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A novel method to calculate the neoclassical radial electric field in stellarator plasmas is described.
The method, which does not have the inconvenience of large statistical fluctuat@mss of the
standard Monte Carlo technique, is based on the variation of the combined parallel and
perpendicular pressures on a magnetic surface. Using a three-dimensional gyroirnetite, the
calculation of the radial electric fieldg() in the National Compact Stellarator Experimé@t H.
Neilson et al,, Phys. Plasmag, 1911 (2000] has been carried out. It is shown that a direct
evaluation ofE, based on a direct calculation of the radial particle flux is not tractable due to the
considerable noise. @001 American Institute of PhysicgDOI: 10.1063/1.1370363

I. INTRODUCTION the NCSX plasma.lt is shown that a directMonte Carld
calculation of the radial electric field based on the radial
The lack of toroidal symmetry of stellarators requires aparticle flux is not tractable due to the large statistical fluc-
fully three-dimensional description of the plasma. The departuations; interestingly, the gyrokinetic calculation using the
ture from axi-symmetry in stellarator plasmas leads to envariation of P, andP, on a given magnetic surface does not
hanced neoclassical losses in the low-collisionality regimeexhibit large statistical deviations, which allows for a deter-
Another related feature of the effect of the non-axisymmetrymination of E, .
of the plasma is to strongly modify the drift orbits of the The article is organized as follows; in Sec. Il, we de-
particles(see the reviews by Sadgdeev and Galeswd by  scribe the method used to calculate the radial particle flux.
Kovrizhnyk?). The numerical method, the computational details and the re-
Over the past few years, there has been a renewed intesults are given in Sec. Ill. Concluding remarks and future
est in the so-called quasi-axisymmet(@A) stellarator con- application of the method are presented in Sec. IV.
cept; that is the equilibrium magnetic field strength is ap-
proximately symmetric in the magnetic toroidal andle
after transformation to Boozer coordinafes.stellarator ex-
periment based on the QA concepts is currently being dey THE METHOD
signed in the United Statésthe National Compact Stellar-
ator ExperimentNCSX)® is a three-field period, low-aspect- In this section, we describe the method used to deter-
ratio configuration which has good transport and stabilitymine the radial electric field based on the local variation of
properties”’ One important feature of the QA concept is the parallel and perpendicular pressurBsgndP, , respec-
that the plasma can rotate in the direction of quasitively). The quantitiesP, and P, are evaluated by taking
axisymmetry, and it may be possible to exploit and controlappropriate velocity moments d@if=f—f,, wheref is the
the formation of transport barriers, as in advanced tokamakotal distribution function whereaf, is its equilibrium part
plasma$. Since the radial electric field is a major conterider (usually f, is taken to be a Maxwellian distributionThe
in the formation of transport barriers, an accurate calculatioperturbed part of the distribution functioéf, evolves due to
of the radial electric field is an important aspect of QA plas-the combined effects of magnetic drifts and spatial inhomo-
mas. The reader who is not familiar with current trends ingeneity. Another subtle point regarding the numerical calcu-
stellarator design can consult Ref. 10. lation is that the velocity moments féY, andP, are carried
In this article we describe a novel method to calculateout in small annulugi.e., finite volume around a magnetic
the neoclassical radial electric field in asymmetric toroidalsurface of reference; this point is discussed in more detail in
plasmas. The low-noise method, which exploits the advanSec. IIl.
tages of thesf algorithm!'~*%is based on the variation of In stellarator geometry, it is convenient, both for analyti-
the combined parallel and perpendicular pressuRgsapd cal and computational purposes, to use magnetic coordinates.
P,) on a magnetic surface. As an example, we have calcuFhe confining magnetic fieldB is written in Boozer
lated the radial electric fiel&, for the C82 configuration of coordinateas
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B=u()VIXVy+Vyx Ve,

.Y
B=g(p)VIHI()VO+B,. Vi,

where # and { are the poloidal and toroidal angles, respec-

tively; ¢ is proportional to the enclosed toroidal fluxis the
rotational transform; and() andl(y) are, within a multi-

plicative constant, the poloidal and toroidal currents, respecdial particle flux(r : S| _
gearticle flux vanishes. However, in quasi-axisymmetric tor-

tively. In these coordinates the Jacobian of the transform
tion, J=[V¢-(VOXV)] L, satisfies JB2=g(¢)

