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Abstract

We have developed a threaded parallel data streaming approach using Globus to transfer multi-terabyte simulation data
from a remote supercomputer to the scientist’s home analysis/visualization cluster, as the simulation executes, with
negligible overhead. Data transfer experiments show that this concurrent data transfer approach is more favorable
compared with writing to local disk and then transferring this data to be post-processed. The present approach is
conducive to usng the grid to pipeline the simulation with post-processing and visualization. \We have applied this
method to the Gyrokinetic Toroidal Code (GTC), a 3-dimensional particle-in-cell code used to study micro-turbulence in

magnetic confinement fusion fromfirst principles plasma theory.

1. Introduction

A magjor issue preventing fusion devices from achieving
ignition has been loss of confinement due to crossfield
transport. Energy transport from the hot and dense core of
the plasmato the cold walls of the device greatly exceeded
the level predicted by the earlier theory of Coulomb
collisions. It is now believed that plasma microturbulence
driven by temperature and density gradients are responsible
for these enhanced cross-field transport rates. The ability to
suppress microturbulence-driven transport may well be the
key to apractical magnetic confinement fusion device. The
Gyrokinetic Toroidal Code (GTC) was built to develop the
necessary foundation of physics understanding. These
highly complex, nonlinear phenomena of plasma turbulence
can be most effectively investigated using direct numerical

simulations. We have developed a particle-in-cell (PIC)

turbulence code to study the important wave-particle
interactions in high temperature plasmas. With recent
advances in physics models, numerical algorithms, and
power and capacity of massively parallel computers, we
were able to carry out whole-device simulations of plasma
turbulence with unprecedented realism and resolution.
These advanced simulations have reproduced key features
of turbulent transport observed in fusion experiments[1],
and have stimulated further theoretical and experimental

research in the world fusion community.

In this paper, we describe a technique for achieving
efficient data transfer from a supercomputing application
(GTC described below) to a local cluster for analysis and
visualization using a pipeline approach implemented using
Globus and pthreads. Section 2 describes the GTC code
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aong with some of its computational techniques. Section 3,
describes the computational performance of GTC. In
Section 4, we briefly describe the visualization techniques
used in the analysis of GTC data Section5 describes three
basic data management methodologies used by fusion
researchers. Section 6 describes our “grid” comprised of
Linux clusters at PPPL and Princeton University (PU),
followed by the implementation of the threaded streaming
techniques. In Section 7, we present the results obtained
from datatransfer experimentson the PPPL-PU grid. It will
be shown that the entire process of large-scale simulations
and simultaneous data transfer to local clusters for
visudlization/analysis leads to the best overdl
performance/productivity. Finally, we conclude with future
work in Section 8.

2. The Gyrokinetic Toroidal Code (GTC)

Compared with hydrodynamic turbulence, plasma
microturbulence exhibits more complexity due to the
interaction of the charged particles with a combination of
externaly imposed and sdf-generated e ectro-magnetic
fields. We have developed a time-dependent 3-dimensional
particle-in-cell (PIC) code that solves the gyrokinetic
system of equations for particle motion in aplasma[2,3]. In
amagnetic confinement device, the trgjectory of a charged
particle (ion, electron) is a fast helicadl motion aong the
magnetic field lines accompanied by a dow drift motion
across these same lines. It was found that by averaging the
fast helical motion, huge savings in seria computational
time were achieved without losing any of the relevant
physics at the length and time scales of the problem under
scrutiny. A charged ring moving along and across the field
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lines thus replaces the helical motion of the particle. Thisis
known as “gyrophase averaging”, and we end up following
only the (guiding) center of the ring instead of the full
motion of the charged particle. The gyrokinetic system of
equations is obtained by gyrophase averaging the Vlasov
and Poisson equations in the el ectrostatic case [2,3]. One of
the innovations in our code is the use of aloca method,
known as the four-point averaging, instead of a spectral
Fourier method to solve the Poisson equation. This greatly
reduces the computational work and is more easily
paraleized [3,4].

