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Sheared-flow modes in toroidal geometry
J. L. V. Lewandowski, Z. Lin, W. W. Lee, and T. S. Hahm
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Using a Fourier–Bessel representation for the fluctuating~turbulent! electrostatic potential, an
equation governing the sheared-flow modes in toroidal geometry is derived from the gyrokinetic
Poisson equation, where both the adiabatic and nonadiabatic responses of the electrons are taken
into account. It is shown that the principal geometrical effect on sheared-flow modes of the
electrostatic potential is due to the flux-surface average of 1/B, where B is the magnetic field
strength. ©2000 American Institute of Physics.@S1070-664X~00!00302-5#
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I. INTRODUCTION

It is now generally accepted in the fusion commun
that low-frequency, small-scale instabilities@e.g., drift
waves, ion temperature gradient-driven~ITG! modes# are
major contenders for the anomalous, cross-field transpo1,2

observed in tokamaks3 and stellarators.4 There is some ex-
perimental evidence5 that ~equilibrium! sheared flows~or
zonal flows6! can have a strong impact on the turbulenc
driven cross-field transport.7 Therefore an accurate calcula
tion of sheared-flow modes in toroidal geometry is an imp
tant issue.

In this paper, sheared-flow modes in toroidal geome
are calculated from the gyrokinetic Poisson’s~GKP!
equation.8 A change of coordinate system allows us to wr
the fluctuating electrostatic potential in terms of Besse
Fourier series. The case of a cylindrical plasma has b
considered by Li, Lee, and Parker. In an unpublished rep
these authors discuss the solution of the full GKP in cyl
drical geometry with circular magnetic surfaces and no a
muthal magnetic field. By introducing a coordinate transf
mation, we extend the work of Li and co-workers to toroid
geometry; furthermore, the main goal of this paper is to c
sider the calculation of sheared-flow modes in toroidal
ometry, rather than the solution of the~full ! GKP in toroidal
geometry, which requires a numerical approach.9 It is shown
that the principal geometrical effect on sheared-flow mo
is due to the flux-surface average of the inverse of the m
netic field strength. The paper is organized as follows;
Sec. II, we introduce the gyrokinetic Poisson’s equati
magnetic, toroidal~Shafranov-like! and cylindrical coordi-
nate systems are discussed and the transformation bet
guiding center and particle coordinates are given in Sec.
in the same section, the flux-surface average of the G
equation is derived and an equation governing the shea
flow modes in toroidal geometry is obtained; we conclu
with some remarks in Sec. IV.

II. GYRO-KINETIC POISSON EQUATION

Assuming that the Debye length is much smaller th
the ion thermal gyroradius and neglecting electron gyro
dius effects, the GKP equation can be written as8,10,11
5881070-664X/2000/7(2)/588/8/$17.00
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E dRgcE dvS Fi1
eF̃

miB

]Fi

]m
D d~Rgc2r1r!5ne , ~1!

where F̃[F(r )2^F&gc(Rgc,v), r5Rgc1r is the particle
position,Rgc is the guiding center position,^¯&gc denotes a
gyrophase average keeping the guiding center position fix
r[êi3v/vc is the ion gyroradius,êi[B/B is the unit vector
along the confining magnetic field,vc is the ion cyclotron
frequency,m5v'

2 /(2B) is the magnetic moment,Fi is the
~total! ion guiding center distribution andne is the electron
density. The aim of this paper is to calculate the flux-surfa
averaged component of the electrostatic potential,^F&S ,
from the GKP equation~1! in toroidal geometry. The opera
tion *dRgc@¯#d(Rgc2r1r) acts to transform the guiding
center variables$Rgc,v% to the particle variables$r , v%. Al-
thoughFi , ^F&gc, andB are functions of the guiding cente
variables, the integrand in equation~1! also depends on the
particle variable$r , v% throughF. We write the ion distribu-
tion function asFi5Fi0 (equilibrium)1dFi ~fluctuation!
and assume that the equilibrium part ofFi is Maxwellian

Fi05
n0~Rgc!

2pv thi
2 exp~2mB/v thi

2 ! f ~Rgc,v i!, ~2!

wherev thi[(Ti0(Rgc)/mi)
1/2 is the ion thermal velocity andf

satisfies the normalization condition*2`
1`dv i f (Rgc,v i)51.

