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Gyrokinetic simulations of C-2-like field-reversed configuration (FRC) find that electrostatic drift-

waves are locally stable in the core. The stabilization mechanisms include finite Larmor radius

effects, magnetic well (negative grad-B), and fast electron short circuit effects. In the scrape-off layer

(SOL), collisionless electrostatic drift-waves in the ion-to-electron-scale are destabilized by electron

temperature gradients due to the resonance with locally barely trapped electrons. Collisions can sup-

press this instability, but a collisional drift-wave instability still exists at realistic pressure gradients.

Simulation results are in qualitative agreement with C-2 FRC experiments. In particular, the lack of

ion-scale instability in the core is not inconsistent with experimental measurements of a fluctuation

spectrum showing a depression at ion-scales. The pressure gradient thresholds for the SOL instability

from simulations are also consistent with the critical gradient behavior observed in experiments.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4993630]

I. INTRODUCTION

A field-reversed configuration (FRC) is an elongated

prolate compact toroid (CT) with purely poloidal magnetic

fields. The FRC consists of two regions separated by a sepa-

ratrix: an inner, closed field-line core region and an outer,

open field-line scrape-off layer (SOL) region. Research inter-

est in the FRC persists because of potential reactor benefits:

(1) the FRC is a plasma with b (the ratio of plasma pressure

to magnetic energy density) near unity, which suggests less

magnetic energy investment and less cyclotron radiation

than low b approaches such as the tokamak; (2) the compact

nature of the plasma simplifies the construction of the device

hull and external magnetic field coils; (3) engineering is also

aided by the SOL, which naturally connects to the divertor;

and (4) the lack of toroidal magnetic fields radically changes

the magnetic topology and the consequential stability of the

plasma, as detailed below.

It was suggested by Rostoker et al.1,2 that adding a sig-

nificant energetic ion population via neutral beam injection

(NBI) would improve FRC macro-stability while preserving

the FRC’s favorable transport properties1,3–7 due to the large

ion Larmor radius relative to the plasma size.5,8 In 2008, Tri

Alpha Energy, Inc. (TAE), launched a campaign on the FRC

experiment, C-2.9 With the use of NBI, electron gun biasing,

and magnetic end plugs, the C-2 experiments have succeeded

in suppressing the major MHD instabilities, the rotational

(n¼ 2), wobble, and tilt10 (n¼ 1) modes (where n is the

toroidal mode number), and increasing FRC confinement

times to the order of several milliseconds.10–12 This achieve-

ment has made the FRC reach the transport-limited regime.

In early experiments of FRCs, besides the fact that

many FRCs may not have reached the transport-limited

regime, the transport studies have showed relatively short

confinement times. In these experiments, particle,13,14 flux,15

and energy confinement were well identified as anomalous.

Possible electrostatic micro-instabilities have been investi-

gated,16–19 with the lower hybrid drift instability (LHDI) theo-

retically identified as the most linearly unstable. However,

experiments found that the LHDI saturates at levels two orders

of magnitude below oft-predicted values.16 Electromagnetic

modes such as the electron temperature gradient driven electro-

magnetic micro-tearing modes may also be present in FRCs20

but have not been studied in detail. Confinement is signifi-

cantly affected by radial diffusion through the edge,21,22 where

particles move from the closed field-lines of the core to the

open field-lines of the SOL. A number of analytical studies

have been made of classical transport in simple equilibria23–26

and using quasi-steady 1-D plasma profiles.27–29 Numerical

models of transport have been made to include more details

using both simple 1-D and 2-D equilibria.13,15,30–33

However, once the FRC plasmas in C-2 and C-2U10–12,34

clearly reached the transport-limited regime with sufficient

remedies of macro-instabilities mentioned earlier, the trans-

port times have been found to lengthen considerably12 and

show markedly different properties of fluctuations.35 In these

FRC shots, the Q1D fluid transport code,36 based on the

CFRX code,37 has been developed and employed for transport

analysis of C-2 plasma conditions.