2.1 Particle-i n-Cell method

The PIC method consists of using “particles’ to sample the
distribution function of a system in phase space and follow
its evolution in time. Interactions between the particles are
handled using a self-consistent field described on agrid.

Thefollowing are the main steps of the PIC algorithm. First
we dposit (distribute) the charge of each particle on its
nearest grid points (thisis the “scatter” operation). Then we
solve the Poisson equation on the grid to find the
electrostatic potential and field at each grid point. We then
calculate the force acting on each particle from the field at
its nearest grid points (this is the “gather” operation).
Finally, we move the particles according to the forces just
caculated, and repeat these steps until the end of the
simulation.

Since the origina PIC agorithm can be fairly noisy in
certain cases, GTC uses the deltaf method, which consists
of following only the non-equilibrium pat of the
distribution function instead of the full function [5]. The
equilibrium is part of the “background” in the equations
and does not change during the simulation. This greatly
reduces the numerical noise and alows a near-uniform
distribution (in space) of the particles even in the presence
of density gradients.

22TheGTC Mesh

Because of the characteristic motion of the ions in the
externally applied magnetic field, moving fast aong
(pardle to) the field lines and dowly across (perpendicular
to) them, amagnetic coordinate system isthe natural choice
in gyrokinetic calculations. Consequently, typicd eddiesin
plasma turbulence are elongated dong magnetic field lines.
Using a mesh aligned with the magnetic field, a factor of
100 in serial computation time can be saved. Thisis due to
the fact the trgjectory of a charged particle aong the field
line is digned with one of the coordinate axes.
Furthermore, digning the mesh with the field lines alows
for amuch larger time step and a much smaller number of
grid points in the parallel direction (.e., aong the field
lines). Figure 1 shows the toroidal mesh (long way around
the torus) used by GTC. We see that the field lines twist
around the torus and so does the mesh. Figure 2 shows a

perpendicular section of the torus, or poloidal plane. To
maintain the density of grid points constant for different
radii, the radial and angular meshes have regular spacing,

i.e. Drj = congtant and riDqj = constant. This makes the

grid irregular since the number of points per radia surface
(also called flux surface) varies from one surface to the
other, and the pointsdo not aign radialy.

Figure 1. Representation of the fieldine following mesh
on a flux (magnetic) surface of the system (constant
radius). The twist in the field lines depends on the
magnetic equilibrium of the device under study.

Figure 2. Mesh of a poloidal plane (perpendicular
section) showing the constant density of points. This
mesh rotates as one goes around the torus due to the
twisting of the magnetic field lines.

2.3 Paralléel approach

There are two paralel methods implemented in GTC.
Coarse-grained one-dimensional domain decomposition
splits the torus in equal partitions containing the same
number of grid points (poloidal planes) and, initialy, the
same number of particles. MPI calls take care of the
communication between processes. A second level of
paralelism in the code uses fine-grain loop-level work
splitting using OpenMP compiler directives. This mixed-
mode MPI/OpenMP approach isideal for clusters of shared
memory nodes, like the IBM SP, on which most of the
GTC smulations are performed. It is well known that loop-
level parallelism does not scale as well as coarse-grain
domain decomposition. However, the physics of our system
dictates the number of “useful” domains that can be used
for the 1D decomposition. Beyond a certain grid resolution
in the toroidal direction, no changes in the simulation
results occur, and it is then unnecessary (and wasteful) to
increase that resolution any further in order to use more
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domains (we can actually use as little as one poloidal plane
per domain). This unusual property is due to our global
field-aligned mesh and to the plasma physics phenomenon
known as Landau damping. Loop-level paralelism with
OpenMP alows us to put more processing resources
towards our large simulations.

Future work will include adding an extra level of domain
decomposition in order to “recruit” even more processors
for even larger and more demanding simulations. Currently,
large simulations use 1 billion particles and 125 million
grid points.

