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Sheared-flow modes in toroidal geometry
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Using a Fourier—Bessel representation for the fluctuatingbulenj electrostatic potential, an
equation governing the sheared-flow modes in toroidal geometry is derived from the gyrokinetic
Poisson equation, where both the adiabatic and nonadiabatic responses of the electrons are taken
into account. It is shown that the principal geometrical effect on sheared-flow modes of the
electrostatic potential is due to the flux-surface average Bf WhereB is the magnetic field
strength. ©2000 American Institute of Physids$§1070-664X00)00302-5
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It is now generally accepted in the fusion community f 9%

that Iovy—frequency, small-sc_ale m_stablhtleba.g., drift where&)z@(r)—(@) (RooV), =Rt p is the particle

waves, ion temperature gradient-drivéfTG) modeg are osition, R is the uigdin gcenter osgitioré---> denotes a

major contenders for the anomalous, cross-field transport P ' gc 9 g Pos *orge o

observed in tokamaRsand stellarator$.There is some ex- gyrophase average keeping the guiding center position fixed,
' p=8 XVl w, is the ion gyroradiusg=B/B is the unit vector

perimental evidenCethat (equilibrium) sheared flows(or along the confining magnetic fields, is the ion cyclotron
zonal flow$) can have a strong impact on the turbulence- g 9 9 © Y

driven cross-field transpoftTherefore an accurate calcula- freque_ncy,,u_ \./i/(ZB) 'S the magnetic mqmenF,l Is the

. . . : . (total) ion guiding center distribution and, is the electron

tion of sheared-flow modes in toroidal geometry is an impor- ' . . .

tant issue density. The aim of this paper is to calculate the flux-surface-
In this paper, sheared-flow modes in toroidal geometr averaged component of the electrostatic potentidlys,

\ . . . i
are calculated from the gyrokinetic PoissoniGKP) from the GKP equatioi(l) in toroidal geometry. The opera

equatiorf A change of coordinate system allows us to writetIon deg‘{ 16(Rge—r+p) acts tp transform the guiding
. : o center variable§R.,v} to the particle variabler, v}i. Al-

the fluctuating electrostatic potential in terms of Bessel— . -

: : oo thoughF;, (@), andB are functions of the guiding center

Fourier series. The case of a cylindrical plasma has bee\rllariables the integrand in equatiét) also depends on the

considered by Li, Lee, and Parker. In an unpublished report ’ g 9 P

these authors discuss the solution of the full GKP in cyIin-part'CIe variablelr, v} through®. We write the ion distribu-

drical geometry with circular magnetic surfaces and no azi-tlon function asF;=Fi, (equilibrium)+ oF; (fluctuatiory

muthal magnetic field. By introducing a coordinate transfor-and assume that the equilibrium partfafis Maxwellian
mation, we extend the work of Li and co-workers to toroidal L No(Rge)
geometry; furthermore, the main goal of this paper is to con- 10 277vt2hi
sider the calculation of shea}red—flow modes in tor0|.dal gei/vherevthiz(Tio(Rgc)/mi)l’zis the fon thermal velocity anti
ometry, rather than the solution of tkiill) GKP in toroidal o Y s too _
. . : . satisfies the normalization conditioft”..dv f(Ryc,v,)=1.
geometry, which requires a numerical approatthis shown . : ! 4
The volume element in velocity space is defined dis

that the principal geometrical effect on sheared-flow modeszzwvL dv, dv,. Assuming that|dsF,/ou|<|dFldp|

is due to the flux-surface average of the inverse of the mag- . e . o .
netic field strength. The paper is organized as follows; igand uSINgF;o(Rgc) ~Fio(r) andTip(Red) ~Tio(R), carrying

Sec. Il, we introduce the gyrokinetic Poisson’s equation;Eg::;rr:]eesmtegra“on ovew; in Eq. (1), the GKP equation
magnetic, toroidal(Shafranov-lik¢ and cylindrical coordi-

nate systems are discussed and the transformation between fw ~ 2 _Tio(r)

guiding center and particle coordinates are given in Sec. I, 0 (P )par/1 €XQ Vi/z)dvi_eno(r) (Ni=Ne), (3
in the same section, the flux-surface average of the GKP