Schmitz et al.35 found that, while the plasma in the SOL

shows robust fluctuations driven by micro-instabilities, the

level of fluctuations in the FRC core is less than in the SOL by

1–2 orders of magnitude. The level of fluctuations is reduced

when the neutral beam injection commences. An appropriately

applied end voltage bias can further reduce the level of fluctua-

tions. These are strong indications that fluctuations are strongly

dependent on the plasma’s density, temperature, presence of

large orbit particles, and presence of plasma shear flows, which

may influence stability properties of micro-instabilities. Taking
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inspiration from these observations, we study the stability

properties of the microscopic drift-wave instabilities in the

FRC plasma, both in the core and in the SOL.

By identifying and studying transport mechanisms, a suit-

able transport scaling may be found and applied toward predict-

ing confinement performance in larger, hotter, and denser FRC

plasmas. To our knowledge, first-principles simulation of turbu-

lent transport in FRC geometry has not been previously carried

out. To fill this void in theoretical understanding, and, in sup-

port of ongoing experiments at TAE, we extend a mature, well-

benchmarked turbulence simulation code, the Gyrokinetic

Toroidal Code (GTC),38,39 to a system with C-2-like geometry

and parameters.35,40,41 The focus of this study is to find and

characterize the linear properties of drift-waves in the FRC

core and SOL separately using gyro-kinetic simulation.

In early work in slab geometry, drift-waves were shown

to be always unstable without particular thresholds, thus

called “universal instability.”42,43 In the same slab geometry

with the addition of finite magnetic shear, however, drift-

waves were then found to become completely stabilized.44–47

The inclusion of electron non-linearity, however, can de-

stabilize the drift wave.48 Investigations of toroidal coupling,

in toroidal geometries such as the tokamak, then lead to the

de-stabilization of drift-waves yet again.49–51 In toroidal

geometry, the addition of shear flow was then found to be

partially stabilizing for the drift-wave instabilities.52,53 In the

last two decades, the paradigm has been dominated by the

understanding of zonal flow generation as a non-linear mech-

anism of regulation for the drift-wave instabilities.39 With

the work of this paper, we address the new aspect of drift-

wave stability in the FRC geometry which we are finding

quite distinct from those in tokamaks.

In our simulations of the FRC SOL, which has mirror-

like and slab-like geometry, the collisionless electrostatic

drift-wave in the ion-to-electron-scale is destabilized by the

electron temperature gradient due to resonance with locally

barely trapped electrons. Collisions suppress this instability,

but a collisional drift-wave instability can still exist at realis-

tic pressure gradients.

We find that drift-waves in the FRC core geometry, on

the other hand, are robustly stable in simulations (our simu-

lations cover wavelengths up to kfqe< 0.3 so far). We should

note here that, unlike tokamak geometry, there is no toroidal

coupling which destabilizes the tokamak drift-waves49–51 in

FRC geometry because the FRC lacks the toroidal fields and

magnetic shear. Our study in simulations of limiting cases of

FRC show this stability to be due to the features of the FRC

core: (1) the field-lines of the ideal FRC core geometry are

not toroidally coupled, similar to the early slab geometry but

with closed field-lines, leading to extremely short connection

lengths to shield electronic charge separation; (2) while the

curvature of the field-lines is always bad, aligning with the

direction of decreasing pressure, but the magnetic field is

always increasing radially outward, leading torB drift stabi-

lization; and (3) the high temperature and low magnetic field

lead to a large stabilizing finite Larmor radius (FLR)

effect.2,8

The characteristics of these two regions have been com-

pared to recent TAE experiments35 and found to be in

agreement. In particular, the lack of ion-scale instability in

the core is consistent with experimental measurements of a

fluctuation spectrum showing a depression in the ion-scale.35

In addition, linear pressure gradient thresholds for stability

found in simulations are consistent with thresholds observed

in experiments. The survey of these modes will guide nonlin-

ear and cross-separatrix simulations, as well as simulations

including the effects of fast ions and ion cyclotron motion.

The remainder of this paper is organized as follows.