3. GTC performance

GTC has been ported to most parallel computers. The
production simulations are mostly done on the 10 teraflop
IBM SP (Power3) at the Nationa Energy Research
Scientific Computing Center (NERSC). The large runs use
64 MPI processes (1 per SMP node) with 16 OpenMP
threads per process, for a total of 1,024 processors.
Message passing communications account for only 5 to 8%
of the total wall clock time on the IBM SP Colony switch.
Parallel efficiency of the domain decomposition part is
essentially perfect for al ranges of problem sizes, in
contrast with the fine-grain OpenM P, which depends on the
problen size but can reach 98% of efficiency for
sufficiently large cases. Figure 3 shows the scaling of GTC
on 2 different platforms: the CRAY T3E and the 16-way
SMP IBM SP Power3 at NERSC. The metric that we useis
the computing power, defined as the number of particles, in
millions, which move one step in one second (wall clock).
We believe this to be a much better quantity to measure the
efficiency of a PIC code than the floating-point operations
count or just pure parallel scaling.

Half amillion particles per processors were used to get the
IBM SP scaling curve in Figure 3. The somewhat sudden
changein the curve past the 64-processor mark is due to the
mixed-mode MPI/OpenMP. The loop-level paralelism
does not scale as well as the coarsegrain domain
decomposition but would do better as the problem size is
increased (more particles, higher grid resolution).

The MPI scaling of the domain decomposition works well
for al the platforms that we have run on, including Linux
clusters with fast Ethernet (100 Mbs). This is due to the
efficient message passing algorithm implemented in the
code. The bulk of the communications happens when some
particles move out of one domain to enter another. Thisis
done in a closed chain fashion, each processor receiving
from the left while sending to the right, and then vice versa.
This method optimizes the communications by avoiding the
case when one processor would receive from two others or
more.

For medium-size simulations and a relatively small number
of processors (32 CPUS), we have found that GTC runs as
fast on the latest 32-bit AMD and Intel processors as on the
IBM Power3. This was observed on Linux clusters
equipped with a myrinet interconnect in one case, and a
gigabit-Ethernet interconnect in the other.
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Figure 3. Scaling of the computing power of the GTC
code as the number of processors is increased. This
quantity is defined as the number of particles (in
millions) that move 1 time step in 1 second. The change
in the scaling which appears at >64 processorsis dueto
the OpenMP.

4. Visualization & Data Analysis

The GTC code produces HDF5 files of the electrostatic
potential. After we generate these files, we run
AV S/Express] to visuaize the results. The visuaization is
working off of annode on our local cluster, and can process
frames a about 15seconds/frame for some of our larger
runs (See Figure 10). An ongoing activity at PPPL is“run-
time monitoring” of simulations. To achieve this, we have
implemented socket connections inside of Express, in order
to receive data from the I/O serversin real time, and write
out the image frames. Furthermore, there is an ongoing
effort to work with arale visualization programs (e.g.
Ensight Gold).

In the future, we would like to implement an out-of-core
isosurface routine, and then put this into our visualization
software. Once this is done, a user can later generate
isosurfaces at a much faster rate than what is currently
being done. This part of the analysis will be done as soon as
the data comes over to our servers, which is a natura
extension to the work presented in this paper.
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Parallel analysisvisudization will become imperative as
the GTC runs get larger. We think it is advantageous to
simultaneoudly stream data in parallel from N processors
on the SPto M processors on alocal PPPL cluster in order
to maintain processor affinity which can be exploited by
paralel analysis/visualization routines. This is the
underlying motivation for the work described in later
sections.

5. Data management methodologies

Presently, fusion HPC codes generate a vast amount of
data, and researchers transfer this data from a
supercomputer  to  their loca anaysis/visualization
resources after the simulation has completed. In generd,
most anaysis/visudization tools are serid in nature.
Performance limitations render this method of working
impractical for very large datasets.

Grid computing has made a magjor impact in the field of
collaboration and resource sharing [6]. Data Grids are
generating a tremendous amount of excitement in grid
computing [7]. There is an ongoing effort by visuaization
scientists to use the grid to devel op collaborative interactive
visualization techniques[8, 9, 10, 11, 12].

