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Radio frequency (RF) waves can provide heating, current and flow drive, as well as instability

control for steady state operations of fusion experiments. A particle simulation model has been

developed in this work to provide a first-principles tool for studying the RF nonlinear interactions

with plasmas. In this model, ions are considered as fully kinetic particles using the Vlasov equation

and electrons are treated as guiding centers using the drift kinetic equation. This model has been

implemented in a global gyrokinetic toroidal code using real electron-to-ion mass ratio. To verify

the model, linear simulations of ion plasma oscillation, ion Bernstein wave, and lower

hybrid wave are carried out in cylindrical geometry and found to agree well with analytic

predictions. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4826507]

I. INTRODUCTION

The importance of radio frequency (RF) waves as a

source for heating and current drive has been recognized from

the early days of magnetically confined plasma research.1,2

The RF waves provide one of the very few options for steady

state operation of the burning plasma experiment ITER,3 the

crucial next step in the quest for the fusion energy. First, the

RF waves in ITER will be used to deliver sufficient central

heating power to access the H-mode confinement regime and

to control the plasma temperature. Second, they can provide a

non-inductive central current drive and an off-axis current

drive capability for the current profile control. Third, they will

be used for the control of magnetohydrodynamic (MHD)

instabilities in ITER. It has also been proposed4 that the RF

waves can be used for driving plasma flows and current in the

field reversed configuration.5 To effectively utilize the RF

power, we need a better understanding of the key physics of

RF waves in plasmas, e.g., wave-particle interaction,6–8 mode

conversion,9,10 and nonlinear effects.11–17

Two computational methods have been widely used to

study wave-particle interactions in fusion plasmas. The first

solves the wave equation derived from the linearized

Vlasov-Maxwell system (the full wave model). This

approach has been used in the eigenvalue solvers like

TORIC18 and AORSA19 to study high frequency waves such

as the lower hybrid wave and the ion Bernstein wave.

However, this method does not capture the crucial nonlinear

physics. The second method is the initial value simulation in

which a kinetic equation is integrated in time, retaining all

nonlinearities. Such an approach has been taken by gyroki-

netic (GK) simulation codes, which have revolutionized

studies of turbulent transport driven by low frequency drift

waves.20,21 Nonlinear phenomena of the RF waves have

been studied in the slab geometries with particle codes such

as GeFi,22 Vorpal,23 and G-gauge.24

For waves in the intermediate frequency range, between

the ion and electron cyclotron frequencies (e.g., lower hybrid

wave, ion Bernstein wave, etc.), the GK model is not valid,

but a fully kinetic model for both ions and electrons is ineffi-

cient due to the small electron-to-ion mass ratio. These

waves often play important roles in the kinetic processes of

magnetized plasmas, e.g., particle acceleration, current drive,

plasma heating, and spectral cascade of turbulence from long

to short wavelength. In this work, we develop a simulation

model for these waves, which uses fully kinetic (FK) ions

but treats electrons in the drift kinetic approximation (DK).

We will study only waves with wavelength longer than the

electron gyroradius, so that the electron GK equation reduces

to the DK equation. The current FK/DK hybrid simulation

model25 can be regarded as a reduced version of the FK/GK

model,26 which overcomes the difficulty associated with the

small electron mass by analytically removing the high fre-

quency modes (electron cyclotron frequency and electron

plasma frequency). Our goal is to develop a new nonlinear

toroidal particle simulation model, which is the most effec-

tive approach to study the nonlinear physics in the RF heat-

ing and current drive.

Realistic RF simulations for fusion plasmas also require

the global toroidal geometry and massively parallel computing

due to multiple temporal and spatial scales. The current work

utilizes the gyrokinetic toroidal code (GTC)21 to take advant-

age of its existing physics capability, toroidal geometry, and

computational power. GTC has been extensively applied to

study turbulent transport in fusion plasmas including ion and

electron temperature gradient turbulence,27–29 collisionless

trapped electron mode turbulence,30 energetic particle turbu-

lence and transport,31–34 and neoclassical transport.35 As a

first step in developing this nonlinear toroidal particle simula-

tion model, the verification of the linear physics of lower

hybrid wave (LHW) and ion Bernstein wave (IBW) in cylin-

drical geometry are presented in this paper.