L . : . hereV, =v, /vy, is the normalized perpendicular velocity,
equation is derived and an equation governing the sheared- . . .
flow modes in toroidal geometry is obtained; we conclude ***)par denotes a gyrophase angle keeping the particle posi-

' t

exp(— uBIVE) T (Rye,v)), 2

with some remarks in Sec. IV. lon fixed and
TEJ ngcJ dvFi(Rgc,V) 8(Rge—r1 +p) 4
Il. GYRO-KINETIC POISSON EQUATION can be calculated numerically by keeping the guiding center

position fixed. The electron density can be written ras
Assuming that the Debye length is much smaller than=n®+nM wheren® and n* are, respectively, the
the ion thermal gyroradius and neglecting electron gyroraadiabatic and nonadiabatic parts of the electron density. The
dius effects, the GKP equation can be writteft’ds* adiabatic response if of the form™«®—(d)g, where
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FIG. 1. Cylindrical coordinate syste(R, Z ¢) and local toroidal coordinate : {
system (_,0, ,¢ =¢) in toroidal geometry. A magnetic surfacg l} X
=const(plain line) and a tokamak-like magnetic surfagdotted ling are \:::::\43 :
shown. 9

. i FIG. 2. Using the local coordinate systéfig. 1), the particle positiont,
< >Sden0tes an average over the magnetic su next and its guiding center positionRy,; can be labeled byr, 6, ¢) and

section. (Ryc. 8. #0), respectively. Here=(r-r)*? andRy=(Rye Ry ¥

11l. MAGNETIC AND TOROIDAL COORDINATES

This definition is convenient for configurations with helical
magnetic axis(e.g., heliac-type configurationsThe curve
gr'L=const describes a circle in the plage= const. Note that
in generalVpXxVr #0, so thatB-Vr #0 along ther,

We consider a fully three-dimensional configuration
with closed, nested magnetic surfaces. The confining ma
netic field B is written in straight-field line coordinates

{p, 0,4} as =const curve. Using Eq$6), one can invert Eq47) to get
B=VaxVV¥, (5) - . (Fg_)
—7-qgis the field | tan (p,0.0)= —————— )
wherea={—q# is the field line label, 2V is the enclosed R.(p.0,0)— Ry

poloidal flux, 6 is the magnetic poloidal angle ardis the

magnetic toroidal angle. The radial label is dengieahd, by ~ and
definition, B-Vp=0. There is some freedom in specifying — b 124 92— L2
the radial label; here, for convenience, we defipe ru(p 0.0 =[[Ru(p. 6.0 =Rol"+Z(p, 6,017 (10

E\/¢T/¢T(57, where ¢ is the toroidal flux enclosed within where the explicit dependence on the magnetic coordinates
the magnetic surface, ané” is ¢+ evaluated at the plasma {59, 71 is shown. Although the inverse transformatici®s
boundary. By construction the radial label runs frortMag-  and (10) are exact, the fact that, in generMpx Vr #0,

netic axig to 1 (last closed magnetic surfac&he magnetic  complicates the representation of the fluctuating electrostatic
surfaces can be specified in cylindrical coordinates; for inpotential® in the gyrokinetic Poisson equation. As we shall
stance, in the equilibrium code VMEE' an expansion in  see below, it is convenient to introduce a flux surface aver-

Fourier series is used aged toroidal systerr, 6, ¢}. The radial label is defined as
_ Mmax  +Nmay r=(r.(p,0,{))sla where a=(r (p=1,0,{))s and {--*)g
R=R(p,6,0)= 20 2 Ryn oSO un), denotes an average over the magnetic surface. For an arbi-
M=0 N=—Npax

trary functionF, (F)g is defined as

M max + Nmax

2=2(p.00= 2 % ZmsSnOuw),  © <F>s<535,% fozwdffohd?ﬂmfw(m@, (11)

M max + Nmax

™ ~ . where 7=[Vp- (V?x V?)]*l is the Jacobian of the trans-
perl\/|2=0 M=2Nmax PunSIOMN), o mation and

- 2
d=di(p,0,0)={— N

where Oy =M 6+ N,N¢ and Ny, is the number of field zfz” —f“ —

periods of the configuration. For intermediate analytical cal- “Jo d¢ 0 d6 Jp.0.2) (12)
culations, it is convenient to work with the local toroidal ] _ i
coordinate systerfr, ,6, .} shown in Fig. 1. In the plane S the area of the magnetic surfages const. For a configu-