Our approach for codes such as GTC is to transfer data
from a supercomputer running the main smulation on N
processors, to M processors (typicaly M<N) on a
visualization/analysis cluster locd to the scientist.
Typicaly, post-processing of the data requires much less
computing power than the main simulation. By maintaining
the distribution of the data among processors, we can then
post-process this datain parallel on the local resources with
parallel analysis/visudization techniques. We redlize that
different post processing techniques might require a
different distribution of data than that used in the origina
calculation. At present, we let the application scientist
decide the distribution on the visualization/analysis cluster,
but in the future we would like to automaticaly redistribute
the data according to the characteristics of the
visualization/analysis cluster. Before we begin the
description of our approach, we would like to survey other
methods used in the fusion community for analysis and
visuaization of supercomputing data.

In the magnetic confinement fusion community, three
methods are commonly used to analyze data from a
supercomputing simulation. The first method uses a
datebase system known as MDSPlus [13]. The second
approach is to write data to a loca disk on the
supercomputer. To simplify the process of assembling files
from all of the processors, it is much more convenient to
write the data in paralel, from al processors to a single
file. This file may be on a network-mounted disk (such as
NFS), or on apardl€ file system (such as PVFS or GPFS).
We rely on MPI-10 for this process. The third approach,
which is emphasized in this paper, is to thread the 1/0 layer

and use GlobugGridFTP to stream the data from the
supercomputer to aloca cluster for data analysis. In the
next few paragraphs, we will briefly describe these three
methods.

MDSPlus is a client-server system for the acquisition,
anaysis, storage and sharing of data. When users want to
examine a variable after their simulation has run, they can
request that variable, or even a reduced-dimensiona dice
from this variable, and just have this data sent back to
him/her. There is a significant disadvantage of MDSPlus
for large datasets. The data from a HPC code is sent to a
serid server, using seria socket connections from one
processor. Such serialization of 1/0 is unacceptable for
HPC codes, except perhaps for a few smal summary
“results’ datasets. Because of this problem, and others, we
did not implement MDSPlusinto GTC.

The second approach is to write datato aloca disk on the
supercomputer and later transfer the data using protocols
such as ftp over to the local analysis/visualization cluster.
Presently, in this approach the scientist either: (1) writes
files to an NFS mounted disk; (2) writes separate files on
each processor, and later assembles these into a single
dataset; (3) writes hdf5 files on a pardld file system. Since
these three methods are commonplace in the fusion
community, we compare these three methods with our
preferred approach based on streaming. It is important to
note that most researchers in the fusion community who run
on clusters write to a NFS mounted disk. In GTC we chose
to write the files in the HDF5 format because it contains
metadata, it is binary portable across most architectures,
and most importantly, it allows efficient paralel /O on a
parald file system [14]. The third approach of parallel data
streaming is described in the following section.

6. Threaded Parallel Data Streaming

Interactive remote data anaysisivisudization is
inconvenient a remote supercomputing centers like
NERSC where generaly jobs are executed in a batch
fashion. Even with the availability of interactive resources
at remote sites, issues such as latency and retwork quality
of service, hamper productivity. Clearly, it is advantageous
for GTC scientists to move the visudization and data
andysis to a loca resource. To achieve this objective, we
have implemented a secure threaded parallel data streaming
method described below.

6.1. Overview

Anadysis and visudization of GTC results are an
important part of understanding the physics of micro-
turbulence. Since thetotal data size from a GTC run can be
quite large, of the order of 1 or more TB of data, analysis
and visualization routines often need to be run as
multiprocessor applications in order to process the datain a
reasonable amount of time. Interactive visuaization
becomes impractical because reading and displaying the
data take several minutes for every frame. Speed of access
plays a mgjor role in determining the use that is ultimately
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made of the data. In order to ask “what-if” questions, the
analysisivisualization routines and their users require high
performance access to the data.

