
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage, and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
SC'03, November 15-21, 2003, Phoenix, Arizona, USA
Copyright 2003 ACM 1-58113-695-1/03/0011...$5.00

Grid -Based Parallel Data Streaming implemented for the Gyrokinetic Toroidal
Code

S. Klasky1, S. Ethier1, Z. Lin2, K. Martins1, D. McCune1, R. Samtaney1
1Plasma Physics Laboratory, Princeton University, NJ 08543 USA

{sklasky, ethier, kmartins, dmccune, samtaney}@pppl.gov
2Department of Physics and Astronomy, University of California, Irvine , Irvine, CA 92697 zhihongl@uci.edu

Abstract

We have developed a threaded parallel data streaming approach using Globus to transfer multi-terabyte simulation data
from a remote supercomputer to the scientist’s home analysis/visualization cluster, as the simulation executes, with
negligible overhead. Data transfer experiments show that this concurrent data transfer approach is more favorable
compared with writing to local disk and then transferring this data to be post-processed. The present approach is
conducive to using the grid to pipeline the simulation with post-processing and visualization. We have applied this
method to the Gyrokinetic Toroidal Code (GTC), a 3-dimensional particle-in-cell code used to study micro-turbulence in
magnetic confinement fusion from first principles plasma theory.

1. Introduction

A major issue preventing fusion devices from achieving
ignition has been loss of confinement due to cross-field
transport. Energy transport from the hot and dense core of
the plasma to the cold walls of the device greatly exceeded
the level predicted by the earlier theory of Coulomb
collisions. It is now believed that plasma microturbulence
driven by temperature and density gradients are responsible
for these enhanced cross-field transport rates. The ability to
suppress microturbulence-driven transport may well be the
key to a practical magnetic confinement fusion device. The
Gyrokinetic Toroidal Code (GTC) was built to develop the
necessary foundation of physics understanding. These
highly complex, nonlinear phenomena of plasma turbulence
can be most effectively investigated using direct numerical
simulations. We have developed a particle-in-cell (PIC)
turbulence code to study the important wave-particle
interactions in high temperature plasmas. With recent
advances in physics models, numerical algorithms, and
power and capacity of massively parallel computers, we
were able to carry out whole-device simulations of plasma
turbulence with unprecedented realism and resolution.
These advanced simulations have reproduced key features
of turbulent transport observed in fusion experiments[1],
and have stimulated further theoretical and experimental
research in the world fusion community.

In this paper, we describe a technique for achieving
efficient data transfer from a supercomputing application
(GTC described below) to a local cluster for analysis and
visualization using a pipeline approach implemented using
Globus and pthreads. Section 2 describes the GTC code

along with some of its computational techniques. Section 3,
describes the computational performance of GTC. In
Section 4, we briefly describe the visualization techniques
used in the analysis of GTC data. Section 5 describes three
basic data management methodologies used by fusion
researchers. Section 6 describes our “grid” comprised of
Linux clusters at PPPL and Princeton University (PU),
followed by the implementation of the threaded streaming
techniques. In Section 7, we present the results obtained
from data transfer experiments on the PPPL-PU grid. It will
be shown that the entire process of large-scale simulations
and simultaneous data transfer to local clusters for
visualization/analysis leads to the best overall
performance/productivity. Finally, we conclude with future
work in Section 8.

2. The Gyrokinetic Toroidal Code (GTC)

Compared with hydrodynamic turbulence, plasma
microturbulence exhibits more complexity due to the
interaction of the charged particles with a combination of
externally imposed and self-generated electro-magnetic
fields. We have developed a time-dependent 3-dimensional
particle-in-cell (PIC) code that solves the gyrokinetic
system of equations for particle motion in a plasma [2,3]. In
a magnetic confinement device, the trajectory of a charged
particle (ion, electron) is a fast helical motion along the
magnetic field lines accompanied by a slow drift motion
across these same lines. It was found that by averaging the
fast helical motion, huge savings in serial computational
time were achieved without losing any of the relevant
physics at the length and time scales of the problem under
scrutiny. A charged ring moving along and across the field

Page 2 of 10

lines thus replaces the helical motion of the particle. This is
known as “gyrophase averaging”, and we end up following
only the (guiding) center of the ring instead of the full
motion of the charged particle. The gyrokinetic system of
equations is obtained by gyrophase averaging the Vlasov
and Poisson equations in the electrostatic case [2,3]. One of
the innovations in our code is the use of a local method,
known as the four-point averaging, instead of a spectral
Fourier method to solve the Poisson equation. This greatly
reduces the computational work and is more easily
parallelized [3,4].