+ ()1 () =F(¢). Consider the momentum of the balance
equation for the ions

dv
Prat

—V-P+en

+F+R, 2

VXB
E+——
C

whereV is the fluid velocity,p is the mass densitR is the
force due to collisionsF represents thépossible applied

force, andP= P bb+ (I —bb) P, is the pressure tensor; here
b=B/B is the unit vector along, P, and P, are, respec-
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=YE, ,t—) will provide a measure of the time variation of
the chargeQ. For one-species simulation, one can then de-
termine the radial electrig!®) by solving

S.[E{®]1=0. (4)

Alternatively, one can measure the flux surface-averaged ra-
) (E;) and determin€E(®) such that the

oidal configuration, the large statistical fluctuationd’incan

be comparable to, or larger than, the time-averaged signal.
As will be shown in the next section, a direct measurement
of the radial particle flux is too noisy to be of practical use.
Alternatively, a dynamic calculation using the global gyroki-
netic toroidal code(GTC),*®> which has been rigorously
benchmarked against analytical tokamak neoclassical trans-
port theory*® shows thatS(E,,t) reaches a low-noise
asymptotic value after a few ion-ion collision times. The
general behavior ofS is of the form S(E,,t)=S;

X exp(—Ct/r;)+S,[1—exp(—Ct/7)], wherer; is the ion-ion

tively, the parallel and perpendicular pressures. We note th&!lision time, So(E,) =S(E, ,t=0), andC is a constant of

Eqg. (2) can be obtained by taking the first-order velocity
moment of the kinetic equation in the small gyro-radius
limit. Taking the scalar product @;=dr/d¢ (wherer is the
position vector with Eq. (2), and operating with(. ..)
=[[...7(¢,6,0)ded{, we obtain

P

< > <a—g>‘”’

where P=(P,+P,)/2, T,=((R+F)-g,) is the torque due
to applied forces and collisional dralg; is the toroidal com-
ponent of the canonical momentulm=pV +eA/c, where
A=¢V 0—xV{ is the vector potential andy is the po-
loidal flux. In deriving Eq.(3) we have assumed that the
electrostatic potentialyet to be determinedis of the form
d=P(), and we have neglected the loop voltage [t
=0). Using Eq.(1), the first term on the left-hand side of
Eq. (3) can be obtained from

() dQ

c dt

dL,
dt

)

<ene§- V:B >=§fan-(B><eg)Jd0d§
e () dQ
ZEL(l[I)JF-dO},ZTH.

Here Q is the total chargel’=nV is the particle flux, and
do,,=JVyded{ is an area element normal to the magnetic
surface=const and pointing outwards. The first term on
the right-hand side of Eq3), which is related to the pressure
tensor term in Eq(2), is derived in the Appendix. The par-
allel and perpendicular pressures which enter

S=(aPla¢)

are calculated from the velocity moments &F which, in

turn, depends on the particle trajectories. The particle trajec-

tories being affected by the applied electric fielt=
—(d®/dy)V o, we may writeS=S(E, ,t). After a few col-
lision times the distributionsf will relax and S..(E,)
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the order of unity. It is interesting to note th&tprovides
information on the asymmetric part of the particle transport.
As it turns out,S strictly vanishes in an axisymmetric con-
figuration (such as an ideal, two-dimensional tokamak
plasma. To show this, we use the definition of the flux-

surface average and perform an integration by parts:

s:—f f ﬁ';—‘Zdadg:—<ﬁ>jl‘;—§>.

Noting that 7B? is a flux surface quantity it follows that
J Yoglot=—2B 19Bld¢ and
5 a7

{25 ),

showing thatS=0 in an axisymmetric configuration. We
note that the off-diagonal contributions in the pressure tensor
have been neglected@n terms of the smallness parameter
pi/Rp). The inclusion of finite Larmor radiud-LR) effects,
such as in the paper of Rosenblhal,'’ can lead to non-
ambipolar transport.