Although analysis and visualization may require some
parallel processing, it does not require the 1000s of
processors needed by the original simulation. Storage and
processing power have become much less expensive for
clusters, and networks have become faster: thisis one of the
basic tenets of grid computing. Hence, we find that the
anaysis and visualization of simulation results is not only
feasible but desirable to take place on aloca machine that
is physically separated from the supercomputer running the
simulation. This permits the great performance advantage
of placing the results data directly on hardware and
networks local to the scientist investigating GTC results. In
the past few years, the time to transfer large datasets from
the supercomputer center to local systems was an
impediment. Now, however, with our current
implementation of threaded streaming data transfer based
on GridrFTP, this transfer can occur while the GTC
simulation is still running. This mode of datatransfer incurs
a small overhead and does not affect the performance of
GTC on the supercomputer by any significant measure (See
Section 7 on results from data transfer experiments).

As afirst step in developing the above mentioned data
transfer scheme, we created a test bed of 3 clusters
separated by a WAN. This test bed serves as a controlled
platform for performing data transfer experiments,
investigating various scenarios and testing of our APIs.
Figure 4 is a schematic of our network topology from two
separate clusters/supercomputers to our loca cluster. The
cluster on the top is an AMD dua processor (MP2100)
cluster with 9 compute nodes, and one head node connected
to a 3Com gigabit switch. This cluster is almost identical to
the cluster at PPPL on the bottom(the only difference isthat
PPPL’s cluster has 18 compute nodes, with one head node,
and one visudlization node). These two clusters are
separated by a 100Mbit microwave link, and a few routers.
We have just finished our experiments on the PU — PPPL
clusters. We have just started the next phase of data transfer
experiments between the machines at NERSC, which ison
the ESNET, and the loca PPPL cluster. Currently, our
connection to the ESNET is limited to 155Mbit (OC3).

6.2. Threaded data transfer methodology

In this Section, we give an overview of the basic transfer
scheme which we have implemented. We have built several
APlIsin C, with FORTRAN90 hooks, to perform our goa
of streaming data from a live simulation on a remote
supercomputer to a cluster which islocal to the user.

Our system is built on top of the Globus toolkit, namely the
APIs which are used for GridFTP [6,7]. In our system we
use POSIX pthreads to thread the I/O layer. Datais copied
from the main program to a buffer. The thread is then
activated and starts to stream a small piece of this data
using GridFTP APIs. Data is then streamed from the
supercomputer to our local cluster on which each node runs
aGridrFTP server. Typically, we send ten GridFTP streams
per processor. Data is written to disk on the nodes of the
local cluster. If al of the data from a variable has been

successfully transferred, the server initiates a MPI program
to create a HDF5 file. If pieces of the data are missing, the
user runs a separate program at the end of the job to get the
missing data, and convert this raw-datainto HDF5 Files.
We run a dightly modified GridFTP server on each node
on our loca cluster in order to extend the data pipeline
approach. In addition to writing the data to loca disk, the
GridFTP service include APIs to communicate with alocal
master node which can coordinate such tasks as assembling
the local files into one paralel HDF5 file, perform anaysis
routines, etc. These servers will accept the incoming data,
process the data, and then write this processed datato disk.

pnode pnode pnode pnode pnode

pnode pnode pnode pnode

Aquabit Switch

head

Princeton
University

Router

NERSC

[ Microwave link

J

100M l

1Gb
Firewall
@ PPPL
Gigabit Switch
o
pnode pnode pnode pnode pnode

Figure 4 There are three target architectures for
this paper; Princeton University, PU (top), NERSC
(middle right), and our local cluster, bottom. The
first architecture is a cluster of 9 dual processor
AMD 2100MP nodes with a gigabit infrastructure.
The second isthe IBM SP and SGI at NERSC. The
third is a cluster local to PPPL with 18 dual
processor nodes; wher ewe only show 5 nodes. PPPL
has an OC3 (155Mbit) connection to the ESNET,

and a 100M bit connection tothecluster at PU.
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6.2.1. HDF5-part. It is very important that the data from
the GTC code be eventually written to disk. Our scheme
will write this information to the disk on the local cluster.
Since we intend to write HDF5 files, we need to be able to
send out meta-data (Iabeled as “HDF5_info” in Figure 5)
along with the raw data from GTC so that we can reformat
the data file into a HDF5 file on our local cluster. The
metadata necessary to send over to create a HDF5 is
approximately 2K, which is severa orders of magnitude
smaller than the files which we transfer. We plan to include
keywords to inform the Globus server which “filter”
routines will run dter the raw data arrives. These filters
will allow usto locally post process the data on-the-fly.
6.2.2. Thread/Buffering Part.