é, = const, the cylindrical radiuR, and the heighg, are ration with a single magnetic axis, the relatiorr(p) is
monotonous irp and it can be easily inverted. Then we may

RL=Rp+r_cosd,, write the fluctuating electrostatic potential as
ZL=I’|_ S|n0|_ (7) * *
HereR, is the average radius of the magnetic axis defined as = 21 m’nz,w PimnIml Bmir )X (MO0 )], (13)
1 27 __ (27 __ _ . .
Ro= _ZJ' de dZR.(p=0.0,0). ®) where B, is thelth zero of the _Bessel function of Qrdm.
47 Jo 0 We note that, locally,f and ¢ in the above equation are
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dependent on the magnetic Coordina{tﬁgf}. Multiplying
Eq. (13 by rJ(Bmir)exp(=imé—ing) and integrating over
r, 6 and ¢ yields the coefficient®

1 1 27 27
27235, 1(Bm) J'odrfo deJ'o "Il B

Xexp—imo—ing)®(r,0,4)do, (14

where we have used the relation of orthogon&fitf Bessel
functions

Dnp=

o(a—p)

1
fo X‘]N(aX)JN(,BX)dX:T[JNJrl(a)]z- (15

The difficulty in calculating the flux-surface average of the

GKP equation(1) arises in the(®) o) pare term. In particular

Lewandowski et al.

Roé"l‘rf:Roﬁgc“l‘ rofo+p, (17)

where If{gcz cosgyX—singyy. Noting that the particle ve-
locity can be written agFig. 3)

v=v,&+V, (cosgi+singDb), (18)

where ﬁE[V\P/(V\If-V\P)l’Z]rO,gO'gO is the unit normal
vector, §=B/B is the unit vector alongB, b=[g
XMl .0,.¢, 1 the unit binormal vector, ang is the gy-

roangle, the components of Ed.7) yield [neglecting correc-
tions O(p?/R3) and highet

P o

A=~

(19

we must transform back and forth between particle and guid-

ing center variables; it is then convenient to use the cylindriyypere as beforeR= Ro+r cosé is the cylindrical radius:
cal coordinategR, Z ¢} and the local toroidal coordinates and

{r, 6, ¢} (right-handed in that ordgrlt is easy to show the

unit vectors in the local toroidal coordinates can be written

as
f=cosgR+singZ
=+ C0S6 coSpX— c0osh sin pY+sin 62,
f=cosfZ—singR

= —sin# cos@X+sin # sin ¢y + coshz, (16)

¢é=—sinpX—cos¢y.
Then one can use the saty(6y,dp) to label the guiding

center position, and the particle position(r,o,®)
=Rydro,60,%0) + p can also be written agig. 2)

r cosAf—p" cosy’=ry,

(20)
r sinAd—p” siny”"=0,

where we have introduce the new variabigsand ¢/ such
that

p" siny”=p siny(b- 6)+ p cosy(f- ),
) (21)
p" cosy’ = p cosy(fi-Fo)+ p sing(b-fy),

and = ¢—3m/2. Using the Fourier—Bessel representation
(13) and taking into account Eqg6l19), (20), and(21) on can
show that(Appendix A

(Pgdpar= 2 X PineXpimo+ing)) X (=1 I Brip")Ikip") I B} Jo(kp")

+ %P"k;m (=D (B I Kep [ Im i+ 1(Brmil) = Im k-1 Bl L I2(X ) = Iz (X )] ¢ -

Here k,=ng/R, whereg=(b-¢,)/(b-¢,), is the toroidal
wave numberk,=m/r is the poloidal wave numbekskp
+k, and x.=(k=1/r)p". In the limit B0, it can be
shown(Appendix B that Eq.(22) reduces to

<<¢)>gc>part: Igl o nz_m D pexplimé+ing)

X I Bt )I5(Brip) (23
which is the expression derived by kt al. Unlike the cy-
lindrical case, we note th&{® )40 oo depends explicitely on
the poloidal and toroidal wave numbers. SubstitutingEq.
(13)] and ({(®)ge)part [EQ. (22)] in the GKP equation(3),

(22)

using the integral representation of the Bessel functibns
and carrying out the integration ov¥r yields (Appendix B

; cbmofJo</30.r>[1—exp<—C.2/2>]