P,+P, B

®)

. NUMERICAL METHOD AND RESULTS

In this section, we describe the low-noise numerical
method used to evalua®E, ,t), which provides a measure
of the radial particle flux. The computational domain and the
collision operators are also discussed. Finally we present
specific numerical results for the NCSX plasma.

It is convenient to write the parallel and perpendicular
pressures in terms of their respective Fourier compor{ents
a given magnetic surfagefor example, the perpendicular
pressure can be written as

PJ_:Em,n(PL)m,neXF[i(m0+an§)]r (6)

whereN,, is the number of field periods of the configuration

and the Fourier coefficients are calculated according to
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=|VB/B| 1~R as the typical scale length of the magnetic
field inhomogeneity. Therefore the typical drift time within
the layerAy is tq=Ar/V4, which is chosen so thaty
> 7, , wherer, is the relaxation timétypically a few ion-ion
collision time. Alternatively, one can assume periodicity in
the radial direction, that is the particle that escapes the radial
domaindy can be put back in the same domain; in this case,
the number of Lagrangian markers remains constant. Differ-
ent schemes can be used and compared to randomize the
position (4, 8,) and the pitch of the particle. However, as in
a real experiment, one is interested in tiiebal radial pro-
FIG. 1. Computational domain faif calculations of the radial electric field. ~ file of the electric field; one important aspect of the method
The magnetic coordinates age 6 and{. The particles are initialized at the previously described is that it can easily be extended to the
toroidal flyx surface_ap. The width of the annulus is such thay/¢,<1, entire plasma volume, without additional assumptions re-
where y, is the toroidal flux at the plasma boundary. . .
garding the boundary conditions.

The guiding center motion and the collisions will spread

the particles toward equal density in pitch and over the mag-

(P)mn netic surface; therefore it is convenient to make the replace-
27y o 2m 2 i 3 ment (again using the particular form of the Jacobian in
dof§dZ(movs/2)6f exd —i(mé+nN d
:fo Jo"dg(mol 2)17 ZE ( p)Jd7 ) Boozer coordinates and the definition of the volume element
JoTdefgTd in magnetic coordinatesi®x=7dyd 6 d?)
@) [1d0d = [T} (o) d% = [F(p)dy] 1[Bd.

In practice the particle trajectories are integrated in a VElumel'herefore one can calculate the Fourier coefficients for the
enclosed between two neighboring toroidal flux surfages perpendicular pressure according to

—Ayl2 andy+ Ayl2 (Fig. 1). Herey is a magnetic surface
of reference and\ ¢ is chosen so thah ¢/, Where, is B Jd3x(mu?/2) 8tBZ exd —i(mo+nNy{)] 3
the toroidal flux at the plasma boundary, is much less thaﬁpi)m’”_f [d3xB? d%.
unity. However, due to the combined effects of magnetic (8)
drifts and background inhomogeneity, the particles will drift
outside the layeAy, the number of Lagrangian markers . >
within the layer will decrease in time, and the statistics as°n theé magnetic surfacg. _

sociated withP, andP, will become poorer. To bypass this As is well known in neoclassical theory, the momentum
difficulty, particles are uniformly loaded in the layar but and energy conservation propert|es_ of the coII|§|_on operator
the perpendicular and parallel pressures are monitored in tHd€ important for accurate calculation of quantities such as
annulussy<Ay (Fig. 2. Introducing the radial coordinate t.he rad|a! partlclg flux. The gyrop.hasei\d collision operator for
r=\/y/B, (where as before is the enclosed toroidal flyx ~ lIke-species collisions can be written as
one hasAy=y(r+Ar)—y(r)=~2ByrAr from which we

The same method was used to evaluate the parallel pressure

2

J 17
getAr~Aul(2\/Byy). The radial component of the curva- C(6f)= x(vnﬁfﬂ— — (v of)+ 5 (vl of)
ture drift velocity is of the order o¥/y~v(pin/R), Where I duy L
v, IS the thermal velocityp,, is the associated thermal gy- P 5
roradius andR is the major radius; here we have used + _2(,,”5f)+ . z(”i s5f), 9
dvj v7)
where
oy
e v =vou F,
1
/I v, =v[v?(2F—H—G)—202G],
1 v vl =2p0020,(H=G),
; VHZ Vo(foIZ-f- vfG/Z),
: A vi=2v? (vZH+viG). (10)
4 kL In Eq. (10), vo=4mng03a5InA /(w3 is the basic fre-
? quency for collisions of test particles with background