The volume element in velocity space is defined asd3v
[2pv' dv' dv i . Assuming that u]dFi /]mu!u]Fi0 /]mu
and usingFi0(Rgc)'Fi0(r ) andTi0(Rgc)'Ti0(R), carrying
out the integration overv i in Eq. ~1!, the GKP equation
becomes

E
0

`

^F̃&partV' exp~2V'
2 /2!dV'5

Ti0~r !

en0~r !
~nī2ne!, ~3!

whereV'[v' /v thi is the normalized perpendicular velocity
^¯&part denotes a gyrophase angle keeping the particle p
tion fixed and

nī[E dRgcE dv Fi~Rgc,v!d~Rgc2r1r! ~4!

can be calculated numerically by keeping the guiding cen
position fixed. The electron density can be written asne

5ne
~A!1ne

~NA! , where ne
~A! and ne

~NA! are, respectively, the
adiabatic and nonadiabatic parts of the electron density.
adiabatic response if of the formne

~A!}F2^F&S , where
© 2000 American Institute of Physics
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^¯&S denotes an average over the magnetic surface~see next
section!.

III. MAGNETIC AND TOROIDAL COORDINATES

We consider a fully three-dimensional configurati
with closed, nested magnetic surfaces. The confining m
netic field B is written in straight-field line coordinate

$r̄,ū,z̄% as

B5“a3“C, ~5!

wherea[z̄2qū is the field line label, 2pC is the enclosed
poloidal flux, ū is the magnetic poloidal angle andz̄ is the
magnetic toroidal angle. The radial label is denotedr̄ and, by
definition, B–“ r̄[0. There is some freedom in specifyin
the radial label; here, for convenience, we definer̄
[AcT /cT

(b), wherecT is the toroidal flux enclosed within
the magnetic surface, andcT

(b) is cT evaluated at the plasm
boundary. By construction the radial label runs from 0~mag-
netic axis! to 1 ~last closed magnetic surface!. The magnetic
surfaces can be specified in cylindrical coordinates; for
stance, in the equilibrium code VMEC12,13 an expansion in
Fourier series is used

Rl5Rl~ r̄,ū,z̄ !5 (
M50

Mmax

(
N52Nmax

1Nmax

RMN cos~QMN!,

Zl5Zl~ r̄,ū,z̄ !5 (
M50

Mmax

(
N52Nmax

1Nmax

Zmn sin~UMN!, ~6!

f l5f l~ r̄,ū,z̄ !5z2
2p

Nper
(

M50

Mmax

(
M52Nmax

1Nmax

f̃MN sin~UMN!,

whereUMN[M ū1NperNz̄ and Nper is the number of field
periods of the configuration. For intermediate analytical c
culations, it is convenient to work with the local toroid
coordinate system$r L ,uL ,fL% shown in Fig. 1. In the plane
fL5const, the cylindrical radiusRL and the heightZL are

RL5R01r L cosuL ,
~7!

ZL5r L sinuL .

HereR0 is the average radius of the magnetic axis defined

R0[
1

4p2 E
0

2p

dūE
0

2p

dz̄ RL~ r̄50,ū,z̄ !. ~8!

FIG. 1. Cylindrical coordinate system~R, Z, f! and local toroidal coordinate
system (r L ,uL ,fL[f) in toroidal geometry. A magnetic surfacer̄
5const ~plain line! and a tokamak-like magnetic surface~dotted line! are
shown.
g-

-

l-

s

This definition is convenient for configurations with helic
magnetic axis~e.g., heliac-type configurations!. The curve
r L5const describes a circle in the planef5const. Note that
in general“ r̄3“r LÞ0, so thatB–“r LÞ0 along ther L

5const curve. Using Eqs.~6!, one can invert Eqs.~7! to get

tanuL~ r̄,ū,z̄ !5
ZL~ r̄,ū,z̄ !