{pi)s/r)

Cz
o) Jl(ﬁo.rm.(l—7‘)exp(—6.2/2>]=D<r>,

(24)

whereC,= Bg/{pi)s; here(p;)sis the flux surface average of
the ion thermal gyroradius and the right-hand sid@¥)
=To[(n)s— (NN™)g]/(eng), can be evaluated numerically.
In deriving the expression faP(r) we have taken into ac-
count the fact thah™od — (®) ¢ so that(n®)s=0. In Eq.
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APPENDIX A: GYRO-PHASE-AVERAGED
: b ; ELECTROSTATIC POTENTIAL IN TOROIDAL
i GEOMETRY

The basic coordinate systems used in this appendix are
the cylindrical coordinate$R, Z ¢} and the local toroidal
coordinateqdr, 6, ¢}. The unit vectors in cylindrical coordi-

nates can be decomposed onto a local Cartesian sy&em:

=COSX—SiN ¢y, p= —sin pX—Ccos¢y andZ=2. The unit
vectors in the local toroidal coordinate syst¢émé, ¢} can

) ) ) __now be determined; sinceand ¢ are orthogonal, we note
FIG. 3. The perpendicular component of the particle velocity can be written ¢ 9

asv, =v  (coseh+sin ¢6), wheref is normal to the magnetic surface, and that f =A(I’ 'R)AR'*' (r 'Z)Z andA0= ¢XxT so thatf=cos6oR
bxBXf is the binormal vector. The gyrradius vectgr, is defined agp +singZ and §=cosfZ—sin6R. In explicit form, we have
=(B/B) XVv/w; Wherew, is the cyclotron frequency.

f=+c0sf cos¢X— cosh sin ¢+ sin 62,

0= —si X+ sin 6 sin 9+ cos6z, Al
(24), correctionsO[ ({ p;)s/r)?]<1 and higher have been ne- 0=—sing cospX+sinfsin$y+cosoz (AD)

glected. Since p;)s*(1/B)g, it is clear from Eq.(24) than A N
the principal geometrical effect on sheared-flow modes is ¢=—singX—cosgy.
due to the flux-surface average oBl/However, this geo-
metrical dependence is nonlinear. Finally it is worth pointing
out that the coefficients ob,qq tend asymptotically towards
zero asCy—0, as it should be; the limiCy—0 (which is the 8=B/B is the unit vector alondd. The local unit vectors

counterpart ofk, py—0 in slab .geometw correspond to associated witlRy. are similar to Eq(A1) with the replace-
modes that cannot have a radial structure. If hlgher-ordeﬁ1 :

: . . ent6— 6y and ¢— ¢o. Then we obtain
corrections were to be taken into account, the coupling be-
tween thed,. ;o modes and flux-surface averaged equilib-

rium quantities should be retained in Eg4). Therefore the

The particle position vector;, can be written as =R
+p, whereRy.= R (rq, 0, $o) is the position of the guid-
ing center andp=8&XVv/w, is the gyroradius vector; here

f = (cos6f cosfy cosA ¢+ sind sinhy)ig

calculation of sheared-flow modes in low-aspect-ratio con- +(sin 6 cosf,— cosé sin 6, COSA ¢) b,
figurations(e.g., spherical tokamaksvould require a differ- . ~
ent approach than presented in this paper. +cosfsinA ¢y,

There are various mechanisms that can excite sheared-
flow modes in toroidal geometry. For instance, it has been  #=(cosé sin 6,— sin # cosf, COSA ¢)F
shown by Diamond and Kim that the poloidal flow in a tor- .
oidal plasma can be accelerated when there is a gradient in +(cos6 cosby+sin 6 sin 6, CosA ¢) by
the turbulent Reynolds stre¥5.As shown by Diamond , ) -
et al.® zonal flows can be generated by modulational insta- —singsinA ¢ dy, (A2)
bility of a drift-wave turbulence and, in turn, regulate the . .
turbulence. Furthermore any mechanism that can influence @= —C0S6ySinA ¢ fo+Ssin by SiNA ¢ 6+ COSA ¢ ¢y,
the fraction of non-adiabatic electrons can also modify the ] ) ]
sheared-flow modes, through a modification of the sourcd/NereA¢=¢—¢,. The particle velocity can be written as
term on the right-hand side of E4); the relative impor- V=V|§+Vv, (coseh+singb), where A=[V¥/(V¥
tance of the nonadiabatic electrons is of course model depen¥ ¥)*?r, 4,.¢, iS the unit normal vectorg=B/B is the
dent. unit vector alongB, BE[Q\Xﬁ]foﬁo’ﬁo is the unit binormal
vector, andy is the gyroangl€Fig. 2. Then we may write
the gyroradius vector asp=w_.' (&Xxv)=p(cossh
IV. CONCLUDING REMARKS —singnh), wherep=v, /w.. Without loss of generality, the