2.1 Particle-in-Cell method

The PIC method consists of using “particles” to sample the
distribution function of a system in phase space and follow
its evolution in time. Interactions between the particles are
handled using a self-consistent field described on a grid.

The following are the main steps of the PIC algorithm. First
we deposit (distribute) the charge of each particle on its
nearest grid points (this is the “scatter” operation). Then we
solve the Poisson equation on the grid to find the
electrostatic potential and field at each grid point. We then
calculate the force acting on each particle from the field at
its nearest grid points (this is the “gather” operation).
Finally, we move the particles according to the forces just
calculated, and repeat these steps until the end of the
simulation.

Since the original PIC algorithm can be fairly noisy in
certain cases, GTC uses the delta-f method, which consists
of following only the non-equilibrium part of the
distribution function instead of the full function [5]. The
equilibrium is part of the “background” in the equations
and does not change during the simulation. This greatly
reduces the numerical noise and allows a near-uniform
distribution (in space) of the particles even in the presence
of density gradients.

2.2 The GTC Mesh

Because of the characteristic motion of the ions in the
externally applied magnetic field, moving fast along
(parallel to) the field lines and slowly across (perpendicular
to) them, a magnetic coordinate system is the natural choice
in gyrokinetic calculations. Consequently, typical eddies in
plasma turbulence are elongated along magnetic field lines.
Using a mesh aligned with the magnetic field, a factor of
100 in serial computation time can be saved. This is due to
the fact the trajectory of a charged particle along the field
line is aligned with one of the coordinate axes.
Furthermore, aligning the mesh with the field lines allows
for a much larger time step and a much smaller number of
grid points in the parallel direction (i.e., along the field
lines). Figure 1 shows the toroidal mesh (long way around
the torus) used by GTC. We see that the field lines twist
around the torus and so does the mesh. Figure 2 shows a

perpendicular section of the torus, or poloidal plane. To
maintain the density of grid points constant for different
radii, the radial and angular meshes have regular spacing,
i.e. ∆ri = constant and ri∆θi = constant. This makes the
grid irregular since the number of points per radial surface
(also called flux surface) varies from one surface to the
other, and the points do not align radially.

Figure 1. Representation of the field-line following mesh
on a flux (magnetic) surface of the system (constant
radius). The twist in the field lines depends on the
magnetic equilibrium of the device under study.

Figure 2. Mesh of a poloidal plane (perpendicular
section) showing the constant density of points. This
mesh rotates as one goes around the torus due to the
twisting of the magnetic field lines.

2.3 Parallel approach

There are two parallel methods implemented in GTC.
Coarse-grained one-dimensional domain decomposition
splits the torus in equal partitions containing the same
number of grid points (poloidal planes) and, initially, the
same number of particles. MPI calls take care of the
communication between processes. A second level of
parallelism in the code uses fine-grain loop-level work
splitting using OpenMP compiler directives. This mixed-
mode MPI/OpenMP approach is ideal for clusters of shared
memory nodes, like the IBM SP, on which most of the
GTC simulations are performed. It is well known that loop-
level parallelism does not scale as well as coarse-grain
domain decomposition. However, the physics of our system
dictates the number of “useful” domains that can be used
for the 1D decomposition. Beyond a certain grid resolution
in the toroidal direction, no changes in the simulation
results occur, and it is then unnecessary (and wasteful) to
increase that resolution any further in order to use more

Page 3 of 10

domains (we can actually use as little as one poloidal plane
per domain). This unusual property is due to our global
field-aligned mesh and to the plasma physics phenomenon
known as Landau damping. Loop-level parallelism with
OpenMP allows us to put more processing resources
towards our large simulations.

Future work will include adding an extra level of domain
decomposition in order to “recruit” even more processors
for even larger and more demanding simulations. Currently,
large simulations use 1 billion particles and 125 million
grid points.