RL~ r̄,ū,z̄ !2R0

~9!

and

r L~ r̄,ū,z̄ !5@@RL~ r̄,ū,z̄ !2R0#21ZL
2~ r̄,ū,z̄ !#1/2, ~10!

where the explicit dependence on the magnetic coordin

$r̄,ū,z̄% is shown. Although the inverse transformations~9!
and ~10! are exact, the fact that, in general,“ r̄3“r LÞ0,
complicates the representation of the fluctuating electrost
potentialF in the gyrokinetic Poisson equation. As we sh
see below, it is convenient to introduce a flux surface av
aged toroidal system$r, u, f%. The radial label is defined a
r[^r L( r̄,ū,z̄)&S /a where a[^r L( r̄51,ū,z̄)&S and ^¯&S

denotes an average over the magnetic surface. For an
trary functionF, ^F&S is defined as

^F&S~ r̄ ![
1

A~ r̄ !
E

0

2p

dz̄E
0

2p

dū J~ r̄,ū,z̄ !F~ r̄,ū,z̄ !, ~11!

whereJ[@“ r̄•(“ ū3“ z̄)#21 is the Jacobian of the trans
formation and

A[E
0

2p

dz̄E
0

2p

dū J~ r̄,ū,z̄ ! ~12!

is the area of the magnetic surfacer̄5const. For a configu-
ration with a single magnetic axis, the relationr 5r ( r̄) is
monotonous inr̄ and it can be easily inverted. Then we ma
write the fluctuating electrostatic potential as

F5(
l 51

`

(
m,n52`

`

F lmnJm~bmlr !exp@ i ~mu1nf!#, ~13!

wherebml is the l th zero of the Bessel function of orderm.
We note that, locally,u and f in the above equation ar

FIG. 2. Using the local coordinate system~Fig. 1!, the particle position,r ,
and its guiding center position,Rgc can be labeled by~r, u, f! and
(Rgc ,u0 ,f0), respectively. Herer[(r–r )1/2 andRgc[(Rgc•Rgc)

1/2.
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dependent on the magnetic coordinates$r̄,ū,z̄%. Multiplying
Eq. ~13! by rJm(bmlr )exp(2imu2inf) and integrating over
r, u andf yields the coefficientsF lmn

F lmn5
1

2p2Jm11
2 ~bml!

E
0

1

drE
0

2p

duE
0

2p

rJm~bmlr !

3exp~2 imu2 inf!F~r ,u,f!df, ~14!

where we have used the relation of orthogonality14 of Bessel
functions

E
0

1

xJN~ax!JN~bx!dx5
d~a2b!

2
@JN11~a!#2. ~15!

The difficulty in calculating the flux-surface average of t
GKP equation~1! arises in thê ^F&gc&part term. In particular
we must transform back and forth between particle and g
ing center variables; it is then convenient to use the cylin
cal coordinates$R, Z, f% and the local toroidal coordinate
$r, u, f% ~right-handed in that order!. It is easy to show the
unit vectors in the local toroidal coordinates can be writ
as

r̂5cosuR̂1sinu Ẑ

51cosu cosf x̂2cosu sinf ŷ1sinu ẑ,

û5cosu Ẑ2sinu R̂

52sinu cosf x̂1sinu sinf ŷ1cosu ẑ, ~16!

f̂52sinf x̂2cosf ŷ.

Then one can use the set (r 0 ,u0 ,f0) to label the guiding
center position, and the particle positionr (r ,u,f)
5Rgc(r 0 ,u0 ,f0)1r can also be written as~Fig. 2!
-
i-

n

R0R̂1r r̂5R0R̂gc1r 0r̂01r, ~17!

where R̂gc[cosf0 x̂2sinf0 ŷ. Noting that the particle ve-
locity can be written as~Fig. 3!

v5v iêi1v'~coswn̂1sinwb̂!, ~18!

where n̂[@“C/(“C•“C)1/2# r 0 ,u0 ,z0
is the unit normal

vector, êi[B/B is the unit vector alongB, b̂[@ êi

3n̂# r 0 ,u0 ,z0
is the unit binormal vector, andw is the gy-

roangle, the components of Eq.~17! yield @neglecting correc-
tions O(r2/R0

2) and higher#

Df'
r–f̂0

R
, ~19!

where, as before,R5R01r cosu is the cylindrical radius;
and

r cosDu2r9 cosc95r 0 ,
~20!

r sinDu2r9 sinc950,

where we have introduce the new variablesr9 andc9 such
that

r9 sinc95r sinc~ b̂–û0!1r cosc~ n̂–û0!,
~21!

r9 cosc95r cosc~ n̂–r̂ 0!1r sinc~ b̂–r̂0!,

and c[w23p/2. Using the Fourier–Bessel representati
~13! and taking into account Eqs.~19!, ~20!, and~21! on can
show that~Appendix A!
^^F&gc&part5(
l 51

`

(
m,n52`

F lmn exp~ imu1 inf!H (
k52`

`

~21!kJk~bmlr9!Jk~ktr9!Jm1k~bmlr !J0~ k̂r9!

