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Nonlinear simulation model for radio frequency waves in fusion plasmas has been developed and

verified using fully kinetic ion and drift kinetic electron. Ion cyclotron motion in the toroidal

geometry is implemented using Boris push in the Boozer coordinates. Linear dispersion relation

and nonlinear particle trapping are verified for the lower hybrid wave and ion Bernstein wave

(IBW). Parametric decay instability is observed where a large amplitude pump wave decays into an

IBW sideband and an ion cyclotron quasimode (ICQM). The ICQM induces an ion perpendicular

heating, with a heating rate proportional to the pump wave intensity. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4934606]

I. INTRODUCTION

Magnetic fusion devices rely on radio frequency (RF)

waves for driving current and heating plasmas, ever since it

was predicted that the power dissipated by high phase velocity

waves could be much smaller than previously thought.1 There

are now many methods of current drive considered in present-

day tokamaks2–4 and for future burning plasma experiments

such as ITER.5 The linear theory of RF waves using eigen-

value solvers (full wave method), such as AORSA,6 TORIC,7

and WKB method,8,9 is widely used to explain many RF phe-

nomena in experiments. However, there are important situa-

tions when linear theory fails and nonlinear phenomena, such

as ponderomotive effects and parametric decay instability

(PDI), become important. For example, the density thresh-

old10–12 associated with the nonlinear RF plasma interaction

cannot be captured either in full wave or WKB method. The

presence of PDIs, density threshold, and plasma rotation

induced by nonlinear RF effects has been observed in several

fusion devices, including DIII-D,13 Alcator C-Mod,10,14 HT-

7,15 NSTX,16 FTU,12 ASDEX,17 JT-60,18 EAST,19 and JET.11

Nonlinear physics of the RF waves has been studied theoreti-

cally20–23 and numerically in slab or cylinder geometries with

particle codes such as GeFi,24 Vorpal,25,26 and G-gauge.27

However, the RF propagation, spectral evolution, mode con-

version, and nonlinear interactions in fusion plasmas all

depend on the toroidal geometry and equilibrium.

Thus, given the importance of RF for steady state opera-

tion, instability control, and requisite central heating in burn-

ing plasmas, we are developing a global nonlinear toroidal

particle simulation model to study the nonlinear physics asso-

ciated with RF heating and current drive using the gyrokinetic

toroidal code (GTC).28 GTC has been verified for RF

waves,29,30 energetic particle driven Alfven eigenmodes,31–33

microturbulence,34 and macroscopic magnetohydrodynamic

(MHD) modes driven by pressure gradients and equilibrium

currents.35,36 The principle advantage of the initial value

approach in GTC simulation is that it retains all the nonlinear-

ities and other physical properties (all harmonics, finite

Larmor radius effects, etc.) of the RF waves in the realistic to-

roidal geometry. As a important step in developing this non-

linear toroidal particle simulation model, in this paper, we

have extended our fully kinetic ion simulation model from cy-

lindrical geometry to the toroidal geometry.29,37 Most

recently, GTC has been verified for the linear and nonlinear

electromagnetic simulation of lower hybrid wave (LHW). The

LHW propagation, mode conversion, and absorption have

been simulated using fluid ion and drift kinetic electron in the

toroidal geometry.38,39 Further developments of this electro-

magnetic model will enable us to analyze the nonlinear

physics such as PDIs, ponderomotive effects, rf sheath, pinch-

ing effects, density threshold, and improvement of the accessi-

bility window for RF wave penetration in the tokamak edge

as well as its propagation to the core region.

In this paper, we have implemented ion cyclotron motion

in magnetic coordinates and verified linear physics and non-

linear particle trapping for electrostatic LHW, and ion

Bernstein wave (IBW) using fully kinetic ion and drift kinetic

electron. We have also carried out simulations of three wave

coupling in the ion cyclotron heating regime, in which the

pump wave decays into an IBW sideband and an ion cyclo-

tron quasimode (ICQM). When the frequency matching con-

dition is satisfied, the quasimode is strongly damped on the

ion, and the ion heating takes place only in the perpendicular

direction. This quasimode induced ion heating rate is propor-

tional to the intensity of the pump wave.a)Electronic mail: akuley@uci.edu
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The paper is organized as follows: the physics model of

fully kinetic ion and drift kinetic electron in toroidal geome-

try is described in Sec. II. Section III presents the linear veri-

fication of the GTC simulation of the electrostatic normal

modes in uniform plasmas and nonlinear wave trapping of

electron. Sec. IV describes the nonlinear ion heating due to

PDI, and Section V summarizes the overall work.

II. PHYSICS MODEL IN TOROIDAL GEOMETRY

The physics model for the fully kinetic ion, drift kinetic

electron dynamics, and the numerical methods associated

with the time advancement of the physical quantities (ion

position, electron guiding center, particle weight, electric

field, etc.) is described below.