Section II briefly details the simulation model which is more

explicitly discussed in previous papers.40,41 Sections III and

IV present the results for the core and SOL regions respec-

tively. Section V discusses the interpretation of these results,

including comparisons to recent experimental data.35

II. SIMULATION MODEL

Electrostatic simulations presented in this paper have been

conducted with the Gyrokinetic Toroidal Code (GTC) using

gyro-kinetic ions and gyro-kinetic electrons. GTC is a well-

benchmarked, first principles code which has been extensively

applied to study microturbulence and transport, including ion

and electron temperature gradient driven modes,54 collisionless

trapped electron modes,55 energetic particle transport,56 Alfv�en

eigenmodes,57,58 kink,59 and tearing modes.60

While the FRC core does contain a magnetic null-point,

the simulation domains used for this paper do not include the

null-point allowing gyro-kinetics to remain valid. This is dis-

cussed in Sec. II B and graphically shown in Fig. 1.

Recently, GTC has been extended to study instabilities

in the core and scrape-off layer (SOL) regions of the

FRC.40,41 In this work, electrostatic perturbative df simula-

tions38,43,61–63 are confined either in the core or SOL region

separately with no cross-separatrix coupling. The domain is

reduced to a toroidal wedge and localized to a single flux

surface as described in Subsection II B. The equilibrium

parameters of the simulations are detailed in Subsection II A.

A. Equilibrium

Simulations are initialized with a FRC equilibrium

which is representative of typical FRC plasmas realized in

the C-2 experiment. The equilibrium is calculated using the

LR_eqMI code, which is an axisymmetric force balance

solver including realistic wall and coil geometry and the pos-

sibility of multiple ion species, arbitrary rotation profiles,

and arbitrary temperature profiles.64 These quantities are

then transformed65 from cylindrical coordinates ðR; Z; /Þ to

magnetic Boozer coordinates (w, h, f) for use in GTC40 as

shown in Fig. 1. The origin of the Boozer coordinate system

is located at the magnetic null-point. The magnetic field

points in the poloidal direction, ~h, and the guiding-center

drifts are in the toroidal direction, ~f, as shown in Fig. 1.

Here, the ion diamagnetic direction is positive ð~fÞ, and the

electron diamagnetic direction is negative ð�~fÞ. The major

radius R0¼ 27 cm is the distance from the machine cylindri-

cal axis (geometry center) to the null-point (magnetic axis)

as indicated by the blue dashed line. The minor radius

a¼ 11 cm is the distance from the null-point to the separa-

trix. The separatrix radius Rs¼ 38 cm is the distance from
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the machine cylindrical axis to the separatrix. These are all

measured along the mid-plane (h¼ 0 or Z¼ 0).

The equilibrium used corresponds to an early time in a

C-2 discharge, just after the CTs merge to form a single FRC

before a significant fast ion population has built up. At this

stage, the size of the plasma is large and diagnostics are more

robust. In the simulations, temperature and density gradients

are input to drive instabilities in plasma composed of deuter-

ons and electrons. Parameters are chosen to resemble the con-

ditions of recent experiments at TAE35 and are summarized in

Table I. The calculated quantities are the ion gyro-radius

qi ¼
ffiffiffiffiffiffiffiffiffi
miTi

p
=ðeBÞ, electron gyro-radius qe ¼

ffiffiffiffiffiffiffiffiffiffi
meTe

p
=ðeBÞ,

and ion acoustic speed Cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTi þ TeÞ=mi

p
.

Temperature and density gradients drive the instabilities.