1
bml

4
r9 (

k52`

`

~21!kJk~bmlr9!Jk~ktr9!@Jm1k11~bmlr !2Jm1k21~bmlr !#@J1~x1!2J1~x2!#J . ~22!
s

f

.
-

Here kt[ng/R, where g[(b̂–f̂0)/(b̂–f̂0), is the toroidal
wave number;kp[m/r is the poloidal wave number;k̂[kp

1kt and x6[( k̂61/r )r9. In the limit Bu°0, it can be
shown~Appendix B! that Eq.~22! reduces to

^^F&gc&part5(
l 51

`

(
m,n52`

`

F lmn exp~ imu1 inf!

3Jm~bmlr !J0
2~bmlr!, ~23!

which is the expression derived by Liet al. Unlike the cy-
lindrical case, we note that^^F&gc&part depends explicitely on
the poloidal and toroidal wave numbers. SubstitutingF @Eq.
~13!# and ^^F&gc&part @Eq. ~22!# in the GKP equation~3!,
using the integral representation of the Bessel function15

and carrying out the integration overV' yields~Appendix B!

(
l 51

`

F l00H J0~b0l r !@12exp~2Cl
2/2!#

1
~^r i&S /r !

G~2!
J1~b0l r !Cl S 12

Cl
2

2 Dexp~2Cl
2/2!J 5D~r !,

~24!

whereCl[b0l^r i&S ; here^r i&S is the flux surface average o
the ion thermal gyroradius and the right-hand side,D(r )
[Ti0@^ni&S2^ne

~NA!&S#/(en0), can be evaluated numerically
In deriving the expression forD(r ) we have taken into ac
count the fact thatne

~A!}F2^F&S so that^ne
~A!&S[0. In Eq.
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~24!, correctionsO@(^r i&S /r )2#!1 and higher have been ne
glected. Sincê r i&S}^1/B&S , it is clear from Eq.~24! than
the principal geometrical effect on sheared-flow modes
due to the flux-surface average of 1/B. However, this geo-
metrical dependence is nonlinear. Finally it is worth pointi
out that the coefficients ofF l00 tend asymptotically towards
zero asCl°0, as it should be; the limitCl°0 ~which is the
counterpart ofk'r i°0 in slab geometry! correspond to
modes that cannot have a radial structure. If higher-or
corrections were to be taken into account, the coupling
tween theF l 610 modes and flux-surface averaged equil
rium quantities should be retained in Eq.~24!. Therefore the
calculation of sheared-flow modes in low-aspect-ratio c
figurations~e.g., spherical tokamaks! would require a differ-
ent approach than presented in this paper.

There are various mechanisms that can excite shea
flow modes in toroidal geometry. For instance, it has be
shown by Diamond and Kim that the poloidal flow in a to
oidal plasma can be accelerated when there is a gradie
the turbulent Reynolds stress.16 As shown by Diamond
et al.,6 zonal flows can be generated by modulational ins
bility of a drift-wave turbulence and, in turn, regulate th
turbulence. Furthermore any mechanism that can influe
the fraction of non-adiabatic electrons can also modify
sheared-flow modes, through a modification of the sou
term on the right-hand side of Eq.~24!; the relative impor-
tance of the nonadiabatic electrons is of course model de
dent.

IV. CONCLUDING REMARKS

In this paper, an equation governing sheared-flow mo
in toroidal geometry has been derived. By introducing a lo
system of Shafranov-type toroidal coordinates and by usin
Fourier–Bessel representation~which exploits the toroidicity
of the configuration! for the electrostatic potential, the flux
surface average of the gyrokinetic Poisson has been
tained. It has been shown that the principal geometrical
fect on sheared-flow modes is due to^1/B&S , where^¯&S .
The equation for sheared-flow modes~24! can be solved nu-
merically by quadrature.