) _ ) relationr = R4+ p can be written as
In this paper, an equation governing sheared-flow modes

in toroidal geometry has been derived. By introducing a local RoR+f=RoRyct Fof ot p (A3)

system of Shafranov-type toroidal coordinates and by using a 9 ’

Fourier—Bessel representatiomhich exploits the toroidicity where R — cosdeX—sin gy Taking the scalar product of
qc :

of the configuratiopfor the electrostatic potential, the flux- PR o . S
surface average of the gyrokinetic Poisson has been otz (A3) with fo, 6 and ¢, noting thatRgc: ho=Fo o

tained. It has been shown that the principal geometrical ef= ) AR-¢9=(30§0f-¢0—sin 00-po=sinA¢, R-fo
fect on sheared-flow modes is due(tB)s, where(---)s. ~ =COSf -fo—sin66-fo=c0sfCOSA},  R-ph=Ccoséf -6,
The equation for sheared-flow mod@sl) can be solved nu- —sin #6- ;= — sin 6, COSA ¢, neglecting corrections

merically by quadrature. O(pZ/RS) and higher we get
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. P o
SinA¢= ,
¢ R

rcog 60— 60p)—ro=p-fo, (A4)

r Sin(H— 60)=p-bo.

The geometrical effects are contained in thé,, p- bo, and
p- & terms. Introducing a new gyroangle= ¢ —37/2, we

obtain the following set of equations
r cosA 0—p cosy(N-fg)=rqy+ pSin w(f)-fo),

. o N (A5)
r sinA6—p sinyg(b-6y)=p cosy(f-6).

It is convenient to introduce new variablg$ and " such
that

p" siny”=p siny(b-8,)+ p cosy(f- ),

p" cosy = p cosy(A-f o)+ p sing(b-fy). e
Then we may rewrite EqA5) in a simpler form

r cosA6—p” cosy’"=ry,

rsinAg—p”siny”=0. (A7)
Using (A4) and ¢=¢—37w/2, we note that A¢

= p[cosy(f- o) + siny(b- ) |/R; in a tokamak withB,

Lewandowski et al.

Jm(ﬁmlr)exqim( 60— 90)]

= 2 Ind B o) I Bmip")ex —ik(m+ y/)].

(A12)

Similarly, for fixed particle positionGraf's theorem(A11)
yields

Im(Bmiro)exdim(6o—6)]

= 2 Jme B I Brip" eXiLik(6= 60— /)],

(A13)

We multiply Eq. (A12) by expfn¢+imby)=exping,
+imép)exp(nA¢) and operate wit---)4; on the resulting
equation

<‘]m(,3mlr)exliim0+ in ¢)>gc

©

=exp(imo-+ingo) 2 Imid Brmir o) I Bmip”)

x(exp(inAg)exd —ik(m+¢")])ge- (A14)

Taking into account|f|<|g|, we may write inA¢
~k.p" siny/’; here ke=ng/R is the toroidal wavenumber

<B,, one getSB'—> bo so thatA¢—0 and the problem is where, as beforeR=R,+r cosé is the cylindrical radius.
essentially two-dimensional. To leading order, one can showhen

that
Aazp—sim//’,
)
A fpr/ , prr - ., (A8)
d= Ecos:,// +gﬁsmz,/; ,
where
A- ¢ b-¢
fz= 0 and g= — 1y (A9)
n‘ro b.00

<‘]m(,8mlr)exqim0+ in ¢)>gc

o

=exp(imo+ingo) 2 Imeid Bmir o) I Bmip”)

X exp(—ikm)(explikyp” sing” —iki")) g

=exp(iméy+ingg)

X 2 (=Dl Bt 0) I Bmip") Il k")

In a low-B tokamak plasma with circular magnetic surfaces,

f=0 andg~B,/B,=0O(€)<1, wheree is the inverse as-

pect ratio. It is easy to see thhis related to the noncircu-

larity of the magnetic surfaces; in general, we exple€g

(at least in the average seihst the complex plane, Egs.