A. Physics model

1. Coordinate system

In GTC, we use toroidal magnetic coordinates ðw; h; fÞ
to represent the electromagnetic fields and the plasma profile

in the closed flux surface, where w is the poloidal flux func-

tion, h and f are the poloidal and toroidal angle, respectively.

The contravariant representation of the magnetic field is40

~B ¼ grfþ Irh; (1)

covariant representation is

~B ¼ qrw�rh�rw�rf; (2)

and the Jacobian of this magnetic toroidal system can be

written as

J�1 ¼ rw � rh�rf ¼ B2

gqþ I
: (3)

Although GTC is capable of general toroidal geometry,41 we

consider a concentric cross-section tokamak in this paper.

The radial coordinate w is simplified as the minor radius r.

The toroidal coordinate system relates to the standard

Cartesian system as follows [cf. Fig. 1]:

x ¼ ðR0 þ r cos hÞ cos f;

y ¼ �ðR0 þ r cos hÞ sin f;

z ¼ r sin h: (4)

By defining a covariant basis ~ew ¼ @w~r , ~eh ¼ @h~r; ~ef

¼ @f~r and contravariant basis ~ew ¼ rw; ~eh ¼ rh, ~ef ¼ rf,

the velocity and the electric field can be written as

~v ¼ vw~ew þ vh~eh þ vf~ef; (5)

~E ¼ �r/ ¼ � @/
@w
rwþ @/

@h
rhþ @/

@f
rf

� �
; (6)

where

vw ¼ _w; vh ¼ _h; vf ¼ _fr cos h=ðR0 þ r cos hÞ;
~ew ¼ ½cos h cos fx̂ � cos h sin fŷ þ sin hẑ�ð@r=@wÞ;
~eh ¼ �r sin h cos fx̂ þ r sin h sin fŷ þ r cos hẑ;

~ef ¼ �ðR0 þ r cos hÞ sin fx̂ � ðR0 þ r cos hÞ cos fŷ

wðrÞ ¼
ðr

0

ðr=qÞdr: (7)

2. Ion dynamics

Ion dynamics is described by the six dimensional

Vlasov equation

@

@t
þ~v � r þ Zi

mi

~E þ~v � ~B
� �

� @
@~v

� �
fi ¼ 0; (8)

where fi is the ion distribution function, Zi is the ion charge,

and mi is the ion mass.

The evolution of the ion distribution function fi can be

described by the Newtonian equation of motion in the pres-

ence of self-consistent electromagnetic field as follows:

d

dt
~r ¼~v; d

dt
~v ¼ Zi

mi

~E þ~v � ~B
� �

: (9)

In our simulation, we compute the marker particle trajectory

[Eq. (9)] by the time centered Boris push method,29,42,43 as

discussed Section II B.

In our GTC simulation, we have implemented both per-

turbative ðdf Þ and non-perturbative (full-f) methods. We use

ðdfiÞ method to reduce the particle noise. Now, we decompose

the distribution function ðfiÞ into its equilibrium ðf0iÞ and per-

turb part ðdfiÞ, i.e., fi ¼ f0i þ dfi. The perturbed density for ion

is defined as the fluid moment of ion distribution function,

dni ¼
Ð

dfid
3v. By defining the particle weight wi ¼ dfi=fi, we

can rewrite the Vlasov equation for Maxwellian ion with uni-

form temperature Ti and uniform density as follows:

d

dt
wi ¼ �

Zi

Ti
1� wið Þ @/

@w
vw þ @/

@h
vh þ @/

@f
vf

� �
: (10)

3. Electron dynamics

Electron dynamics is described by the five-dimensional

drift kinetic equation
FIG. 1. Schematic diagram of the coordinates of a concentric cross section

tokamak.
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@

@t
þ _~X � r þ _vk

@

@vk

" #
fe ~X; vk; l; t
� 	

¼ 0; (11)

where fe is the guiding center distribution function,
~Xðw; h; fÞ is the guiding center position, l is the magnetic

moment, and vk is the parallel velocity. The evolution of the

electron distribution function can be described by the follow-

ing equations of guiding center motion:44

_~X ¼ vkb̂ þ~vE þ~vc þ~vg;

_vk ¼ �
1

me

~B
�

B
� lrB� er/ð Þ; (12)

where ~B
� ¼ ~B þ Bvk=xcer� b̂ and l ¼ mev2

?=2B. The ~E �
~B drift velocity~vE, the grad-B drift velocity~vg, and curvature

drift velocity~vc are given by

~vE ¼
cb̂ �r/

B
;

~vg ¼
l

mxce
b̂ �rB;