3. GTC performance

GTC has been ported to most parallel computers. The
production simulations are mostly done on the 10 teraflop
IBM SP (Power3) at the National Energy Research
Scientific Computing Center (NERSC). The large runs use
64 MPI processes (1 per SMP node) with 16 OpenMP
threads per process, for a total of 1,024 processors.
Message passing communications account for only 5 to 8%
of the total wall clock time on the IBM SP Colony switch.
Parallel efficiency of the domain decomposition part is
essentially perfect for all ranges of problem sizes, in
contrast with the fine-grain OpenMP, which depends on the
problem size but can reach 98% of efficiency for
sufficiently large cases. Figure 3 shows the scaling of GTC
on 2 different platforms: the CRAY T3E and the 16-way
SMP IBM SP Power3 at NERSC. The metric that we use is
the computing power, defined as the number of particles, in
millions, which move one step in one second (wall clock).
We believe this to be a much better quantity to measure the
efficiency of a PIC code than the floating-point operations
count or just pure parallel scaling.

Half a million particles per processors were used to get the
IBM SP scaling curve in Figure 3. The somewhat sudden
change in the curve past the 64-processor mark is due to the
mixed-mode MPI/OpenMP. The loop-level parallelism
does not scale as well as the coarse-grain domain
decomposition but would do better as the problem size is
increased (more particles, higher grid resolution).

The MPI scaling of the domain decomposition works well
for all the platforms that we have run on, including Linux
clusters with fast Ethernet (100 Mbs). This is due to the
efficient message passing algorithm implemented in the
code. The bulk of the communications happens when some
particles move out of one domain to enter another. This is
done in a closed chain fashion, each processor receiving
from the left while sending to the right, and then vice versa.
This method optimizes the communications by avoiding the
case when one processor would receive from two others or
more.

For medium-size simulations and a relatively small number
of processors (32 CPUS), we have found that GTC runs as
fast on the latest 32-bit AMD and Intel processors as on the
IBM Power3. This was observed on Linux clusters
equipped with a myrinet interconnect in one case, and a
gigabit-Ethernet interconnect in the other.

Figure 3. Scaling of the computing power of the GTC
code as the number of processors is increased. This
quantity is defined as the number of particles (in
millions) that move 1 time step in 1 second. The change
in the scaling which appears at >64 processors is due to
the OpenMP.

4. Visualization & Data Analysis

The GTC code produces HDF5 files of the electrostatic
potential. After we generate these files, we run
AVS/Express] to visualize the results. The visualization is
working off of a node on our local cluster, and can process
frames at about 15seconds/frame for some of our larger
runs (See Figure 10). An ongoing activity at PPPL is “run-
time monitoring” of simulations. To achieve this, we have
implemented socket connections inside of Express, in order
to receive data from the I/O servers in real time, and write
out the image frames. Furthermore, there is an ongoing
effort to work with parallel visualization programs (e.g.
Ensight Gold).

In the future, we would like to implement an out-of-core
isosurface routine, and then put this into our visualization
software. Once this is done, a user can later generate
isosurfaces at a much faster rate than what is currently
being done. This part of the analysis will be done as soon as
the data comes over to our servers, which is a natural
extension to the work presented in this paper.

Page 4 of 10

Parallel analysis/visualization will become imperative as
the GTC runs get larger. We think it is advantageous to
simultaneously stream data in parallel from N processors
on the SP to M processors on a local PPPL cluster in order
to maintain processor affinity which can be exploited by
parallel analysis/visualization routines. This is the
underlying motivation for the work described in later
sections.

5. Data management methodologies

Presently, fusion HPC codes generate a vast amount of
data, and researchers transfer this data from a
supercomputer to their local analysis/visualization
resources after the simulation has completed. In general,
most analysis/visualization tools are serial in nature.
Performance limitations render this method of working
impractical for very large datasets.

Grid computing has made a major impact in the field of
collaboration and resource sharing [6]. Data Grids are
generating a tremendous amount of excitement in grid
computing [7]. There is an ongoing effort by visualization
scientists to use the grid to develop collaborative interactive
visualization techniques [8, 9, 10, 11, 12].

Our approach for codes such as GTC is to transfer data
from a supercomputer running the main simulation on N
processors, to M processors (typically M<N) on a
visualization/analysis cluster local to the scientist.
Typically, post-processing of the data requires much less
computing power than the main simulation. By maintaining
the distribution of the data among processors, we can then
post-process this data in parallel on the local resources with
parallel analysis/visualization techniques. We realize that
different post processing techniques might require a
different distribution of data than that used in the original
calculation. At present, we let the application scientist
decide the distribution on the visualization/analysis cluster,
but in the future we would like to automatically redistribute
the data according to the characteristics of the
visualization/analysis cluster. Before we begin the
description of our approach, we would like to survey other
methods used in the fusion community for analysis and
visualization of supercomputing data.