(A7) can be written in compact form as

rexp(if)=p" exp(iy"+i6p)+rgexpiby). (A10)

For an arbitrary functionF, we define(F)(_J,cz(Zv-r)*l
X [TTF(r,0,¢,9)de (for fixed guiding center positiorand
(FYpar=(2m) "1 [TTF(rg,00,¢0.¢)de (for fixed particle
position. For fixed guiding centeffixed rq, 6y, ¢g), one
can use Graf's theoreth

[

Jn(w)exp(iN a):kZ Inak(WI(v)explika), (A11)

whereu, v, w, and & satisfyw= (u?+v2—2uv cosa)*?, u
—V COSa=WCO0S#, v Sina=wsin g, to get

=expimO+ing)| exp—imAf)exp —inA¢)

o

X 2 (=D I Bl o) I Bmip") Il kep”) |,

(A15)

where we used the integral representation for Bessel

functiong®

1 T
In(X)= p fo cogxsind—No)do

iN [ )
= 7fo expix cosf)cogNa)d 6. (A16)

Using the recurrence relatidn, dJy/dx=[Jy_1(X)
—Jn+1(X)]/2 (for N integey, we may write and
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ml
JImtk(BmiNo) = Imsk(Bmil ) + 2 p" COSN[Jmi ks 1(BmiN) = Imik—1(Bmil )]+, (A17)

in Eq. (A15); operating with(- - -) po (keepingr, 6, and ¢ constantson the resulting equation, one gets

o

((Jm(ﬂm|r)exp(im0+ in ¢)>gc>part= expiimo+ing)

X Jm+k(,8mlr)<eXF( —imA6— |nA¢)>part+

X[Imsk+1(Bmir) —

where A=A 6—¢" and mA §~Kkpp" siny/', wherek,=m/r
is the poloidal wave number. Lét= kp+k; and use the in-
tegral representationNA16) to show that (exp(~imA6#

—inA¢)>pan=J0(Rp”). Write cosh=[exp(\)+exp(—i\)]/2
to obtain

(cosh exp(—imAO—inAe))part
= (exp(—ix_ Siny" =i ¢")) parl2
+(exp( —ix, sing” +i¢"))pard2
=[J1(X4) = J1(x-)]12,

wherex. =(k=1/r)p". Combining the above results we can
write

((Ir( Bt ) EXPIMO+iN b)) o)
=exp(im0+in¢>[ kE (= 1) I Brip") I kep")
X Ik Bmi) Jo(kp") + %p"
xki (=1 I Bruip") Ikep" ) [ I ics 1 B

_Jm+k1(,3mlr)][‘]l(x+)_‘-]1(x)]] . (Alg)

Jm+k_1(,8m|l’)]<COS)\ exp(— imAo— inA¢)>part+ B

kE (=D I Brmip") I kep”)

P "2 (=D I Bmip") I(kep")

(A18)

<<‘Jm(:8mlr)exqim0+ in ¢)>gc>part
=exp(in ¢)<quimGO)Jm(ﬂmlrO))partJO(,BmIP”)
=exp(imf+ing¢)

X < k:E_w Imk(BmiN) I Bmip”)

xexdik(6— 6o~ W’)]> Jo(Bmip")
part

=exp(imf+ing)

X 20 I B I Brip" ) ol Bmip")

X (exdik(0— o= ¥") 1) par
=exp(imO+in ) I Bl ) I5(Bmip”),

which is the expression derived by &t al.