Our threading approach is conceptually similar to that of
Ma et al. [15]. During the simulation, instead of writing
local files to the paralle file system, the information is
organized and copied into the memory buffer (see Figure
5). The thread then transfers the data from the buffer. In the
event of network disruption, or buffer overflow, the thread
writes abinary file to its local disk. In addition to the data,
a status file is either written localy or transferred. The
status file contains pertinent information about the data
transfer of each block in Figure 5. In our current
implementation, a clean-up procedure is initiated manually
(eventually automated) by the user at the end of the
simulation. This clean-up procedure, which uses
Globus/GridFTP, examines the status files and transfers the
remaining data at the remote supercomputer siteto the loca
cluster.

Figure 6 shows the main streaming routines used by
GTC. The user dlocates memory for a buffer, which is on
each processor that performsthe I/O (possibly one per SMP
node); to account for the meta-data, the user will create a
buffer which is dightly larger than the amount of data
he/she wishes to transfer at any one output step of the
simulation. When the user first cals the open statement
(gl obus_t open) on each processor, it creates a new
thread and passes some initial data that informs the thread
the location of the memory buffer. As in [15] we only
create one thread per processor. These threads do not
communicate with the other I/O threads on the other
processors. The thread monitors a queue of transfers which
is protected by a pthread mutex lock, and a variable which
sets up a condition. Later, when the user wants to write
data, he/she uses the gl obus_twite function. This
alows the main thread to append the new transfers to the
gueue. The background thread is then able to continuously
transfer information to the GridFTP service on the remote
machine. When the background thread has finished
transferring al of the information in the buffer, it then
deeps. At the end of the date transfer, the code calls
gl obus_t cl ose. This dlows the background thread to
write any information in the buffer onto disk, and then
regoin the main thread. A call to gl obus_tcl ose
precedesthecall tonpi _finali ze.

The thread manager keeps track of specific values which
relate to the buffer, such as the location of the new data, the
location of the next transfer point, and the length of the

buffer. This is shown in Figure 6. The thread manager
values must be updated whenever the data is added or
removed from the buffer, and it is equipped to wrap around
from the end of the buffer back to the beginning. Thus we
use a simple memory management scheme, keeping track
of the memory viaa simple linked-lit. If new data will not
fit into the free space in the buffer, we guarantee that the
buffer does not overflow by writing this new data to disk.
After the buffer sends the data to the server, it frees that
portion of memory.

Instead of sending each buffered dataset in one big
chunk, we break the data into manageable blocks and send
each block separately. In the event of a network
interruption, a Hock may not be transferred. In this case,
the system senses failure and writes this block to the local
disk. After the failure, the code continues to attempt to
transfer the next block of data. It is necessary to ensure that
the data transfer be lossless. Therefore, we only keep two
states, success or failure. If we have a success in our
transfer, we free up the memory in the buffer, and continue
to transfer. If we have afailure, then we write the block of
data to disk, and then free up the memory in the buffer. In
both cases, we write a status file so that we can keep track
of the location of the data. We aso stream this status file
over toour local cluster, but if thisfails, we write thisto the
local disk. Status files are used at the end of the simulation,
to get the missing blocks.

i | Total sizeof buffer

Aswe

freeup

the

buffer

from the

bottom,

the data

then

wraps

from the( |l WritePosition

) into blocks. This
PR« isthe section of
PCell|  databeing
transferred.
— Send Position

Figure 5. The data is broken up into blocks, which is
shown in bottom of the figure. These blocks indicate the
size of the data to transfer for each stream on each
processor. Typically, we useten streams per processor .
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gl obus_twrite() infoqueue
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transfer

Figure 6. Routines the simulation code calls, along with
the thread-mechanism. Globus topen initiates the
thread. Globus twrite copies the data into the memory
buffer, then adds the transfer information into the
queue, and then updates the buffer values.
Create fileinfo writes metadata to the buffer.
Globus tclose sends the close signal to the thread, and
then copies the remaining data to disk. The buffer_func
waits for the transfer information in the queue. It sends
data to remote machines in bl ocks followed by buffer
updates, finally removing the completed transfer
infor mation from the queue.