FIG. 3. The perpendicular component of the particle velocity can be wri

asv'5v'(coswn̂1sinwb̂), wheren̂ is normal to the magnetic surface, an

b̂}B3n̂ is the binormal vector. The gyrradius vector,r, is defined asr
[(B/B)3v/vc wherevc is the cyclotron frequency.
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APPENDIX A: GYRO-PHASE-AVERAGED
ELECTROSTATIC POTENTIAL IN TOROIDAL
GEOMETRY

The basic coordinate systems used in this appendix
the cylindrical coordinates$R, Z, f% and the local toroidal
coordinates$r, u, f%. The unit vectors in cylindrical coordi-
nates can be decomposed onto a local Cartesian systeR̂
5cosfx̂2sinfŷ, f̂52sinfx̂2cosfŷ and Ẑ5 ẑ. The unit
vectors in the local toroidal coordinate system$r, u, f% can
now be determined; sincer̂ and f̂ are orthogonal, we note
that r̂5( r̂–R̂)R̂1( r̂–Ẑ)Ẑ and û5f̂3 r̂ so that r̂5cosuR̂
1sinuẐ and û5cosuẐ2sinuR̂. In explicit form, we have

r̂51cosu cosf x̂2cosu sinf ŷ1sinu ẑ,

û52sinu cosf x̂1sinu sinf ŷ1cosu ẑ, ~A1!

f̂52sinf x̂2cosf ŷ.

The particle position vector,r , can be written asr5Rgc

1r, whereRgc5Rgc (r 0 ,u0 ,f0) is the position of the guid-
ing center andr5êi3v/vc is the gyroradius vector; her
êi[B/B is the unit vector alongB. The local unit vectors
associated withRgc are similar to Eq.~A1! with the replace-
mentu°u0 andf°f0 . Then we obtain

r̂5~cosu cosu0 cosDf1sinu sinu0! r̂0

1~sinu cosu02cosu sinu0 cosDf!û0

1cosu sinDff̂0 ,

û5~cosu sinu02sinu cosu0 cosDf! r̂

1~cosu cosu01sinu sinu0 cosDf!û0

2sinu sinDf f̂0 , ~A2!

f̂52cosu0 sinDf r̂01sinu0 sinDf û01cosDf f̂0 ,

whereDf[f2f0 . The particle velocity can be written a
v5v iêi1v' (coswn̂1sinwb̂), where n̂[@“C/(“C
•“C)1/2# r 0 ,u0 ,z0

is the unit normal vector,êi[B/B is the

unit vector alongB, b̂[@ êi3n̂# r 0 ,u0 ,z0
is the unit binormal

vector, andw is the gyroangle~Fig. 2!. Then we may write
the gyroradius vector asr5vc

21 (êi3v)5r(coswb̂
2sinwn̂), wherer[v' /vc . Without loss of generality, the
relation r5Rgc1r can be written as

R0R̂1r r̂5R0R̂gc1r 0r̂01r, ~A3!

where R̂gc[cosf0x̂2sinf0ŷ. Taking the scalar product o
Eq. ~A3! with r̂0 , û0 and f̂0 , noting thatR̂gc•f̂05 r̂0•f̂0

50, R̂–f̂05cosur̂–f̂02sinuû–f̂05sinDf, R̂–r̂0

5cosur̂–r̂02sinuû–r̂05cosu0 cosDf, R̂–û05cosur̂–û0

2sinuû–û052sinu0 cosDf, neglecting corrections
O(r2/R0

2) and higher we get

n
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sinDf5
r•f̂0

R
,

r cos~u2u0!2r 05r–r̂0 , ~A4!

r sin~u2u0!5r–û0 .

The geometrical effects are contained in ther–r̂0 , r–û0 , and
r–f̂0 terms. Introducing a new gyroanglec[w23p/2, we
obtain the following set of equations

r cosDu2r cosc~ n̂–r̂0!5r 01r sinc~ b̂–r̂0!,
~A5!

r sinDu2r sinc~ b̂–û0!5r cosc~ n̂–û0!.