FIG. 2. The Lagrangiadf markers are uniformly distributed in the layer of particle 8. F, G, andH are dimensionless functions that can

width §¥; the radial width is chosen such that the typical drift time of an be V!qge? 1/|2n terms of the Mazxwzell mtegra@(x)
ion in the layer is larger than the relaxation time of the perturbed parallel= 27~ ~“f gy exp(—y)dy, wherex=v /vthﬁ andvpg is the

and perpendicular calculated in the annudiys centered aty. thermal velocity of the background particles. The functions
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FIG. 4. Radial particle fluxegarbitrary unit3 at the magnetic surface

Yl ,=0.7 as obtained from a direct measuremghin, broken ling and

from the fluid moment approadihick line). The perpendicular and parallel
pressures relax on a time scale of the order of a few ion-ion collision times.
The applied radial electric field is zero and the time has been normalized to
FIG. 3. Magnetic surface of the three-field period National Compact Stelthe jon-ion collision timer;; .

larator ExperimentfNCSX). Although the shape of the magnetic surface is

largely different for that of a comparable tokamak, the equilibriifireld is

approximately symmetric i (magnetic toroidal ang)eafter transformation . . .
to Boozer coordinates. radial particle flux calculated from the velocity momefs

andP, .

The electron current densitgalculated for large) as a
F, G, andH areF(x)=(1+m,/mgO(x), G(x)=0(x)[1  function of the normalized radial electric field,=
—1/(2x)]+d®/dx and H(x)=0(x)/x. The test-particle —ad/dr(ed/T;(0)) is shown in Fig. 5. The electron current
drag and diffusion can be implemented by utilizing a Montedensity displays an almost linear dependenc&pnThe ion
Carlo method due to Xu and RosenbldthThe particle  current density, shown in Fig. 6, shows, however, a strong
weights are modified such that the collision operator annihidependence on thg, parameter. The largest ion flux is ob-
lates a shifted Maxwelliaf For ion-electron collisions a tained forE,=—0.2. We note that the ion flux is typically
Lorentz collision operator is used, and its Monte Carlotwo orders of magnitude larger than the electron flux for
implementation has been discussed elsewtiere. small electric fieldnote the scale difference between Figs. 5

For the simulations presented in this article, the trajectoand 6. By inverting the relatiorfi[EEO)]:Fe[EEO)], we ob-
ries of a set of X10° Lagrangian markers have been tained E§0)2_0_87 statvolt/cm, that i£50)2—26.2 KV/m
integrated®~?* with a time stepAt/7;=4x10 % Colli-  (which corresponds to the stable rpdEor illustrative pur-
sional effects are calculated every ten time steps. The con-
fining B field and the shape of the magnetic surfaces
(R,Z,¢) have been specified in terms of Fourier se(i€ig.

3); a set of 30 Fourier harmonics have been retained in the g
calculations. Other parameters are the on-axis magnetic fieltZ,
Bo=1.26x10* G, central ion temperaturg (0)=2.76 keV,
central electron temperatufg,(0)=2.14 keV and central
plasma density,=6.73x 10" cm ™2 (these parameters are
the typical design parameters for NC5Xhe magnetic sur-
face of reference is located &t ,=0.7. At each time step,
the local(i.e., within ¢; see Fig. 2 perpendicular and par-
allel pressures from each processor elem@&H) are col-
lected onto a single PEsay PE=0); the Fourier coefficients
for P, and P, are then calculated according to E@). All
numerical parallel computations reported here have carriec
out with 16 PEs.