The strengths of these drives are defined by their scale

lengths normalized by the machine scale length (where the

local minor radius r is the distance measured from the null-

point along h¼ 0)

jf ¼
R0

Lf
¼ R0

f

@

@r
f : (1)

The drives used are the density gradient jn¼R0/Ln, ion

temperature gradient jTi
¼ R0=LTi

, and electron temperature

gradient jTe
¼ R0=LTe

. In addition, the importance of the

drives can be defined by the ratios between the scale lengths of

the temperature gradients and the density gradient, gi ¼ jTi
=jn

and ge ¼ jTe
=jn. In most of the simulations presented, the

strengths of the three drives are equal, i.e., gi¼ ge¼ g¼ 1, and

the magnitude of the drive strength would then be referred to as

jð¼ jn ¼ jTi
¼ jTe

Þ.
Simulations were run both with and without collisions

based on the Fokker-Planck model66 to understand the effects

of collisions. The effective collisionality is the collisional fre-

quency normalized by the transit frequency and is calculated

by ��e�e ¼ �e�e=xtr;e; �
�
e�i ¼ �e�i=xtr;e; �

�
i�i ¼ �i�i=xtr;i. The

transit frequency of an electron and ion passing along a

field-line is xtr,e¼Vth,e/L and xtr,i¼Vth,i/L, respectively.

Here, Vth�i ¼
ffiffiffiffiffiffiffiffiffiffiffi
Ti=mi

p
is the ion thermal velocity, and

Vth�e ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Te=me

p
is the electron thermal velocity. In our sim-

ulation domain, the field-line length of the core is L� 3.6 m,

while the field-line length of the SOL is L� 5.0 m. The

effective collisionality is high in both regions for the colder

electrons, but low for the hotter ions with a low ion impurity

modeled by Zeff¼ 1.5 in both regions.

B. Flux-tube domain

The focus of this study is to characterize the local linear

properties of the FRC instabilities in the core and SOL sepa-
rately. The large number of simulations is enabled by the

reduction of the simulation domain from a full torus [0, 2p]

to a partial torus [0, 2p/n] where n is the particular toroidal

mode number of interest. In these simulations, the toroidal

wavelength is assumed to be much shorter than the radial

wavelength of the instabilities, i.e., kr� kf.

The radial domain is thus localized to a single flux sur-

face where R0þ r¼ 37 cm in the core and R0þ r¼ 52 cm in

the scrape-off layer as shown in Fig. 1. These flux surfaces

do not include the magnetic null-point, allowing the guiding-

center approximation to remain valid.67 The average gyro-

kinetic parameter is qi/LB ’ 0.2 in the core and qi/LB ’
0.006 in the SOL which are gyro-kinetically valid (about

1.3% difference between the guiding-center and orbit-

averaged positions in case of qi/LB ’ 0.2 as shown by

Brizard67).

In this gyro-kinetic simulation,68 dynamics faster than

ion gyro-period are removed while ion and electron finite

Larmor radius (FLR) effects are retained through accurate

representation of gyro-averaging on particles via direct cal-

culations of Bessel functions for the scattering of charge

onto the grid and in the gathering of fields onto the charge.

TABLE I. Parameters used in simulations of core and SOL.

Quantities Core SOL

ne (cm�3) 4.0 � 1013 2.0 � 1013

Te (eV) 80 40

Ti (eV) 400 200

qi (cm) 6.0 2.2

qe (cm) 0.044 0.016
R0

Cs
ðlsÞ 1.8 2.5

��e�i 2.1 5.7

��i�i\ 0.10 0.27

FIG. 1. The field-aligned mesh on a poloidal plane of a typical C-2 FRC dis-

charge is plotted along with the magnitude of the magnetic field represented

by color. The flux surfaces used in simulations are represented by dashed

cyan lines. Note that the axes are not proportionally scaled. Arrows denote

the directions of the magnetic Boozer coordinate system.
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Due to the neglect of radial gyro-averaging, the growth-rate

of instability is expected to be higher when compared to

non-local simulations. Previous work by Naitou et al.5 with

fully kinetic particle dynamics also supports the expectation

of strongly stabilizing FLR effects.

III. STABLE DRIFT-WAVES IN THE FRC CORE

Within gyro-kinetically valid regimes

x
Xi
� qi

LB
� e/

T
< 1;

kk
k?
� 1; (2)

(where qi is the ion gyro-radius, LB ¼ 1
B
@B
@r is the magnetic

field scale length, and / is the perturbed electrostatic poten-

tial) the electrostatic drift-wave is found to be stable in the

FRC core when driven by pressure gradients relevant to the

C-2 advanced beam driven FRC experiment. Simulations with

equal temperature and density gradients (gi¼ ge¼ g¼ 1) and

with drive strengths up to R0

Ln
¼ jn < 5 were performed.