It is convenient to introduce new variablesr9 and c9 such
that

r9 sinc95r sinc~ b̂–û0!1r cosc~ n̂–û0!,
~A6!

r9 cosc95r cosc~ n̂–r̂0!1r sinc~ b̂–r̂0!.

Then we may rewrite Eqs.~A5! in a simpler form

r cosDu2r9 cosc95r 0 ,
~A7!

r sinDu2r9 sinc950.

Using ~A4! and c5w23p/2, we note that Df

.r@cosc(n̂–f̂0)1sinc(b̂–f̂0)#/R; in a tokamak withBu

!Bf , one getsb̂°û0 so thatDf°0 and the problem is
essentially two-dimensional. To leading order, one can sh
that

Du.
r9

r 0
sinc9,

~A8!
Df. f

r9

R
cosc91g

r9

R
sinc9,

where

f [
n̂–f̂0

n̂–r̂0
and g[

b̂–f̂0

b̂–û0

. ~A9!

In a low-b tokamak plasma with circular magnetic surface
f 50 andg;Bu /Bf5O(e)!1, wheree is the inverse as-
pect ratio. It is easy to see thatf is related to the noncircu
larity of the magnetic surfaces; in general, we expectf !g
~at least in the average sense!. In the complex plane, Eqs
~A7! can be written in compact form as

r exp~ iu!5r9 exp~ ic91 iu0!1r 0 exp~ iu0!. ~A10!

For an arbitrary functionF, we define ^F&gc5(2p)21

3*2p
1pF(r ,u,f,w)dw ~for fixed guiding center position! and

^F&part5(2p)21 *2p
1pF(r 0 ,u0 ,f0 ,w)dw ~for fixed particle

position!. For fixed guiding center~fixed r 0 , u0 , f0!, one
can use Graf’s theorem14

JN~w!exp~ iNu!5 (
k52`

`

JN1k~u!Jk~v !exp~ ika!, ~A11!

whereu, v, w, anda satisfyw5(u21v222uv cosa)1/2, u
2v cosa5wcosu, v sina5wsinu, to get
w

,

Jm~bmlr !exp@ im~u2u0!#

5 (
k52`

`

Jm1k~bmlr 0!Jk~bmlr9!exp@2 ik~p1c9!#.

~A12!

Similarly, for fixed particle position, Graf’s theorem~A11!
yields

Jm~bmlr 0!exp@ im~u02u!#

5 (
k52`

`

Jm1k~bmlr !Jk~bmlr9!exp@ ik~u2u02c9!#,

~A13!

We multiply Eq. ~A12! by exp(inf1imu0)5exp(inf0

1imu0)exp(inDf) and operate witĥ¯&gc on the resulting
equation

^Jm~bmlr !exp~ imu1 inf!&gc

5exp~ imu01 inf0! (
k52`

`

Jm1k~bmlr 0!Jk~bmlr9!

3^exp~ inDf!exp@2 ik~p1c9!#&gc. ~A14!

Taking into account u f u!ugu, we may write inDf
'ktr9 sinc9; here kt[ng/R is the toroidal wavenumbe
where, as before,R5R01r cosu is the cylindrical radius.
Then

^Jm~bmlr !exp~ imu1 inf!&gc

5exp~ imu01 inf0! (
k52`

`

Jm1k~bmlr 0!Jk~bmlr9!

3exp~2 ikp!^exp~ iktr9 sinc92 ikc9!&gc

5exp~ imu01 inf0!

3 (
k52`

`

~21!kJm1k~bmlr 0!Jk~bmlr9!Jk~ktr9!

5exp~ imu1 inf!Fexp~2 imDu!exp~2 inDf!

3 (
k52`

`

~21!kJm1k~bmlr 0!Jk~bmlr9!Jk~ktr9!G ,

~A15!

where we used the integral representation for Bes
functions15

JN~x!5
1

p E
0

p

cos~x sinu2Nu!du

5
i 2N

p E
0

p

exp~ ix cosu!cos~Nu!du. ~A16!

Using the recurrence relation,15 dJN /dx5@JN21(x)
2JN11(x)#/2 ~for N integer!, we may write and
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Jm1k~bmlr 0!5Jm1k~bmlr !1
bml

2
r9 cosl@Jm1k11~bmlr !2Jm1k21~bmlr !#1¯ , ~A17!

in Eq. ~A15!; operating with^¯&part ~keepingr, u, andf constants! on the resulting equation, one gets

^^Jm~bmlr !exp~ imu1 inf!&gc&part5exp~ imu1 inf!H (
k52`

`

~21!kJk~bmlr9!Jk~ktr9!