(A21)

APPENDIX B: FLUX-SURFACE AVERAGE OF THE
GKP EQUATION

In the local toroidal systerr, 6, ¢}, the surface average
of Fis

1 (2m 2w
<F>SEKJO d¢ . doF(r,0,¢)J(r,0), (B1)

where 7=[Vr-(VOXV )]~ 1—r(R0+I’C030) is the Jaco-

For the case of a strong toroidal magnetic field, the abovgjan of the transformation and\=3"d¢ 2"d6 J(r,6)

result{Eq. (A19)] can be considerably S|mpl|f|ed In the limit

By4—0, we note thatg=B/B— b0, b—0, and Ap=¢
— ¢o—0. Using Eq.(A12), we have

<Jm(,8m|r)exp(im0+ in ¢)>gc

=expimbo+iné)Jm(Bmil 0)Jo( Bmip"), (A20)

since(exy —ik(m+ /") )gc= 6(K). Operating with- - -) ya: ON
Eqg. (A20) and using Eq(A13), we get

=47?rR, is the area of the magnetic surface. Then we note
that

(exp(imé+ing))s

—5(n)5(m)+ 5(n)[5(m+1)+ s(m-1)], (B2
where the second term on the right-hand side is a finite-

toroidicity correction. The surface average (ﬁ))pan in-
volves terms of the form(J(F)J,(G)J(H)expiméo
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+ing))par, Where, in general, F=F(r,6,¢), G andH =H(1—h); by construction, we note that)s=(g)s
=G(r,0,¢), H=H(r,0,¢), andk,,mare integers. Without —(h)s=0. Typically the ratio|f/F| is of the order of the
loss of generality, we can write inverse aspect ratio. Using a Taylor expansion

F(r.6,6)=F(1-1), B3 Jk<F>=Jk<F>+;[Jk+1<E>—kal<E>]+--- (84)

whereF(r)= (F)s is a flux surface quantity, anf{r,6,¢)  and similarly forJ,(G) and J,(H), we obtain(neglecting
=1-F(r,0, ¢)/F Similarly one may writeG= G(l 9) higher-order corrections

(J(F)I(G)In(H)expimb+ing))s
=3(F)3(G)In(H){expimf+in$))s+ 33 (F)I(G)[ Ims 1(H) — Im_1(H)I(h(r, 6, $)expimb+in b))
+3(F)In(H[J1:1(G)— 31 -1(G){g(r, 8, p)expimb+ing))s

+231(G)In(H)[Js 1(F) = I 1(F)I(F(r, 0, p)expimO+ing))gt -+ . (B5)

Then, to leading order, the flux-surface averagé&a}pan becomes

<<5)>par95221 m;w n;oo Dmn

In(Bmin) = 2 (= DRI B )V 1L Kepi) SV Wi Brnir ol (ki) V. ]

Bml(POsVL 2 (=D I B pi)sV 1 13 (Kepi) sV I Imes ks 1(Bimit) = Imek—1( Bl )]

X[Ia(y+Vi) = duly-V) ]+ ] (exp(imé+ing))s, (B6)

where y.=[(m=1)/r+n/Ry](pi})s. Here {p;)s is the

surface-average of the ion thermal gyroradiys v,/ o . X
Since the toroidal wave numbek,>=1/R, we note that

(kepi)s* ki pi)s. Equation(B6) can be simplified by using Tio —  a
the following propertieS of the Bessel functionsly(x) = —(n—nf)s. (B8)
~(xI2N/IT(N+1) for |x|—0, andJ_y(x)=(—1)NIn(X);
whereas the integral representati@il6) shows that],(0)
= 5(K). We obtain The first integral on the left-hand side of E@®8) is of the

f:vf expl _Vi/Z)JO(BOI<pi>SVL)dVL +

<<q>>par95:;1 ¢|OQ[JO(BO|r)—Jo(Bm(pOsVL)Jo(er) Lo [),)_f X" Lexp(— ax?)J,( Bx)dx

Bo P!
TS T V2 J1(Bai)do(Bar{pi)sVi) ++- BY 32
(2) =———~exg ——|. (B9)
B7) (2a) da
Substituting Eq(B7) in the GKP equatior§3) we get Noting that
2 @ o[ (Bar)—Jo( Bar) JO X® expl— ax®) Jo( BX)dx
- _ 9Lo(a,B) 1 B B
X fo V. exp(—VE/2)3o( Bor(pi)sVy)dV, =T e 22\ 4a)9M g (B1O
Bol <Pi>§/r we obtain an equation governing the sheared-flow modes in

2 T(2) J1(Bar) toroidal geometry
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gl cb.oo[Jo<30|r>[1—exrx—6.2/2>]

({pi)sIT) c?
+ <’;(>§—) Jl(ﬂmr)q(l—%)exq—CFIZ)}

=D(r),
whereC,=Bo(pi)s and D(r)=Tio[(n;)s—(n0*) 51/ (enp).
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