~vc ¼
v2
k

xce
r� b̂: (13)

This electron model is suitable for the dynamics with

the wave frequency x� xce and k?qe � 1, where xce is

the electron cyclotron frequency and qe is the electron gyro

radius. Electron dynamics are described by conventional

Runge-Kutta (RK) method. The perturbed density for elec-

tron also can be found from the fluid moment of electron dis-

tribution function, dne ¼
Ð

dfed3v. The weight equation for

electron can be written as

d

dt
we ¼ 1� weð Þ �e

~B
�

B0

� r/
1

me

1

f0e

@f0e

@vk

" #
; (14)

where we ¼ dfe=fe and fe ¼ f0e þ dfe. f0e and dfe are the equi-

librium and perturbed distribution function, respectively.

Simulation related to nonuniform plasma density and tem-

perature will be reported in future work.

4. Field equation

This paper describes the electrostatic model of fully ki-

netic ion and drift kinetic electron. Most recently Bao et al.38

have formulated the electromagnetic description of this

model. The electrostatic potential can be calculated from the

Poisson’s equation

r? � 1þ
x2

p

x2
c

 !
r?/

" #
¼ �4p Zidni � edneð Þ: (15)

Here, we consider the fact that the perpendicular wavelength

is much shorter than the parallel wavelength to suppress the

high frequency electron plasma oscillation along the mag-

netic field line. The second term on the left hand side corre-

sponds to the electron density due to its perpendicular

polarization drift. For an axisymmetric system, the perpen-

dicular Laplacian can be explicitly expressed as41

r2
? ¼ gww @2

@w2
þ 2gwh @2

@w@h0

þ ghh þ gff=q2
� � @2

@h2
0

þ 1

J

@Jgww

@w
þ @Jgwh

@h0

 !
@

@w

þ 1

J

@Jgwh

@w
þ @Jghh

@h0

 !
@

@h0

; (16)

where h0 ¼ h� f=q and f0 ¼ f. In GTC, we used the field

aligned coordinates ðw; h0; f0Þ, for reducing the number of

parallel grids. And, we use the B-spline representation of the

magnetic field, which provides a transformation R ¼ Rðw; hÞ
and Z ¼ Zðw; hÞ, where ðR; Z; fÞ are the cylindrical coordi-

nates. We define the contravariant geometric tensor

gnanb ¼ rna � rnb, ðn1; n2; n3Þ ¼ ðw; h; fÞ. The covariant

geometric tensor gnanb can be expressed as

gww ¼
@R

@w


 �2

þ @Z

@w


 �2

;

ghh ¼
@R

@h


 �2

þ @Z

@h


 �2

;

gwh ¼
@R

@w
@R

@h
þ @Z

@w
@Z

@h
; (17)

and gwh ¼ ghw; gff ¼ R2 ¼ ðR0 þ r cos hÞ2 for concentric

cross-section tokamak, where R0 is the major radius of the

tokamak.

B. Boris push for ion dynamics

The efficiency of particle simulation is strongly depend-

ent on the particle pusher. Boris scheme is the most widely

used orbit integrator in explicit particle-in-cell (PIC) simula-

tion of plasmas. Here, we have extended our Boris push

scheme from cylindrical geometry to toroidal geometry.29

This scheme offers second order accuracy while requiring

only one force (or field) evaluation per step. The interplay

between the PIC cycle and the Boris scheme is schematically

represented in Fig. 2. At the beginning of each cycle, the

position of the particles and their time centered velocity

~vðt� 1=2Þ, weight wiðtÞ, and the grid based electromagnetic

fields ~EðtÞ; ~BðtÞ are given.

In the first step, we add the first half of the electric field

acceleration to the velocity~vðt� 1=2Þ to obtain the velocity

at the particle position~rðtÞ as follows:

~u tð Þ ¼~v t� 1=2ð Þ þ Zi

mi

Dt

2
~E tð Þ: (18)

One may write the components of velocity at particle posi-

tion~rðtÞ as

ua� tð Þ ¼
X

b¼w;h;f

vb t� 1=2ð Þ~eb t� 1=2ð Þ � ra tð Þ

þ Zi

mi

Dt

2
~E tð Þ � ra tð Þ; (19)

where a ¼ w; h; f. We note that in Boozer coordinates, the

basis vectors are non-orthogonal in nature. However, for
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simplicity, we consider the orthogonal components only, and