3Jm1k~bmlr !^exp~2 imDu2 inDf!&part1
bml

2
r9 (

k52`

`

~21!kJk~bmlr9!Jk~ktr9!

3@Jm1k11~bmlr !2Jm1k21~bmlr !#^cosl exp~2 imDu2 inDf!&part1¯ J , ~A18!
n

ov
it ote

ite-
where l5Du2c9 and mDu'kpr9 sinc9, wherekp[m/r
is the poloidal wave number. Letk̂[kp1kt and use the in-
tegral representation~A16! to show that ^exp(2imDu

2inDf)&part5J0( k̂r9). Write cosl5@exp(il)1exp(2il)#/2
to obtain

^cosl exp~2 imDu2 inDf!&part

5^exp~2 ix2 sinc92 ic9!&part/2

1^exp~2 ix1 sinc91 ic9!&part/2

5@J1~x1!2J1~x2!#/2,

wherex6[( k̂61/r )r9. Combining the above results we ca
write

^^Jm~bmlr !exp~ imu1 inf!&gc&part

5exp~ imu1 inf!H (
k52`

`

~21!kJk~bmlr9!Jk~ktr9!

3Jm1k~bmlr !J0~ k̂r9!1
bml

4
r9

3 (
k52`

`

~21!kJk~bmlr9!Jk~ktr9!@Jm1k11~bmlr !

2Jm1k21~bmlr !#@J1~x1!2J1~x2!#J . ~A19!

For the case of a strong toroidal magnetic field, the ab
result@Eq. ~A19!# can be considerably simplified. In the lim
Bu°0, we note thatêi5B/B°f̂0 , b̂°û0 and Df5f
2f0°0. Using Eq.~A12!, we have

^Jm~bmlr !exp~ imu1 inf!&gc

5exp~ imu01 inf!Jm~bmlr 0!J0~bmlr9!, ~A20!

since^exp@2ik(p1c9)#&gc5d(k). Operating witĥ ¯&part on
Eq. ~A20! and using Eq.~A13!, we get
e

^^Jm~bmlr !exp~ imu1 inf!&gc&part

5exp~ inf!^exp~ imu0!Jm~bmlr 0!&partJ0~bmlr9!

5exp~ imu1 inf!

3K (
k52`

`

Jm1k~bmlr !Jk~bmlr9!

3exp@ ik~u2u02c9!#L
part

J0~bmlr9!

5exp~ imu1 inf!

3 (
k52`

`

Jm1k~bmlr !Jk~bmlr9!J0~bmlr9!

3^exp@ ik~u2u02c9!#&part

5exp~ imu1 inf!Jm~bmlr !J0
2~bmlr9!, ~A21!

which is the expression derived by Liet al.

APPENDIX B: FLUX-SURFACE AVERAGE OF THE
GKP EQUATION

In the local toroidal system$r, u, f%, the surface average
of F is

^F&S[
1

A E
0

2p

dfE
0

2p

du F~r ,u,f!J~r ,u!, ~B1!

whereJ5@“r •(“u3“f)#215r (R01r cosu) is the Jaco-
bian of the transformation andA[*0

2pdf*0
2pdu J(r ,u)

54p2rR0 is the area of the magnetic surface. Then we n
that

^exp~ imu1 inf!&S

5d~n!d~m!1
r

2R0
d~n!@d~m11!1d~m21!#, ~B2!

where the second term on the right-hand side is a fin

toroidicity correction. The surface average of^F̃&part in-
volves terms of the form ^Jk(F)Jl(G)Jm(H)exp(imu
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1inf)&part, where, in general, F5F(r ,u,f), G
5G(r ,u,f), H5H(r ,u,f), andk,l,m are integers. Without
loss of generality, we can write

F~r ,u,f!5F̄~12 f !, ~B3!

where F̄(r )[^F&S is a flux surface quantity, andf (r ,u,f)
[12F(r ,u,f)/F̄. Similarly one may writeG5Ḡ(12g)
andH5H̄(12h); by construction, we note that^ f &S5^g&S