7. Results

One of the main objectives of our approach was NOT to
slow down the GTC calculation on the supercomputer.
Therefore we compare the time of the GTC code using our
streaming routines to running the code with only writing to
local disks. In this Section, we compare the time it takes to
run the code with (a) no /O, (b) writing binary data, using
FORTRAN write statements to disk, (c) writing an HDF5
fileto a paralle file system, (d) writing the HDF5 fileto a
NFS-mounted file system, and (€) streaming the data. See
Table 1. Each quantitative result presented in this Section is
an average of 50 runs of GTC. The percentages in columns
(b-¢) are the %-overhead of the code with 1/0O compared
with no I/O whatsoever. The LOCAL case is where we use
FORTRAN write statements on a local disk. Obvioudy,
thisis the fastest method to write output, but unfortunately,
it is not binary portable across platforms, and will have to
be processed on the supercomputer before it can be
transferred. Streaming data with a threaded /O layer
produces the next smallest timingsin al of the runs on the
AMD cluster, making the code run on average 10% sower.
On average, this is better than even the runs on the SP
writing to the GPFS directory, where the typical slowdown
ranged from 24% for the larger runs. Since we are using 8

nodes out of 10 nodes on the cluster for these runs, the CPU
load should be 80%, which istrue for cases (a), (b), (c), and
(e). Since our target architectures always have either a
head node (as in the PU cluster), or an 1/0 node (as on the
IBM SP), wedidn’t compute on all 10 nodes

Some of the overhead from the streaming routines
comes from the memory copy from the array in the main
thread to the buffer. This is very similar to the overhead
when writing locad 1/0 with a FORTRAN wite
statement. The rest of the overhead is mostly due to the
overhead of the thread routines trying to transfer the
information. For Run 1 the data production rate was faster
than the streaming rate resulting in some blocks being
written to files on the PU disks.

It is clear that writing data to an NFS mounted disk
gives the worst performance in our experiments, and this
strategy, which is commonly used on clusters, should be
avoided if possible. In Figure 7 we plot the CPU load on
the PU cluster for runs writing to NFS (until time 14:50 in
the graph). The CPU usage is intermittently dropping
dragtically to 50% when the NFS writes occur. Thisis very
different compared to writing to a disk on a parald file
system such as PVFS. In Figure 7, for times when we write
to PVFS (time after 14:50 on the graph) the CPU load stays
somewhat constant, never going down in adramatic fashion
as for the NFS write case. Figure 8 clearly shows that the
CPU load on the cluster is 80% when we stream data. A
detailed examination reveals asmall overhead, up to 10%,
due to streaming. This overhead is due to the memory
copying (about 1% of CPU utilization, and the GridFTP
APIsaccount for the rest of the overhead).

The curve in Figure 9a shows the network usage on the
100 Mb microwave link for Run 3 with streaming enabled.
In this case we averaged about 55Mb, which is very close
to the estimate of 49Mbs; obtained from calculating the
GB/s produced by the GTC code. Since we send some
additional metadata, we use a bit more of the bandwidth in
the beginning. Figure 9b shows the network usage across
our OC3 ESNET for run 10 with streaming enabled. This
run clearly shows that we can stream data from NERSC to
PPPL to at least 88Mbs.

