estimate for
the zonal component of the polarization field �=�� /�t,

n0���i
2


d

d�

�g��


d

d�
����
�� + n0���i

2

1

�

d

d�
����g���N
��
�

= −
d

d�
�����
� ,

where ��=�� ·�.
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