Eq. (19) can be rewrite as follows:

uw� tð Þ ¼ 1

gww tð Þ
h
vw t� 1=2ð Þ~ew t� 1=2ð Þ �~ew tð Þ

þvh t� 1=2ð Þ~eh t� 1=2ð Þ �~ew tð Þ

þvf t� 1=2ð Þ~ef t� 1=2ð Þ �~ew tð Þ
i
þ Zi

mi

Dt

2
~E tð Þ �rw tð Þ;

uh� tð Þ ¼ 1

ghh tð Þ
h
vw t� 1=2ð Þ~ew t� 1=2ð Þ �~eh tð Þ

þvh t� 1=2ð Þ~eh t� 1=2ð Þ �~eh tð Þ

þvf t� 1=2ð Þ~ef t� 1=2ð Þ �~eh tð Þ
i
þ Zi

mi

Dt

2
~E tð Þ �rh tð Þ;

uf� tð Þ ¼ 1

gff tð Þ
h
vw t� 1=2ð Þ~ew t� 1=2ð Þ �~ef tð Þ

þvh t� 1=2ð Þ~eh t� 1=2ð Þ �~ef tð Þ

þvf t� 1=2ð Þ~ef t� 1=2ð Þ �~ef tð Þ
i
þ Zi

mi

Dt

2
~E tð Þ �rf tð Þ:

(20)

Using Eq. (7), we can simplify the above equations as

uw� tð Þ ¼ @r=@wð Þt
gww tð Þ ½Avw t� 1=2ð Þ @r=@wð Þt�1=2

þBvh t� 1=2ð Þr t� 1=2ð ÞþCvf t� 1=2ð Þ

� R0 þ r t� 1=2ð Þcos h t� 1=2ð Þð Þ�� Zi

mi

Dt

2

@/
@w

gww;

uh� tð Þ ¼ 1

ghh tð Þ ½Dvw t� 1=2ð Þ @r=@wð Þt�1=2r tð Þ

þEvh t� 1=2ð Þr t� 1=2ð Þr tð ÞþFvf t� 1=2ð Þr tð Þ

� R0 þ r t� 1=2ð Þcos h t� 1=2ð Þð Þ�� Zi

mi

Dt

2

@/
@h

ghh;

uf� tð Þ ¼ 1

gff tð Þ ½Gvw t� 1=2ð Þ @r=@wð Þt�1=2

þHvh t� 1=2ð Þr t� 1=2ð ÞþPvf t� 1=2ð Þ
� R0 þ r t� 1=2ð Þcos h t� 1=2ð Þð Þ�

� R0 þ r tð Þcos h tð Þð Þ � Zi

mi

Dt

2

@/
@f

gff; (21)

where

A ¼ P cos h1 cos h2 þ sin h1 sin h2;

B ¼ �P sin h1 cos h2 þ cos h1 sin h2;

C ¼ cos h2ð�sin f1 cos f2 þ cos f1 sin f2Þ;
D ¼ �P cos h1 sin h2 þ sin h1 cos h2;

E ¼ P sin h1 sin h2 þ cos h1 cos h2;

F ¼ sin h2ðsin f1 cos f2 � cos f1 sin f2Þ;
G ¼ cos h1ð�cos f1 sin f2 þ sin f1 cos f2Þ;
P ¼ cos f1 cos f2 þ sin f1 sin f2

H ¼ �G tan h1; h1 ¼ hðt� 1=2Þ; h2 ¼ hðtÞ
f1 ¼ fðt� 1=2Þ; f2 ¼ fðtÞ: (22)

In the second step, we consider the rotation of the veloc-

ity at time (t). Rotated vector can be written as

~uþðtÞ ¼ ~u�ðtÞ þ~u�ðtÞ �~sðtÞ þ ½~u�ðtÞ � ~TðtÞ� �~sðtÞ; (23)

where ~T ¼ ðZi
~B=miÞðDt=2Þ and ~s ¼ 2~T=ð1þ T2Þ. Most

recently, Wei et al.,37 have developed the single particle ion

dynamics in general geometry using both toroidal and poloi-

dal components of magnetic field. In our formulations, we

also incorporate both toroidal and poloidal components of

magnetic fields. However, for the purpose of calculating the

ion cyclotron motion in Boris push, we consider the toroidal

component of magnetic field only, ~B ¼ grf ¼ qrw�rh,

and the components of the rotated vector become

uwþ tð Þ ¼ 1� 2

1þ T2


 �
Zi

mi

Dt

2


 �2

B2

" #
uw� tð Þ

þ 2

1þ T2


 �
Zi

mi

Dt

2


 �
g

J


 �
ghh tð Þuh� tð Þ;

uhþ tð Þ ¼ 1� 2

1þ T2


 �
Zi

mi

Dt

2


 �2

B2

" #
uh� tð Þ

� 2

1þ T2


 �
Zi

mi

Dt

2


 �
g

J


 �
gww tð Þuw� tð Þ;

ufþ tð Þ ¼ uf� tð Þ; (24)