Toroidal wavelengths were scanned from ion scale to electron

scale up to kfqe< 0.3. From these GTC simulations, the FRC

core is found to be stable within this regime.

A. Mechanisms for core stability

To understand this surprising stability, further simula-

tions based on limiting cases were studied.

From magnetohydrodynamics, the radially increasing

quantity
Þ

dl
B suggests the existence of a flute instability in the

core. An instability can be found by suppressing particle

motion in the simulation by evolving only particle weight

(df) and holding particle positions and velocities fixed (i.e.,

initial phase space coordinates of particles are fixed). This

indicates the importance of electron kinetics for stability.

Work based on this instability also finds both the finite

Larmor radius2 (FLR) and the rB effects to be additional

stabilization effects as expected. Similar simulations turning

on and off FLR and rB effects were also performed in the

SOL and are detailed in Sec. IV. Simulations also find that

only the electron kinetic effects need to be suppressed for the

core to exhibit this instability.

In simulations of purely kk ¼ 0 but with the evolution of

both particle weight and phase space positions, in the limit

of far-from-experimental conditions (for example, tempera-

ture 100� lower), stability persists when FLR effects are

kept; however, when FLR effects are turned off at these lim-

iting case conditions, the kk ¼ 0 mode can become unstable.

Additional limiting conditions further show the impor-

tance of electron kinetic effects. In the limit of artificially

heavy electrons (me/mp> 0.25–0.5), an unstable mode peak-

ing in the outer mid-plane can exist. In the limit of artificially

elongated geometry approaching a theta-pinch-like geometry

(Zlim/Z0< 5–7, where Zlim is the artificially elongated length

and Z0 is the original C-2-like length), a similar unstable

mode can also form in the outer mid-plane. These limiting

cases suggest the electron kinetic effects, and, especially, the

short electron transit time (as slower velocities or longer

travel length contribute to) to be important FRC features

which contribute to the core stability.

The broad stability of the core within the C-2-like

parameters may provide the basis for understanding some of

the experimentally observed phenomena. Experiments

observe robust fluctuations in the SOL and fluctuations of an

order of magnitude smaller in the core.35 Furthermore, in the

same experiments, the core spectrum exhibits a depression in

the ion range (kfqs< 15) unlike the SOL spectrum.

Because our linear, local simulations do not include the

stabilizing influences of fast ions and non-local effects which

exist in the experiments, instabilities should be enhanced

within these simulations. However, quite the opposite, the

results of the simulations show the core stability to be

extremely robust.

It should be noted that one element missing from these

simulations may explain fluctuations in the core: the cou-

pling of the SOL and core. Cross-separatrix coupling

between the two regions may introduce fluctuations originat-

ing from the SOL (detailed in Sec. IV) into the core which,

by itself, is found to be inherently stable.

IV. DRIFT-WAVE INSTABILITIES IN THE SCRAPE-OFF
LAYER (SOL)

A. Collisionless g 5 1 instability

GTC simulations were also performed for the SOL, using

C-2-like parameters detailed in Table I with g¼ 1. Relative to

the core, the temperatures and densities of both species are

lowered by a factor of 2 while the magnitude of the back-

ground magnetic field is roughly stronger by a factor of 2.