Similar experiments, not reported in detail here, with
another code, achieved a maximum transfer rate of 93Mbits
on our PU PPPL grid cluster. The GTC code cannot
produce data for realistic runs at this rate on machines with
less than 1024 processors. More redlistic runs on 16
processors produce data at the rate of 10Mbs. One of our
future goals is to stream data across from one of our largest
simulations a&¢ NERSC, Run9 shown in Table 2. Typicd
runs are about 4,000 times steps, which suggest that Run 9
will produce 903GB of data per variable. In order to
determine if we could redisticaly stream data from the
GTC code at NERSC to our local cluster, we evaluated the
performance of the GTC code, shown in Table 1. We
conjecture that data from production GTC runs can be
effectively transferred to PPPL using our streaming
mechanism when the firewall a PPPL is upgraded to
gigabit speed.
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8. Conclusions and Future Work

In this pgper, we proposed a method to thread and buffer
the 1/0O layer for background processing. We performed
parallel data streaming experiments between the PU cluster
and local PPPL cluster. We achieved results which showed
that we can use 95% of the bandwidth, and by threading the
I/O layer, we achieve times which are faster than writing to
the local paralel files system. Experiments a8 NERSC
indicate that production runs of GTC generate data at arate
of 100 Mbs which is still compatible with paralel data
streaming.

Our future plan includes: (1) Port our routines to the IBM
SP at NERSC, (2) Pipeline the analysis and visualization
with the simulation, (3) automate the post-run clean-up
procedure, and (4) make the system fault tolerant. We also
are trying to experiment with MPICH-G2[16] for finer
grain paralelism for some of our analysis routines in our
computational pipeline.
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Figure 9. This shows the network usage from Run 3,
when streaming data.

Table 1. Comparison of CPU time (in seconds) to
stream data versus different methods to write data to
local disk. %-overhead is computed by comparing the
run with no 1/0. All runswere on 16 processors, with 4
variables written per iteration, and 10 time steps. Runs
[1-6] produced data at the rate of (167, 75, 49, 41, 30,
19) Mbs. [A=average overhead]. *Run 1 made the
streaming run writeto disk for part of the data.

id | mesh | GB (€) (b) (c) (d) (e)
(part | data | no local | pvfs | nfs stream
icles) | size |10 |10 | secs | secs (secs)
(M) secs | SeCS

1 | 336 | 510 | 228 | 238 | 376 470 250*
(4) 4% | 65% | 106% | 10%

2 | 84 132 132 | 134 | 176 196 144
(12) 2% | 3% | 8% | %

3 | 84 0.13 203 | 211 | 249 274 212
(16) % | 2% | 3% | 4%

4 | 336 | 510 893 | 914 | 1057 | 1150 1027
(4 X% | 18% | 29% | 15%

5 | 16.8 | 250 634 | 680 | 713 929 688
(64) ™% | % | 47% WP

6 | 05 0.08 32 32 46 49 36
(4) 0% | 43% | 53% | 13%

A 3% | 33% | 53% 10%

Table 2. Performanceon the IBM SP at NERSC. Run 9
is a realigtic high resolution run. Notice that the code
was 18% dower because of 1/0. Runs produced data at
(75, 41, 95) Mbs. Runs 7-8 were on 16 processors, Run 9
was on 1024 processor s. [A=aver age overhead]. All runs
were sampled over 10time steps

id mesh GB @ (b) (c)
(particles) data | no local | GPFS
(M) size 10 10 SECS

SECS | secs

7 8.4 132 | 228 | 238 376
(12 1% 65%

8 33.6 510 | 203 | 211 249
(64) 1% 23%

9 115.6 23 195 241
(512 24%

A 4% 37%
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Table3. Performanceon 12 processor SGI Onyx at
NERSC using 8 processor s, with 10 time steps.

id | mesh GB @ (b) (© (d)
(particle | data | no local hdf5 | stream
S) sze 10 10 local | secs
(M) SECS | secs SECS

10 | 84 128 186 | 192 N/A 198
(12) 3% 6%
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T=1000

Figure 10. A “serial” visualization of the GT C code from a streaming data experiment. Thisrun was produced
700GB of dataduringa 72 hour run. Theelectrostatic potential isshown at different timesduring the simulation. At
T=500, the potential still hasa uniform distribution of turbulence. Later in time, we see coherent structuresformin
the potential. These finger -like structures act as ener gy dissipating channelsfor the ener gy of the system. Asa second

instability developsthe flow becomes stochastic again.
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