5^h&S50. Typically the ratiou f /F̄u is of the order of the
inverse aspect ratio. Using a Taylor expansion

Jk~F !5Jk~ F̄ !1
f

2
@Jk11~ F̄ !2Jk21~ F̄ !#1¯ ~B4!

and similarly for Jl(G) and Jm(H), we obtain~neglecting
higher-order corrections!
^Jk~F !Jl~G!Jm~H !exp~ imu1 inf!&S

5Jk~ F̄ !Jl~Ḡ!Jm~H̄ !^exp~ imu1 inf!&S1 1
2Jk~ F̄ !Jl~Ḡ!@Jm11~H̄ !2Jm21~H̄ !#^h~r ,u,f!exp~ imu1 inf!&S

1 1
2Jk~ F̄ !Jm~H̄ !@Jl 11~Ḡ!2Jl 21~Ḡ!!] ^g~r ,u,f!exp~ imu1 inf!&S

1 1
2J1~Ḡ!Jm~H̄ !@Jk11~ F̄ !2Jk21~ F̄ !!] ^ f ~r ,u,f!exp~ imu1 inf!&S1¯ . ~B5!

Then, to leading order, the flux-surface average of^F̃&part becomes

^^F̃&part&S5(
l 51

`

(
m52`

`

(
n52`

`

F lmnH Jm~bmlr !2 (
k52`

`

~21!kJk@bml^r i&SV'#Jk@^ktr i&SV'#Jm1k~bmlr !J0@^k̂r i&SV'#

1
bml

4
^r i&SV' (

k52`

`

~21!kJk@bml^r i&SV'#Jk@^ktr i&SV'#@Jm1k11~bmlr !2Jm1k21~bmlr !#

3@J1~y1V'!2J1~y2V'!#1¯J ^exp~ imu1 inf!&S , ~B6!
s in
where y6[@(m61)/r 1n/R0#^r i&S . Here ^r i&S is the
surface-average of the ion thermal gyroradiusr i[v thi /vc .
Since the toroidal wave numberkt}1/R, we note that
^ktr i&SÞkt^r i&S . Equation~B6! can be simplified by using
the following properties15 of the Bessel functionsJN(x)
;(x/2)N/G(N11) for uxu°0, and J2N(x)5(21)NJN(x);
whereas the integral representation~A16! shows thatJk(0)
5d(k). We obtain

^^F̃&part&S5(
l 51

`

F l00FJ0~b0l r !2J0~b0l^r i&SV'!J0~b0l r !

1
b0l

2

r̄2/r

G~2!
V'

2 J1~b0l r !J0~b0l r ^r i&SV'!1¯G .
~B7!

Substituting Eq.~B7! in the GKP equation~3! we get

(
l 51

`

F l00FJ0~b0l r !2J0~b0l r !

3F E
0

`

V' exp~2V'
2 /2!J0~b0l^r i&SV'!dV'G

1
b0l

2

^r i&S
2/r

G~2!
J1~b0l r !
3F E
0

`

V'
3 exp~2V'

2 /2!J0~b0l^r i&SV'!dV'G1¯G
5

Ti0

en0
^nī2ne

~NA!&S . ~B8!

The first integral on the left-hand side of Eq.~B8! is of the
form14

Ln~a,b!5E
0

`

xn11 exp~2ax2!Jn~bx!dx

5
bn

~2a!n11 expS 2
b2

4a D . ~B9!

Noting that

E
0

`

x3 exp~2ax2!J0~bx!dx

52
]L0~a,b!

]a
5

1

2a2 S 12
b2

4a DexpS 2
b2

4a D . ~B10!

we obtain an equation governing the sheared-flow mode
toroidal geometry



n

-

595Phys. Plasmas, Vol. 7, No. 2, February 2000 Sheared-flow modes in toroidal geometry
(
l 51

`

F l00H J0~b0l r !@12exp~2Cl
2/2!#

1
~^r i&S /r !

G~2!
J1~b0l r !Cl S 12

Cl
2

2 Dexp~2Cl
2/2!J

5D~r !, ~B11!

whereCl[b0l^r i&S andD(r )[Ti0@^ni&S2^ne
~NA!&S#/(en0).
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