Under these conditions, simulations show the existence of

unstable modes ranging from ion-scale to electron-scale wave-

lengths. This is consistent with SOL experimental measure-

ments of density fluctuations which exhibit an exponential

spectrum ranging from the ion-scale to electron-scale.35

Figure 2 shows the instability frequency (xr) and

growth-rate (c) over a range of kfqs for various drive

strengths. xr is in the electron diamagnetic direction and the

electron curvature drift direction, but opposite to the electron

rB drift direction. As kfqs increases, the magnitude of xr

FIG. 2. Real frequency (xr) and growth-rate (c) for different drive strengths

(j) of the collisionless SOL instability for g¼ 1 are shown as solid lines. For

comparison, the dispersion of the collisional SOL instability for g¼ 1 is

shown as the dashed line. As the drive decreases, the instability shifts toward

the shorter wavelength (kf).
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decreases until a jump up to a similar frequency which trends

downward again. This jump is associated with a change in

the poloidal mode structure from odd parity about the mid-

plane to even parity.

A stability threshold is found at drive strength around

jsim� 3–5 for longer wavelengths as seen in Fig. 3, which

is comparable to jexp� 3.9 as measured in experiments.

Shorter wavelengths are found to have lower stability

thresholds.

As seen in the mid-panel of Fig. 4, the mode structure in

the SOL spans the field-line length is dominated by poloidal

mode numbers m¼ 1 with smaller components of m¼ 0 and

m¼ 2 (where the poloidal direction is the horizontal axis).

The central location of the mode can be explained by the

effects of gyro-averaging and by the behavior of the resonant

particles. As seen in Fig. 1, kf is lower at the mid-plane (Z �
0) and higher at the axial ends (Z �62) by more than a fac-

tor of two, leading to a weaker gyro-averaging effect in the

central location. The dominant particle resonance is due to

barely trapped electrons in the central location, as seen in

the figure-8 structure in the vk � h phase-space plot in Fig. 4

(detailed in Sec. IV B).

B. Particle resonances

The square of the perturbed distribution functions df2 is

plotted in the plane of energy (E/T) vs pitch angle (lB0/E)

for both species in Fig. 5 for the kfqs¼ 4.1 (n¼ 75, g¼ 1,

j¼ 6.7). For this instability, electron resonance is more

important than ion resonance (df 2
e > df 2

i ). The resonant ion

motion is the drift due to rB and curvature, as shown by the

curves in the upper panel of Fig. 5. More importantly, the

resonant electron motion which drives this instability is

shown to be the bounce motion of barely trapped electrons,

as shown in the lower panel of Fig. 5.

The electrons can be separated into three groups: locally

trapped electrons, globally trapped electrons, and passing

electrons. In the SOL, the geometry is such that there are

two small magnetic wells and an overall large magnetic well

as seen in the blue curve of the bottom panel of Fig. 4.

Locally trapped electrons are bound within the two smaller

magnetic wells. Globally trapped electrons are bound within

the overall larger magnetic well. Passing electrons are able

to freely stream through the magnetic well in the periodic

domain. The boundaries of these trapped-passing regimes

are denoted by the arrows in Fig. 5. From the perturbed dis-

tributions of the electrons in Fig. 5, it can be clearly seen

that the mode frequency is aligned with the bounce fre-

quency of the barely locally trapped electrons at lB0/E¼ 1.

This resonant motion can also been seen when the perturbed

electron distribution function is plotted in phase space (vk vs

h) as in the top panel of Fig. 4. The figure-8 shape highlights

the motion of the barely trapped electrons moving back and

forth within the magnetic well.

Further evidence of the importance of this bounce

motion of the electrons in driving this instability is seen from

the case of purely density gradient driven instability (g¼ 0)

and the case of ion-temperature and density gradient driven

instability (gi¼ 1) (detailed in Sec. IV C).

C. Stabilizing mechanisms

As in the core, the stabilizing influences of the finite

Larmor radius (FLR) and magnetic well (negative rB) are

explored in the SOL by turning on and off these effects in

FIG. 3. Growth-rates (c) vs drives (j) for unstable collisionless SOL modes

for g¼ 1 at various length-scales are plotted as solid lines. The unstable col-

lisional kfqs¼ 16.4 mode for g¼ 1 is also plotted as the dashed line. The

threshold is found to be lower for shorter wavelengths.35 The growth-rates

for kfqs¼ 1.37 (blue) without FLR effects (þ) and without rB effects (x)

are also plotted for comparison.