where T ¼ ðZiB=miÞðDt=2Þ. We assume orthogonal basis

vectors, so that the off-diagonal terms of metric tensor are

zero, and one can redefine the Jacobian as J2 ¼ gwwghhgff,

and the diagonal components of the metric tensor as

gww ¼ ð@r=@wÞ2; ghh ¼ r2, gff ¼ ðR0 þ r cos hÞ2. For g¼ 1

and B ¼ ð1þ r=R0 cos hÞ�1
, one can explicitly prove that

uwþ2gwwðtÞ þ uhþ2ghhðtÞ þ ufþ2gffðtÞ
¼ uw�2gwwðtÞ þ uh�2ghhðtÞ þ uf�2gffðtÞ; (25)

i.e., the magnitude of velocity is unchanged during the rota-

tion. In the third step, we add the other half electric accelera-

tion to the rotated vectors to obtain the velocity at time

ðtþ 1=2Þ

ua tþ 1=2ð Þ ¼ uaþ tð Þ þ Zi

mi

Dt

2
~E tð Þ � ra tð Þ: (26)

To update the particle position, we need to recover

~vðtþ 1=2Þ, which can be achieved through the following

transformation (cf. Fig. 2 dark purple arrow):

vcðtþ 1=2Þ ¼
X

a¼w;h;f

uaðtþ 1=2Þ~eaðtÞ � rcðtþ 1=2Þ; (27)

where c ¼ w; h; f. However, the basis vector rcðtþ 1=2Þ is

still unknown, since cðtþ 1=2Þ does not exist in standard

leap-frog scheme. Here, we use an estimator for cðtþ 1=2Þ
as

c tþ 1=2ð Þ ¼ c tð Þ þ uc tþ 1=2ð ÞDt

2
: (28)
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After we find the velocity at time ðtþ 1=2Þ, we can update

the particle position using the leap-frog scheme as

cðtþ 1Þ ¼ cðtÞ þ vcðtþ 1=2ÞDt: (29)

In Eq. (27), we have the dot-product of two basis vectors

at different time steps. We have evaluated this equation in a

similar way as described in Eqs. (20)–(22).

To verify this cyclotron integrator, we have carried out a

single particle ion dynamics in toroidal geometry with

inverse aspect ratio r=R0 ¼ 0:357 and qi=r ¼ 0:0048. First,

we calculate the time variations of the poloidal flux function

and the poloidal angle in the absence of electric field [cf.

Fig. 3 green line]. Second, we introduce a radial electric field

in the particle equation of motion. In the presence of this

static electric field, an ion will experience a ~E � ~B drift in

the poloidal direction, as shown in Fig. 3 (magenta line).

These results between the theory and GTC simulations are

summarized in Table I.

Figs. 4(a) and 4(b) present the time step convergence of

the poloidal flux function and the relative energy error of the

marker particle. Fig. 4(a) demonstrates that poloidal flux

function can converge with 40 time steps per cyclotron pe-

riod ðxciDt ¼ 0:153Þ. However, there is no such time de-

pendent relation for the calculation of the energy error. Error

in the energy arises mostly due to the decomposition of ve-

locity during the first and last steps of the Boris scheme and

is within the acceptable limit ð�10�5Þ.
We have discussed the time advancement of the dynami-

cal quantities such as velocity and position of ion in the time

centered manner. However, for the self-consistent simula-

tion, we need to update particle weight, electron guiding cen-

ter, and electric field. We use the second order RK method to

advance these quantities, which is described in Section II C.

In our global simulation, we use reflective boundary condi-

tions for the particle and fields.

C. RK pusher for particle weight and electron dynamics

Using the initial ion velocity at time ðt� 1=2Þ; the ion

particle push module updates the velocity up to (tþ 1/2).

The velocity at time (t) is computed by the linear average of

velocities as follows:

vc tð Þ ¼ vc t� 1=2ð Þ þ vc tþ 1=2ð Þ
2

: (30)

Using the electric field and average velocity at time (t), one

can compute ðdwi=dtÞ from Eq. (10). For the first step of the

RK method, we advance the particle weight from wiðtÞ to

wiðtþ 1=2Þ, and weðtÞ to weðtþ 1=2Þ. With the updated val-

ues of the source term (charge density), the field solver com-

putes the electric field at time ðtþ 1=2Þ (cf. Fig. 2 orange

arrow). In the second step of RK, we use the updated electric

field at ðtþ 1=2Þ for the advancement of the particle weight

and electron guiding center ðzeÞ from (t) to ðtþ 1Þ [cf. Fig. 2

dark blue arrow]. Mathematically, we can write these two steps

as follows:

� First step (irk¼ 1)

c Ion pusher! wi tþ 1=2ð Þ ¼ wi tð Þ þ dwi

dt

����
t

Dt

2
;

c Electron pusher)
ze tþ 1=2ð Þ ¼ ze tð Þ þ dze

dt

����
t

Dt

2

we tþ 1=2ð Þ ¼ we tð Þ þ dwe

dt

����
t

Dt

2

8>>><
>>>:

• Solve field solver for ~E tþ 1=2ð Þ:
FIG. 3. Verification of ~E � ~B drift in toroidal geometry. Time variations of

(a) poloidal flux function and (b) poloidal angle of the ion position. Here, ww

is the poloidal flux function at the last closed flux surface.