In the magnetic confinement fusion community, three
methods are commonly used to analyze data from a
supercomputing simulation. The first method uses a
database system known as MDSPlus [13]. The second
approach is to write data to a local disk on the
supercomputer. To simplify the process of assembling files
from all of the processors, it is much more convenient to
write the data in parallel, from all processors to a single
file. This file may be on a network-mounted disk (such as
NFS), or on a parallel file system (such as PVFS or GPFS).
We rely on MPI-IO for this process. The third approach,
which is emphasized in this paper, is to thread the I/O layer

and use Globus/GridFTP to stream the data from the
supercomputer to a local cluster for data analysis. In the
next few paragraphs, we will briefly describe these three
methods.

MDSPlus is a client-server system for the acquisition,
analysis, storage and sharing of data. When users want to
examine a variable after their simulation has run, they can
request that variable, or even a reduced-dimensional slice
from this variable, and just have this data sent back to
him/her. There is a significant disadvantage of MDSPlus
for large datasets. The data from a HPC code is sent to a
serial server, using serial socket connections from one
processor. Such serialization of I/O is unacceptable for
HPC codes, except perhaps for a few small summary
“results” datasets. Because of this problem, and others, we
did not implement MDSPlus into GTC.

The second approach is to write data to a local disk on the
supercomputer and later transfer the data using protocols
such as ftp over to the local analysis/visualization cluster.
Presently, in this approach the scientist either: (1) writes
files to an NFS mounted disk; (2) writes separate files on
each processor, and later assembles these into a single
dataset; (3) writes hdf5 files on a parallel file system. Since
these three methods are commonplace in the fusion
community, we compare these three methods with our
preferred approach based on streaming. It is important to
note that most researchers in the fusion community who run
on clusters write to a NFS mounted disk. In GTC we chose
to write the files in the HDF5 format because it contains
meta-data, it is binary portable across most architectures,
and most importantly, it allows efficient parallel I/O on a
parallel file system [14]. The third approach of parallel data
streaming is described in the following section.

6. Threaded Parallel Data Streaming

Interactive remote data analysis/visualization is
inconvenient at remote supercomputing centers like
NERSC where generally jobs are executed in a batch
fashion. Even with the availability of interactive resources
at remote sites, issues such as latency and network quality
of service, hamper productivity. Clearly, it is advantageous
for GTC scientists to move the visualization and data
analysis to a local resource. To achieve this objective, we
have implemented a secure threaded parallel data streaming
method described below.
6.1. Overview

Analysis and visualization of GTC results are an
important part of understanding the physics of micro-
turbulence. Since the total data size from a GTC run can be
quite large, of the order of 1 or more TB of data, analysis
and visualization routines often need to be run as
multiprocessor applications in order to process the data in a
reasonable amount of time. Interactive visualization
becomes impractical because reading and displaying the
data take several minutes for every frame. Speed of access
plays a major role in determining the use that is ultimately

Page 5 of 10

made of the data. In order to ask “what-if” questions, the
analysis/visualization routines and their users require high
performance access to the data.

Although analysis and visualization may require some
parallel processing, it does not require the 1000s of
processors needed by the original simulation. Storage and
processing power have become much less expensive for
clusters, and networks have become faster: this is one of the
basic tenets of grid computing. Hence, we find that the
analysis and visualization of simulation results is not only
feasible but desirable to take place on a local machine that
is physically separated from the supercomputer running the
simulation. This permits the great performance advantage
of placing the results data directly on hardware and
networks local to the scientist investigating GTC results. In
the past few years, the time to transfer large datasets from
the supercomputer center to local systems was an
impediment. Now, however, with our current
implementation of threaded streaming data transfer based
on GridFTP, this transfer can occur while the GTC
simulation is still running. This mode of data transfer incurs
a small overhead and does not affect the performance of
GTC on the supercomputer by any significant measure (See
Section 7 on results from data transfer experiments).