The radial particle flux obtained from a direct measure-
ment of the radial particle fluxarbitrary unit$ is shown as
the jagged curve in Fig. 4in this case the applied radial
electric field is 0 and the background distribution functfgn
has been I(_)ad?d as a Maxwellian W{M‘>=0)' Itis nOt,ed FIG. 5. Electron current density as a function of the normalized radial
that the noise is comparable to the S|gnal; to determine thgectric fieIdEr=—gd/dr(ed)/Ti(O)), wherea is the average minor radius

relation 1—‘r:rr(Er)_ from a dir?Ct r_nea_sure_ment IS NOt ACCU- of the ast closed magnetic surface, an(0) is the ion temperature at the
rate. As a comparison, the thick line in Fig. 4 represents thenagnetic axis.
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whereb=B/B is the unit vector alon@, | is the unit dyadic,
andP, andP, are, respectively, the parallel and perpendicu-

w

i

g 10 N T T T T T X _~

~ X lar pressures. We can also write E@Al) as P=PBB

& sl . +P, 1, whereP=(P,— P, )/B?. The divergence of the pres-
g i sure tensor then reads

w 6F .

~ L -~ o~

o B V.P=B(B-VP)+PV.(BB)+VP,, (A2)
% >k 3 where the second term on the right-hand side can be calcu-
5 I ] lated using the relatiorW B%/2=Bx (V xXB)+(B-V)B so
- of 1 that

C r _

8 o .

; —2 i PR SRN R TR SRR N S SN SN SR U SR S S S ] 1

°c 5 _4  _9 0 5 4 6 V.BB= ;VB?-BX(VXB). (A3)

C

.0

Er

FIG. 6. lon current density as a function of the normalized radial electricUsing Ampere’s law, 4-J=cV X B, and the radial force bal-
field (plasma parameters are the same as in Big. 5 ance,JXB=cV Py, one getsBXx (VXB)=—-47wV Po and
the divergence of the pressure tensor now reads

poses, the calculations have been carried out for a single L
magnetic surfacémore precisely, for a single annujubut a V-P=B(B-VP)+ P( iVB2+4x7V Po) +VP,. (Ad)
global calculation would lead the variation & with the

radial coordinate. Taking the scalar product of EGA4) with e,=dr/d¢ where

r is the position vector angg={#6,{} one gets
IV. CONCLUDING REMARKS

In this article, we have presented a method to calculate
the radial electric field in stellarator plasmas; our method is e¢~(V~P)=B¢,(B-VI~3)+
particularly useful for toroidal plasmas which depart weakly
from axisymmetry(e.g., the “quasi-asymmetric concept”
It is has been shown that a direct measurement of the radialhere we used the fact that the equilibrium pressure is a flux
particle flux is very noisy, and not of much practical use forsurface quantity,Po=Py(#). In Boozer coordinates, the
a direct calculation oE,. The moment approach, however, product of the Jacobian and the magnetic field strength
shows a relatively smooth behavior and reaches asquared is a flux surface quantity, that &%= F (), where
asymptotic value after a few ion-ion collision times. TJ=[V¢-(VOxV{)] ! denotes the Jacobian aRdy) is a

The method presented in this article can be improved byinear combination of the poloidal current, toroidal current
including the off-diagonal terméwhich are~p;/Ry times  and safety factor. We introduce the flux-surface average op-
smaller than the diagonal terinm the pressure tensas. erator(*) as
However, since the dominant symmetry breaking term in the
B, spectrum is much larger than the smallness parameter
pi/Ry, one can, in first approximation, neglect the off- <.>EJ f J(+)dedc. (A6)
diagonal terms in the pressure tensor

An extension of the method presented in this article can
be used to determine the damping rates of toroidal and pdt is easy to show thate) annihilates thé3- V operator, that
loidal flows in stellarator plasmas; this is left for future work. is,

P P
£82+ —, (A5)

P
2 de
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APPENDIX: DIVERGENCE OF THE PRESSURE 1/ 9
TENSOR <e¢-<V-P>>=§<£<P+PL>>, (A8)
The pressure tenso, can be written as

P=P,bb+P, (I-bb), (A1)  where we used EqA7) and
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_ JB? P,—P, 9B?
il TP b
de B2 de

1
B*(P, — P)—- ( Bz>
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“\ T PTG g

Jd (1
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