TABLE I. Comparison of ion cyclotron motion including ~E � ~B drift from

simulation and theory.

Parameter Theory GTC simulation

Gyro radius 8.415 �10�3 (m) 8.46 �10�3 (m)

Gyro frequency 4.557 �106 (rad/s) 4.538 �106 (rad/s)
~E � ~B drift 1.815 �104 (m/s) 1.785 �104 (m/s)

FIG. 2. Schematic diagram for the PIC cycle and ion Boris push. The first step

indicates the addition of the first half of the electric field acceleration to the ve-

locity ðv! u�Þ. The second step is rotation of the velocity vector ðu� ! uþÞ.
In the third step, we add the second half of the electric field impulse to the

rotated velocity component ðuþ ! ua; a ¼ w; h; fÞ. Ion particle weight ðwiÞ
and electron guiding center ðzeÞ are updated using the second order Runge-

Kutta (irk¼ 1 and irk¼ 2) method. Dark purple blue indicates the transforma-

tion from ua ! v, which is needed to update the ion position [cf. Eq. (27)].
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� Second step (irk¼ 2)

c Ion pusher! wi tþ 1ð Þ¼ wi tð Þ þ dwi

dt

����
tþ1=2ð Þ

Dt;

c Electronpusher)
ze tþ 1ð Þ ¼ ze tð Þ þ dze

dt

����
tþ1=2ð Þ

Dt

we tþ 1ð Þ ¼ we tð Þ þ dwe

dt

����
tþ1=2ð Þ

Dt

8>>><
>>>:

• Solve field solver for ~E tþ 1ð Þ:

III. LINEAR VERIFICATION OF NORMAL MODES
AND NONLINEAR PARTICLE TRAPPING

In this section, we will discuss the electrostatic normal

modes with kk ¼ 0 as a benchmark of toroidal Boris scheme

in the linear simulation. The general dispersion relation of

the normal mode in uniform plasma can be written as23

1þ vj ¼ 0: (31)

For a Maxwellian background, one can write down the sus-

ceptibility as

vj ¼ �
X
j¼e;i

1

k2k2
Dj

X1
l¼1

2l2x2
cj

x2 � l2x2
cj

Il bjð Þe�bj ; (32)

where bj ¼ k2
?q

2
j ; qj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTj=mjÞ

p
=xcj; k2

Dj ¼ �0Tj=n0je
2, and

xci ¼ ZiB=mi. For normal modes (LHW, IBW), we have

jx=xcej � Oðx=xceÞ � 1 and k?qe � 1, hence the electron

susceptibility is dominated by l¼ 1 term. Therefore, the

above Eq. (32) becomes

1þ
x2

pe

x2
ce

� 1

k2
?k

2
Di

X1
l¼1

2l2x2
ci

x2 � l2x2
ci

Il bið Þe�bi ¼ 0: (33)

For long wavelength limit k! 0þ, with xci � x� xce, the

frequency of the LHW is

x2
LH ¼ x2

pi 1þ
x2

p

x2
c

 !�1

: (34)

We use an artificial antenna to excite these modes and to

verify the mode structure and frequency in our simulation.

The electrostatic potential of the antenna can be written as

/ext ¼ /0 sinðkrrÞ cosðx0tÞ cosðm0h� n0fÞ: (35)

In our simulation, the inverse aspect ratio of the tokamak

is r=R0 ¼ 0:018; qi=r ¼ 0:002, and the background plasma

density is uniform with a uniform temperature. We use

poloidal and toroidal mode filters to select m¼ 0, n¼ 0 modes.

For the lower hybrid simulation, xpi ¼ 145:2xci, xpe

¼ 6242:8xci;xciDt ’ 1:33� 10�3, me=mi ¼5:44618� 10�4,

and particles per wavelength are 8� 106. We carry out the

scan with different antenna frequencies and determine the fre-

quency in which the mode response has the maximum growth

of the amplitude. This frequency is then identified as the eigen-

mode frequency of the system. Fig. 5(a) presents the time his-

tory of the lower hybrid wave amplitude for the antenna

frequency x0 ¼ 41:0xci, which agrees well with the analytical

frequency 40:9xci. Also, the amplitude of the LHW increases

linearly with time, since there is no damping due to kk ¼ 0. To

avoid the boundary effects, we consider ðD=qi ¼ 41:13Þ,
where D is the width of the simulation domain.