The paper is organized as follows: the fully kinetic ion

and drift kinetic electron simulation model is described ina)Electronic mail: akuley@uci.edu
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Sec. II. Section III gives the verification of the GTC simula-

tion of the electrostatic normal modes in uniform plasmas.

Section IV summarizes this work.

II. FORMULATION OF FULLY KINETIC ION AND DRIFT
KINETIC ELECTRON SIMULATION MODEL

A. Formulation of FK ion and DK electron model

The FK ion and DK electron simulation model treats the

ion with the fully kinetic (FK) model and the electron with

the DK approximation. For the FK ion, the dynamics is

described by the six dimensional Vlasov equation,

@

@t
þ _x � r þ Zi

mi
ðEþ v� B0Þ �

@

@v

� �
fi ¼ 0; (1)

where fi is the ion distribution function, Zi is the ion charge,

and mi is the ion mass. B0 ¼ B0b0 is the equilibrium mag-

netic field. In the current simulation, we use the cylindrical

coordinates xðr; h; fÞ, where r is the radial position, h is the

poloidal angle, and f is the length of the cylinder with circu-

lar cross section. The evolution of the ion distribution func-

tion fi can be described by the Newtonian equation of motion

in the presence of self-consistent electromagnetic field as

follows:

dx

dt
¼ v? þ b0vk;

dvk
dt
¼ Zi

mi
b0 � E;

dv?
dt
¼ Zi

mi
ðE? þ v? � B0Þ:

(2)

In the fully kinetic version of the GTC code, we use

vðvk; v?; aÞ for the velocity space, where vk and v? are the

parallel and perpendicular velocity, respectively, and a is the

gyrophase angle. This model retains full finite Larmor radius

effects and wave frequencies larger than xci, where xci is

the ion gyrofrequency.

Electron dynamics is described by the drift kinetic equa-

tion using guiding center position Xðr; h; fÞ, perpendicular

ðv?Þ, and parallel ðvkÞ velocity as a set of independent

variables,

@

@t
þ _X � r þ _vk

@

@vk

" #
fe ¼ 0; (3)

where fe is the guiding center distribution function. The evo-

lution of the electron distribution function can be described

by the following equations of guiding center motion:36

dX

dt
¼ vE þ b0vk;

dvk
dt
¼ � e

me
b0 � E;

(4)

where dv?=dt ¼ 0 (by definition), vE ¼ ðE� b0Þ=B0. The

above Eq. (4) is valid only for uniform magnetic field. This

electron model is suitable for the dynamics with the wave

frequency x < xce and k?qe � 1, where k? is perpendicular

to the magnetic field, xce is the electron cyclotron frequency

and qe is the electron gyroradius.

The electrostatic potential / can be found from the

Poisson’s equation,

1þ
x2

pe

x2
ce

 !
r2
?/ ¼ �4pðZini � eneÞ; (5)

assuming jr2
?j � jr2

kj to suppress the undesirable high fre-

quency electron plasma oscillation along the magnetic field

line. Second term on the left hand side corresponds to the

electron density due to its perpendicular polarization drift of

the electrostatic field. The number densities are defined as

the fluid moments of the corresponding distribution function,

ni ¼
ð

dvkv?dv?dafi;

ne ¼ 2p
ð

dvkv?dv?fe:
(6)

Equations (2)–(6) are implemented using both non-

perturbative (full-f) and perturbative ðdf Þ methods in GTC.

We use the df simulation for the fully kinetic ion to reduce

the particle noise in this work. In the current linear simula-

tion, we assume that the background plasma is uniform in

density and temperature. We decompose the ion distribution

function into its equilibrium f0i and perturbed part dfi, where

ðdfi � f0iÞ. By defining the particle weight wi ¼ dfi=f0i for

the linear simulation, we can rewrite the Vlasov equation for

ion as follows:

dwi

dt
¼ � 1

f0i

Zi

mi
Ek

@

@vk
þ Zi

mi
E � @

@v?
þ Zi

mi

E � ðb̂0 � v?Þ
v2
?