FIG. 4. The top panel shows the vk � h phase-space of the electrons with the

color representing df 2
e . The middle panel shows the electrostatic potential in

the f – h plane for the case of kfqs¼ 4.1 (n¼ 75, g¼ 1, and j¼ 6.7). The

bottom panel shows the potential along the poloidal direction for f¼ 0. In

addition, the magnitude and the radial gradient of the magnetic field are

shown as the blue and purple curves corresponding to the left and right axes,

respectively.
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simulations. This is shown for the kfqs¼ 1.37 case for j � 4

in Fig. 3. Like the core, it is found that the FLR effect is

more strongly stabilizing than the rB effect when the drive

is strong. However, when the drive is marginal, as might be

expected from self-organization of the plasma, both are

important in the complete suppression of instability.

In the experiments, the temperature gradients can actu-

ally be stronger than the density gradients. In the simula-

tions presented in Sec. IV A, the gradients of the density,

ion temperature, and electron temperature are equal. In

order to better understand the drive of the instability for

g¼ 1, simulations of the kfqs¼ 4.1 instability were

repeated with the density gradient unchanged at jn¼ 6.7

while separately varying the ion temperature gradient jTi

and electron temperature gradient jTe
. As shown in Fig. 6,

the electron temperature gradient is destabilizing while the

ion temperature gradient is stabilizing. In addition, this

instability exists even when there is only a density gradient

(ge¼ gi¼ 0, jn 6¼ 0).

These results can be understood by looking at the elec-

tron perturbed distribution functions. In the g¼ 0 case as

shown in the top panel of Fig. 7, the resonant electrons are at

lower energy in contrast to the g¼ 1 case. The electron reso-

nance is also no longer dominated by the locally barely

trapped electrons but still by trapped electrons. In the ge¼ 1,

gi¼ 0 case, the frequency is comparable to the g¼ 1 case but

FIG. 5. df 2 (normalized by the maximum df 2
e ) is plotted for the ions (upper

panel) and electrons (lower panel) with respect to energy and pitch angle.

For ions, curves represent the ion drift frequency; pink (cyan) corresponds to

values calculated at h¼p (h¼p/3). For electrons, the pink (cyan) corre-

sponds to the electron transit frequency (electron bounce frequency).

FIG. 6. Dispersion relation with respect to ge (gi) is plotted as the blue (pur-

ple) dashed lines. The frequency and growth-rate for the g¼ 1 (black) case

is plotted as the solid line for comparison. The density gradient drive jn is

kept constant while jTe
ðjTi
Þ is varied for the ge (gi) scan. Note that the

mode is unstable even with only jn.

FIG. 7. The df 2
e (normalized by the maximum df 2

e ) is plotted for ge¼ 0 and

ge¼ 1 with respect to energy and pitch angle. When the electron temperature

gradient (jTe ) is decreased (ge¼ 1 ! ge¼ 0), the electron resonance shifts

from locally trapped to globally trapped.
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with even faster growth. The resonant ions are at lower

energy while the resonant electrons are, as in the g¼ 1 case,

the high energy locally barely trapped electrons, as seen in

the bottom panel of Fig. 7. From the comparison of the three

cases, it is clear that the motion of the locally barely trapped

electrons is the resonance that drives the collisionless SOL

instability.

D. Collisional effects

Using the Fokker-Planck model, the SOL instability for

g¼ 1 was simulated with pitch-angle scattering through

electron-ion collisions over a range of collisionality, from

collisionless to the collision frequency defined for Zeff¼ 1.5

using equilibrium densities and temperatures detailed in

Table I. With collisions, both frequency and growth-rate

decrease, but as the collisionality is lowered, the collisionless

frequency and growth-rate are recovered. While collisions

are strongly stabilizing in the long wavelength case, there is

negligible effect to the mode structure, which is strongly

dominated by the m¼ 0 and m¼ 1 harmonics.