Similarly, we carried out the simulation of the IBW waves

for the first four harmonics ðl ¼ 1� 4Þ. In this simulation by

changing the plasma density, we consider xpi ¼ 10:01xci,

xpe ¼ 422:3xci; D=qi ¼ 19:45; xciDt ’ 0:055, and particles

per wavelength are 8� 106. Fig. 5(b) shows good agreement

between the analytical and GTC simulation results of the IBW

frequency. For a definitive comparison between GTC simula-

tion and analytical theory, we have restricted our simulation to

the core of the plasmas r=a ¼ 0:018. The magnetic field varia-

tion in this region is less than 2% since the local analytical

theory uses a uniform magnetic field.

As the first step in developing this nonlinear toroidal

particle simulation model, we carry out the nonlinear GTC

simulation of electron trapping by the LHW with a large am-

plitude [cf. Fig. 6] in cylindrical geometry. Initially, the lin-

ear lower hybrid eigen mode ðm ¼ 4 and n ¼ 1Þ is excited

using an artificial antenna. After the wave amplitude reaches

the plateau regime, we turn off the antenna, and the wave

decays exponentially due to the Landau damping on elec-

trons in the linear simulation (blue line).30 The linear damp-

ing rates obtained from the theory ð0:32xLHÞ agree well with

the simulation ð0:31xLHÞ. However, in the nonlinear simula-

tion, the resonant electrons can be trapped by the electric

field of the wave. The wave amplitude becomes oscillatory

with a frequency equal to the trapped electron oscillation fre-

quency (magenta line). The bounce frequencies xb ¼

FIG. 4. Time step convergence of (a)

poloidal flux function and (b) relative

energy error of ion.
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kkvthe

ffiffiffiffiffiffiffiffiffiffiffiffiffi
e/=Te

p
are close to the analytical values (Table II).

During the antenna excitation of LHW eigenmode, the parti-

cle dynamics are linear for both linear and nonlinear

simulation.

IV. PDI OF ION CYCLOTRON WAVE AND NONLINEAR
ION HEATING

Magnetized plasma supports a large number of electro-

static and electromagnetic modes. When wave energy is rela-

tively low, these modes are mutually independent and

represent a description for the response of the plasma to local

perturbation and external field. However, at higher ampli-

tudes, these modes are coupled and exchange momentum

and energy with each other through the coherent wave phe-

nomenon, e.g., PDIs. In this process, the pump wave ðx0; ~k0Þ
decays into two daughter waves or one daughter wave

ðx1; ~k1Þ and a quasimode ðx2; ~k2Þ pair. The selection rule

for this decay process is given by

x0 ¼ x1 þ x2
~k0 ¼ ~k1 þ ~k2: (36)

As demonstrated in Figure 7, the pump wave can decay

into one daughter wave with a near zero wavenumber and

another wave with nearly the same wavenumber as the pump

wave. This process is considered to be the most probable

non-resonant decay channel of PDI in the ion cyclotron heat-

ing regime. Possible decay channels in the ion cyclotron

range of frequency (ICRF) in experiments have been

discussed by Porkolab.45 In Figure 7, we show the IBW dis-

persion relation (green lines) for the same parameter as in

Figure 5(b). In our simulation, the pump wave itself is not an

IBW, and the value of x=xci at the antenna position is 2.25,

as indicated in Fig. 7. When x0 ¼ xIBW þ xci, i.e., the fre-

quency shift of the wave is close to the ion cyclotron fre-

quency, the wave is strongly damped on ions and known as

ICQM.

Under experimental conditions, a pump wave of fixed

frequency passing through the nonuniform plasma density

and temperature experiences the variation of the wave vector

to satisfy the dispersion relation. As a result of this inhomo-

geneity, layers may exist where selection rules of mode-

mode coupling are easily satisfied. However, in our simula-

tion, plasma density and temperature are uniform and the

wave vectors of the pump wave and the sideband wave are

chosen by the antenna. To satisfy the frequency matching

condition in our simulation, we scan the pump wave frequen-

cies with fixed wavevector. The energy transfer from the

wave to ion (nonlinear ion heating) is maximal, when the fre-

quency selection of parametric decay, x1 ¼ xIBW, and x2 ¼
xci are satisfied (cf. Fig. 8(a) red line). Otherwise, the energy

transfer is negligible (cf. Fig. 8(a) green and blue lines). Our

simulations are all electrostatic and we choose the wave vec-

tor in the radial direction only ði:e:; kk ¼ 0Þ for both pump

wave and decay waves. We consider xpi ¼ 10:01xci,

xpe ¼ 422:3xci; D=qi ¼ 19:45, 100 radial grid points per

wavelength, 200 particles per cell. The simulation time step

ðxciDt ’ 0:02Þ is sufficient to resolve IBW, ion cyclotron

wave, and pump wave dynamics. In this case, the particles

trajectory is described by the perturbed electric field in addi-

tion to the equilibrium magnetic field [cf. Section II A]. Fig.