@

@a

" #
f0i;

(7)

where the second and third terms on the right hand side arise

due to the change in the perpendicular energy and the correc-

tion of the gyro frequency, respectively. By considering the

background plasma as a Maxwellian with the temperature Ti,

one can further simplify the weight equation as follows:

dwi

dt
¼ Zi

Ti
Ekvk þ

Zi

Ti
E � v?

� �
: (8)

Similarly, the weight equation for the electron in a uniform

Maxwellian background with the temperature Te can be writ-

ten as37

dwe

dt
¼ � e

Te
Ekvk; (9)

where we ¼ dfe=f0e for the linear simulation. f0e and dfe are

the equilibrium and perturbed distribution function, respec-

tively. Equations (8) and (9) are valid only for uniform den-

sity and temperature. The parallel component of the electric

field can be written as

Ek ¼ �b0 � r/: (10)
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With a uniform magnetic field, one can write down the

change in the perpendicular energy as follows:

E � v? ¼ � _h
@/
@h
� _r

@/
@r
; (11)

where the particle equations of motion in cylindrical coordi-

nates are

_f ¼
vk
R0

;

_h ¼ v?
r

sinða� hÞ;

_r ¼ v?cosða� hÞ;

_vk ¼
Zi

mi
Ek:

(12)

In the fully kinetic version of the GTC code, the perpen-

dicular component of the velocity ðv?Þ and the gyrophase

angle ðaÞ can be calculated from Eq. (2) using the Boris push

method.38,39 In the following section, we will discuss the

implementation of the Boris push technique in GTC.

However, for the calculation of vk, we use conventional

Runge-Kutta method.

B. Boris push implementation in GTC

The particle push is an important part of the simulation

process. Equation (2) is basically Newton’s second law with

the force being the Lorentz force. It is numerically challeng-

ing to integrate the particle velocity in the presence of the

magnetic field. This problem can be overcome by defining

the velocity as suggested by Boris.38,39 This explicit algo-

rithm is simple to implement, with second order accuracy. It

is symmetric to the time reversal, i.e., it preserves the canon-

ical invariants.40 The Boris push process can be summarized

in the following three steps as described in Fig. 2.

In the cylindrical geometry with magnetic field in the z

direction, we decompose the velocity components in the

direction perpendicular and parallel to the magnetic field. In

the first step, we add the first half of the electric field impulse

to the velocity vector v?ðtÞ to obtain a new v1? as

v1? ¼ v?ðtÞ þ dv?; where dv? ¼
Zi

mi
E?

Dt

2
: (13)

We use (x, y) coordinates to represent dv? (see Fig. 1).

From Eq. (2), we get

dvx ¼ �
Zi

mi

@/
@r

cos h� 1

r

@/
@h

sin h

� �
Dt

2
;

dvy ¼ �
Zi

mi

@/
@r

sin hþ 1

r

@/
@h

cos h

� �
Dt

2
;

8>>>><
>>>>:

(14)

and

v1x ¼ v?cosðaðtÞÞ þ dvx;

v1y ¼ v?sinðaðtÞÞ þ dvy:

(
(15)

In the second step, we consider the rotation of the velocity

vector v1?. The vector form of this rotation is given by

T ¼ Zi

mi
B0

Dt

2
;

u ¼ v1x þ v1yT;
(16)

and
v2y ¼ v1y � uS;

v2x ¼ uþ v2yT;

�
(17)

where S ¼ 2T=ð1þ T2Þ is also a form of rotation vector T

scaled to satisfy that the magnitude of the velocity should

remain unchanged during the rotation. Equations (16) and

(17) together give the rotation of the velocity vector as

shown by the red color in Fig. 2.

In the third step, we add the remaining half of the elec-

tric field impulse to the rotated vector v2? to obtain

vxðtþ DtÞ ¼ v2x þ dvx;

vyðtþ DtÞ ¼ v2y þ dvy:

�
(18)

FIG. 1. Coordinate system on the poloidal cross section of a cylinder.