The effect of collisions on this instability can be under-

stood from the locally trapped electron resonance. Pitch-

angle scattering frequently moves electrons in and out of that

particular energy-pitch position, essentially removing the

drive of this instability. However, as seen in Figs. 2 and 3,

there is still a significant instability which can exist at shorter

wavelengths even when the collisionless mode is suppressed

by collisions.

V. DISCUSSION

Local gyrokinetic simulations have been used to investi-

gate electrostatic pressure gradient-driven drift-waves in the

FRC. While the FRC core was expected to be less unstable1

due to the large ion gyro-radius, simulations found drift-

waves in the core to be completely stable with C-2-like

parameters for pressure gradient drives up to qi=LP � Oð1Þ
with equal temperature and density gradients (g¼ 1) for ion-

to-electron scale wavelengths (kfqe< 0.3). Our studies of

limiting cases in the FRC strongly suggest that this stability

is due to the short electron connection length with further

stabilizing contribution from FLR8 and rB effects. Only

when the FRC geometry is artificially elongated from the

typical C-2-like FRC toward the field-reversed theta pinch

(by Zlim/Z0 exceeding 5–7) does the known drift-wave insta-

bility appear, consistent with the importance of electron par-

allel dynamics. It should also be noted that the electron

connection length along the field-lines in the FRC core is

much shorter than those such as in tokamaks.

In the SOL, a pressure gradient driven mode with wave-

lengths ranging from ion-scale to electron-scale has been

found. This collisionless instability is driven by magnetically

trapped electrons. The unstable mode peaks are correlated

with the regions with weakest magnetic fields, strongest cur-

vature, and local minima of rB. Collisions suppress this

instability but allow a different lower frequency collisional

instability at shorter wavelengths.

In experiments conducted by Schmitz et al.,35 density

fluctuations measured in the core display a “depressed”

wavenumber spectrum in which fluctuation amplitudes are

low at ion-scale wavelengths but peak at electron-scale

wavelengths (in the range around kfqe� 0.15–0.45). The

fluctuations measured in the SOL have a more typical wave-

number spectrum with higher amplitudes at ion-scale and

exponentially decreasing amplitudes toward shorter wave-

lengths. The stability exhibited in the simulations of the core

is consistent with the experimental core fluctuation spec-

trum; however, simulations using Vlasov ions are necessary

to explore the possibility of higher frequency instabilities.

The ion-to-electron-scale nature of the instability of the SOL

displayed in simulations is consistent with the experimen-

tally measured SOL fluctuation spectrum. In addition, exper-

imental data show the existence of fluctuation thresholds35 at

normalized drive strengths of jexp� 3.9. In simulations, col-

lisionless linear thresholds are found at jsim� 3–5 in the

SOL for the longer wavelength modes.

Based on the fastest growth-rates of the collisionless

SOL instability driven by the largest and smallest simulated

drive strengths j� 8.1–1.3, the characteristic growth times

are c� 1.75 �0.25Cs/R0 ! sSOL¼ 1.4–10 ls. The fastest

growing collisional SOL mode, driven by j¼ 6.7, has a

comparable growth time of c � 0:65Cs=R0 ! sSOL ¼ 3:9 ls.

In the C-2 experiments, the FRC plasma lifetimes are on the

order of milliseconds, and so both the collisionless and colli-

sional SOL modes have enough time to grow to a substantial

amplitude to explain the fluctuation spectrum observed.

In experimental measurements of density fluctuations,35

the FRC core and SOL show distinct behaviors. The SOL dis-

plays strong density fluctuations which follow an exponential

scaling while the quiescent core density fluctuations are lower

in amplitude by an order of magnitude. In agreement with

these experimental results, our simulations find drift-waves to

be robustly stable in the core and unstable in the SOL.

The surprising stability of electrostatic drift-waves in

the core requires further studies to isolate the origin of the

fluctuations observed in experiments. Higher frequency

instabilities may exist in the core, but the origin of the fluctu-

ations may also lie in the interaction between the SOL and

core. Future work will focus on the physics of cross-

separatrix interactions and the possible propagation of fluctu-

ations from SOL to core.
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