As a first step in developing the above mentioned data
transfer scheme, we created a test bed of 3 clusters
separated by a WAN. This test bed serves as a controlled
platform for performing data transfer experiments,
investigating various scenarios and testing of our APIs.
Figure 4 is a schematic of our network topology from two
separate clusters/supercomputers to our local cluster. The
cluster on the top is an AMD dual processor (MP2100)
cluster with 9 compute nodes, and one head node connected
to a 3Com gigabit switch. This cluster is almost identical to
the cluster at PPPL on the bottom(the only difference is that
PPPL’s cluster has 18 compute nodes, with one head node,
and one visualization node). These two clusters are
separated by a 100Mbit microwave link, and a few routers.
We have just finished our experiments on the PU – PPPL
clusters. We have just started the next phase of data transfer
experiments between the machines at NERSC, which is on
the ESNET, and the local PPPL cluster. Currently, our
connection to the ESNET is limited to 155Mbit (OC3).
6.2. Threaded data transfer methodology

In this Section, we give an overview of the basic transfer
scheme which we have implemented. We have built several
APIs in C, with FORTRAN90 hooks, to perform our goal
of streaming data from a live simulation on a remote
supercomputer to a cluster which is local to the user.
Our system is built on top of the Globus toolkit, namely the
APIs which are used for GridFTP [6,7]. In our system we
use POSIX pthreads to thread the I/O layer. Data is copied
from the main program to a buffer. The thread is then
activated and starts to stream a small piece of this data
using GridFTP APIs. Data is then streamed from the
supercomputer to our local cluster on which each node runs
a GridFTP server. Typically, we send ten GridFTP streams
per processor. Data is written to disk on the nodes of the
local cluster. If all of the data from a variable has been

successfully transferred, the server initiates a MPI program
to create a HDF5 file. If pieces of the data are missing, the
user runs a separate program at the end of the job to get the
missing data, and convert this raw-data into HDF5 Files.
We run a slightly modified GridFTP server on each node
on our local cluster in order to extend the data pipeline
approach. In addition to writing the data to local disk, the
GridFTP service include APIs to communicate with a local
master node which can coordinate such tasks as assembling
the local files into one parallel HDF5 file, perform analysis
routines, etc. These servers will accept the incoming data,
process the data, and then write this processed data to disk.

pnode

Gigabit Switch

pnode
6

pnode
7

pnode
8

pnode
9

pnode pnode pnode pnode

Gigabit Switch

head IBM
SP

SGI
Onyx

pnode
1

pnode
2

pnode
3

pnode
4

pnode
5

Router

Microwave link

Firewall

Route
r

Route
r

CA

Ill

OC48

OC192

OC192

OC3

1Gb
b

100M
b

NERSC

Princeton
University

 PPPL

ESNET

Figure 4 There are three target architectures for
this paper; Princeton University, PU (top), NERSC
(middle right), and our local cluster, bottom. The
first architecture is a cluster of 9 dual processor
AMD 2100MP nodes with a gigabit infrastructure.
The second is the IBM SP and SGI at NERSC. The
third is a cluster local to PPPL with 18 dual
processor nodes; where we only show 5 nodes. PPPL
has an OC3 (155Mbit) connection to the ESNET,
and a 100Mbit connection to the cluster at PU.

r

r

NYC

Page 6 of 10

6.2.1. HDF5-part. It is very important that the data from
the GTC code be eventually written to disk. Our scheme
will write this information to the disk on the local cluster.
Since we intend to write HDF5 files, we need to be able to
send out meta-data (labeled as “HDF5_info” in Figure 5)
along with the raw data from GTC so that we can reformat
the data file into a HDF5 file on our local cluster. The
metadata necessary to send over to create a HDF5 is
approximately 2K, which is several orders of magnitude
smaller than the files which we transfer. We plan to include
keywords to inform the Globus server which “filter”
routines will run after the raw data arrives. These filters
will allow us to locally post process the data on-the-fly.
6.2.2. Thread/Buffering Part.

Our threading approach is conceptually similar to that of
Ma et al. [15]. During the simulation, instead of writing
local files to the parallel file system, the information is
organized and copied into the memory buffer (see Figure
5). The thread then transfers the data from the buffer. In the
event of network disruption, or buffer overflow, the thread
writes a binary file to its local disk. In addition to the data,
a status file is either written locally or transferred. The
status file contains pertinent information about the data
transfer of each block in Figure 5. In our current
implementation, a clean-up procedure is initiated manually
(eventually automated) by the user at the end of the
simulation. This clean-up procedure, which uses
Globus/GridFTP, examines the status files and transfers the
remaining data at the remote supercomputer site to the local
cluster.