FIG. 2. Schematic diagram for Boris push method. The first step indicates

the addition of the first half of the electric field impulse to the velocity. The

red color defines the rotation of the velocity vector in the second step. In the

third step, we add the second half of the electric field impulse to the rotated

velocity component.
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Now we can write down the new v?ðtþ DtÞ and gyro phase

angle aðtþ DtÞ from vx and vy,

v?ðtþ DtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

xðtþ DtÞ þ v2
yðtþ DtÞ

q
;

tan½aðtþ DtÞ� ¼ vyðtþ DtÞ
vxðtþ DtÞ ;

8>><
>>: (19)

where a is chosen to vary in the range of ½0; 2p�.

III. VERIFICATION OF NORMAL MODES

In this section, we will discuss the electrostatic normal

modes with kk ¼ 0 in uniform plasmas and uniform mag-

netic field. The corresponding dispersion relation can be

written as

1þ vj ¼ 0: (20)

By considering the uniform Maxwellian background plasma

using Eqs. (1) and (2), one can write down the susceptibility as41

vj ¼ �
1

k2
?k

2
Dj

X1
l¼1

2l2x2
cj

x2 � l2x2
cj

IlðbjÞe�bj ; (21)

where k2
Dj ¼ �0Tj=n0e2; bj ¼ k2

?q
2
j =2; xce; xci are the elec-

tron, ion cyclotron frequencies, respectively. qe and qi are

the electron and ion Larmor radius, respectively. There are

only three electrostatic normal modes in the uniform plasma

for kk ¼ 0, e.g., ion plasma oscillation, lower hybrid wave,

and ion Bernstein wave.

A. Ion plasma oscillation

Unmagnetized ions and magnetized electrons support

the normal mode called ion plasma oscillation when kk ¼ 0.

In the massless electron limit, the ion and electron contribu-

tions to the susceptibility can be written as

vi ¼ �
x2

pi

x2
; ve ¼ 0: (22)

To verify the fully kinetic ion model, we carried out simula-

tions for different equilibrium plasma density (i.e., varying

the ion Debye length kDi). Fig. 3(a) demonstrates that for

small value of kkDi, we can recover xpi, the ion plasma oscil-

lation. In the presence of the finite ion temperature, the ion

plasma wave will be damped after a few oscillations because

of ion Landau damping. During this process, the electric field

can penetrate up to the ion Debye length. GTC simulation of

the ion Debye shielding effect agrees well with the analytic

theory [Fig. 3(b)]. In the simulations, the boundary condi-

tions for the electrostatic potential are / ¼ 0 at the inner

boundary and / ¼ constant at the outer boundary. These

one-dimensional simulations are carried out using the full-f
method. The system length is about 10 ion Debye lengths.

The number of grid points in radial, poloidal, and parallel

direction is Nx¼ 100, Ny¼ 100, and Nz¼ 32, respectively.

A total of 4000 particles per cell are used. Initially, the par-

ticles are loaded uniformly with a Maxwellian velocity

distribution. The initial fluctuations are due to the random

noise.

B. Lower hybrid waves

Lower hybrid waves are space-charge waves in the fre-

quency range xci � x� xce. In this limit, ion motion can

be taken to be unmagnetized and the ion susceptibility

becomes41

vi ¼ �
x2

pi

x2 � x2
ci

’ �
x2

pi

x2
: (23)

Now we consider the finite mass of the electron. For such

normal modes in the magnetized plasma with k?qe � 1; ve

is dominated by l¼ 1 term as

ve ¼
x2

pe

x2
ce

; (24)

which arises due to the guiding center polarization drift. We

implement the electron polarization term in GTC similar to

the ion polarization term calculated in the gyrokinetic

simulation.

FIG. 3. (a) Ion plasma oscillation frequency as a function of normalized

wavelength ðkkDiÞ, and its verification with the analytical theory (cf. Eq.

(22)), (b) comparison of the electrostatic potential of the ion plasma wave as

a function of the normalized radius between analytical theory and GTC

simulation.
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By using Eq. (20) in the limit of xpe � xce, the fre-

quency of the lower hybrid wave is

x2
LH ¼

x2
pi

ð1þ x2
pe=x

2
ceÞ
� xcixce: (25)

We use an artificial antenna to excite these modes and to

verify the mode structure and frequency in our simulation.