8(b) shows that the temperature of the hot ions increases lin-

early as the amount of rf power increases, since the kinetic

energy of the ion [ð1=2ÞmiðU=csÞ2] is proportional to

ðe/=TiÞ2, where U=cs ¼ k0?qiðe/=TiÞ is the normalized ion

velocity and cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
is the ion sound speed. We mea-

sure the energy of the ion after 400 ion cyclotron periods.

FIG. 5. Verification of normal modes

in toroidal geometry. (a) Time history

of LHW amplitude excited by antenna,

(b) comparison of IBW dispersion rela-

tion between the analytical solution

and the GTC simulations for the first

four harmonics.

FIG. 6. Nonlinear GTC simulation of LHW exhibits oscillation in wave am-

plitude (magenta line), while linear simulation shows exponential decay

(blue line).

TABLE II. Comparison of bounce frequency of nonlinearly trapped particle

in LHW simulation.

e/=Te Theory GTC simulation

0.00885 2.91xci 3.04xci

0.04866 6.8xci 6.7xci
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This simulation time is long enough to excite the daughter

waves for the prominent PDI phenomenon. All channels of

PDI require certain threshold power to overcome the losses

due to linear damping and convection of the decay waves out

of the region of interaction. There is no convective loss in

the current simulation since the pump wave amplitude is uni-

form. The threshold power for the instability due to the linear

damping of the decay waves is given by c2
0 ¼ cLcL1, where

cL and cL1 are the linear damping rates of the ICQM and

IBW sideband, respectively. However, in our simulation, the

linear damping of the decay waves is zero, since the parallel

wave vectors are zero.

Fig. 9 shows that ion heating takes place only in the per-

pendicular direction. The ion temperature in the parallel

direction does not change. Since the wave heating predomi-

nantly affects the perpendicular ion distribution, which is

consistent with the results observed in the scrape-off layer

(SOL) of DIII-D,13 Alcator-C Mod,14 and HT-715 experi-

ments during the IBW heating and high harmonic fast waves

heating in NSTX.16 This parasitic absorption of the wave

energy degrades the efficiency of ion Bernstein and ion cy-

clotron harmonics resonance heating. However, our simula-

tions are limited to the core region only. In our nonlinear

simulation, the ponderomotive effect is absent, since we

consider the plasma response in the r direction only. With

the present simulation setup, the amount of power transferred

to the plasma has not been measured directly. During the lin-

ear simulation, wave particle interaction can be possible only

through the linear damping, which is negligible compared to

the nonresonant damping.

V. DISCUSSION

In summary, nonlinear global toroidal particle simula-

tions have been developed using fully kinetic ion and drift ki-

netic electron to study the electron trapping by LHW and

parametric decay process of ICRF waves in uniform core

plasma. We verify our simulation results with the linear dis-

persion relation. In the nonlinear simulation of LHW, we find

that the amplitude of the electrostatic potential oscillates with

a bounce frequency, which is due to the wave trapping of res-

onant electrons. We also find nonlinear anisotropic ion heating

due to nonresonant three wave coupling. One must mention

here that in a tokamak scenario with non-uniform density and

temperature, the energy density of the wave can begin to

approach the thermal energy in the edge. Since, in the edge

region the densities and temperatures are factors of 102 to 103

lower than in the core, produce strong ponderomotive effects

FIG. 8. (a) Time history of change of

perpendicular kinetic energy of ion for

different pump wave frequency and (b)

change in kinetic energy of ion as a

function of intensity of the pump

wave.

FIG. 9. Time history of change of kinetic energy of ion. Green and magenta

lines represent the energy change during linear simulation in the perpendicu-

lar and parallel directions, respectively. Red and dotted lines indicate the

energy change during nonlinear simulation in the perpendicular and parallel

direction, respectively.

FIG. 7. Schematic of an IBW parametric decay process. Pump wave

ðx0; ~k0Þ decays into an IBW side band ðx1; ~k1Þ and an ion cyclotron quasi

mode (ICQM) ðx2; ~k2Þ. Green lines represent the theoretical dispersion

curve of the IBW for first two harmonics.
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and parametric decay physics. It must be noted that we have

not done such realistic simulations. The simulation region and

the number of tests are restricted due to limited computational

resources in this paper.
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