The antenna is implemented for the electrostatic potential /
as follows:42

/ant ¼ /̂ðrÞsinðnantf� manthÞsinðxanttÞ: (26)

To find the eigenmode frequency of the system, we

carry out the scan with different antenna frequencies and

find out the frequency in which the mode has the maximum

growth of the amplitude. That frequency is then identified as

the eigenmode frequency of the system.

In our simulation, the background plasma density is

uniform with a uniform temperature. The simulations are all

linear and electrostatic. We apply a poloidal mode filter to

select only the m¼ 4 mode. In this simulation, xpe

¼ 3:4xce; xpi ¼ 145:2xci, and me=mi ¼ 5:44618� 10�4.

Fig. 4(a) is the time evolution of the (m¼ 4) LHW excited

with an antenna frequency xant ¼ 41:1xci, which gives the

maximal growth of the wave amplitude. Fig. 4(b) is the

poloidal mode structure of the electrostatic potential. The

simulation result of the LHW frequency xLH ¼ 41:1xci

agrees well with the analytical result of 42:8xci (cf.

Eq. (25)).

C. Ion Bernstein waves

An important kinetic feature for the normal modes of

magnetized ion plasma is the finite Larmor radius effect,

which modifies the cold plasma mode with frequency close

to the harmonics of ion cyclotron frequency, known as

IBWs. Using Eq. (20), the dispersion relation of the IBW

becomes

1þ
x2

pe

x2
ce

¼ 1

k2
?k

2
Di

X1
l¼1

2l2x2
ci

x2 � l2x2
ci

IlðbiÞe�bi : (27)

Fig. 5 shows the dispersion relation of the ion Bernstein

wave obtained by solving the Eq. (27) analytically with

xpi ¼ 10xci and xpe ¼ 0:234xce for the first and second har-

monics. To compare our GTC simulation with analytical

results, we carried out our simulations in different wave-

lengths and for different harmonics l¼ 1 and l¼ 2. Fig. 5

demonstrates a good agreement between the analytical and

GTC simulation results of the IBW frequency. These simula-

tions are carried out using the df method. The number of

grid points in radial, poloidal, and parallel direction is

Nx¼ 100, Ny¼ 200, and Nz¼ 32, respectively. A total of 90

particles per cell are used. We have carried out the conver-

gence study of the real frequency as a function of the number

of particles per cell (cf. Fig. 6). The simulation results do not

depend sensitively on the number of particles, as the grid

numbers per wavelength is sufficiently large (100 in this

case). In our simulation, we have xDt < 0:01, where x is

the frequency of the normal mode and Dt is the time step.

So, we have more than 600 time steps per wave period. To

measure the wave frequency, we count the number of time

steps in several wave periods from the time history of the

FIG. 4. (a) Time history of m¼ 4 lower hybrid wave amplitude excited by

the antenna. (b) Poloidal mode structure of electrostatic potential / and (c)

Radial profile of /.

FIG. 5. Comparison of ion Bernstein wave dispersion relation between the

analytical solution of Eq. (27) and the GTC simulations with for the first and

second harmonics.

102515-5 Kuley et al. Phys. Plasmas 20, 102515 (2013)

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.200.44.221 On: Thu, 24 Oct 2013 16:35:50



wave amplitude. The uncertainty in measuring the frequency

is defined as the inverse of number of time steps. This pro-

vides a better accuracy than the FFT in measuring the

frequency.

IV. DISCUSSIONS

In summary, with the implementation of the fully kinetic

ion and drift kinetic electron model, GTC is particularly ap-

plicable to problems in which the electrostatic normal mode

frequency ranges from ion Bernstein wave to lower hybrid

waves. This new simulation model should have wide appli-

cations in the areas of radio frequency heating and current

drive, control of MHD instability, and other nonlinear phe-

nomenon. The model is more efficient for the physical pro-

cess with x� xce, kk � k?, and can handle the realistic

electron-to-ion mass ratio, by removing the fast electron

gyromotion from the wave dynamics. The LHW and IBW

excitation by artificial antenna provides the verification of

the mode structure, and the frequency using the predicted by

linear theory. Our initial verification suggests that the present

simulation model is promising and can incorporate a broad

range of realistic issues (toroidal geometry, electromagnetic

effects, nonlinear kinetic effects, nonlinear ion Landau

damping, parametric instabilities, and ponderomotive

effects).
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