Figure 6 shows the main streaming routines used by
GTC. The user allocates memory for a buffer, which is on
each processor that performs the I/O (possibly one per SMP
node); to account for the meta-data, the user will create a
buffer which is slightly larger than the amount of data
he/she wishes to transfer at any one output step of the
simulation. When the user first calls the open statement
(globus_topen) on each processor, it creates a new
thread and passes some initial data that informs the thread
the location of the memory buffer. As in [15] we only
create one thread per processor. These threads do not
communicate with the other I/O threads on the other
processors. The thread monitors a queue of transfers which
is protected by a pthread mutex lock, and a variable which
sets up a condition. Later, when the user wants to write
data, he/she uses the globus_twrite function. This
allows the main thread to append the new transfers to the
queue. The background thread is then able to continuously
transfer information to the GridFTP service on the remote
machine. When the background thread has finished
transferring all of the information in the buffer, it then
sleeps. At the end of the date transfer, the code calls
globus_tclose. This allows the background thread to
write any information in the buffer onto disk, and then
rejoin the main thread. A call to globus_tclose
precedes the call to mpi_finalize.

The thread manager keeps track of specific values which
relate to the buffer, such as the location of the new data, the
location of the next transfer point, and the length of the

buffer. This is shown in Figure 6. The thread manager
values must be updated whenever the data is added or
removed from the buffer, and it is equipped to wrap around
from the end of the buffer back to the beginning. Thus we
use a simple memory management scheme, keeping track
of the memory via a simple linked-list. If new data will not
fit into the free space in the buffer, we guarantee that the
buffer does not overflow by writing this new data to disk.
After the buffer sends the data to the server, it frees that
portion of memory.

Instead of sending each buffered dataset in one big
chunk, we break the data into manageable blocks and send
each block separately. In the event of a network
interruption, a block may not be transferred. In this case,
the system senses failure and writes this block to the local
disk. After the failure, the code continues to attempt to
transfer the next block of data. It is necessary to ensure that
the data transfer be lossless. Therefore, we only keep two
states, success or failure. If we have a success in our
transfer, we free up the memory in the buffer, and continue
to transfer. If we have a failure, then we write the block of
data to disk, and then free up the memory in the buffer. In
both cases, we write a status file so that we can keep track
of the location of the data. We also stream this status file
over to our local cluster, but if this fails, we write this to the
local disk. Status files are used at the end of the simulation,
to get the missing blocks.

Figure 5. The data is broken up into blocks, which is
shown in bottom of the figure. These blocks indicate the
size of the data to transfer for each stream on each
processor. Typically, we use ten streams per processor.

Data

HDF5Info

Total size of buffer

New
Data

Write Position

Send Position

As we
free up
the
buffer
from the
bottom,
the data
then
wraps
from the
top to the
bottom. We chunk the data

into blocks. This
is the section of
data being
transferred.

Page 7 of 10

Figure 6. Routines the simulation code calls, along with
the thread-mechanism. Globus_topen initiates the
thread. Globus_twrite copies the data into the memory
buffer, then adds the transfer information into the
queue, and then updates the buffer values.
Create_fileinfo writes metadata to the buffer.
Globus_tclose sends the close signal to the thread, and
then copies the remaining data to disk. The buffer_func
waits for the transfer information in the queue. It sends
data to remote machines in bl ocks followed by buffer
updates, finally removing the completed transfer
information from the queue.

7. Results

One of the main objectives of our approach was NOT to
slow down the GTC calculation on the supercomputer.
Therefore we compare the time of the GTC code using our
streaming routines to running the code with only writing to
local disks. In this Section, we compare the time it takes to
run the code with (a) no I/O, (b) writing binary data, using
FORTRAN write statements to disk, (c) writing an HDF5
file to a parallel file system, (d) writing the HDF5 file to a
NFS-mounted file system, and (e) streaming the data. See
Table 1. Each quantitative result presented in this Section is
an average of 50 runs of GTC. The percentages in columns
(b-e) are the %-overhead of the code with I/O compared
with no I/O whatsoever. The LOCAL case is where we use
FORTRAN write statements on a local disk. Obviously,
this is the fastest method to write output, but unfortunately,
it is not binary portable across platforms, and will have to
be processed on the supercomputer before it can be
transferred. Streaming data with a threaded I/O layer
produces the next smallest timings in all of the runs on the
AMD cluster, making the code run on average 10% slower.
On average, this is better than even the runs on the SP
writing to the GPFS directory, where the typical slowdown
ranged from 24% for the larger runs. Since we are using 8

nodes out of 10 nodes on the cluster for these runs, the CPU
load should be 80%, which is true for cases (a), (b), (c), and
(e). Since our target architectures always have either a
head node (as in the PU cluster), or an I/O node (as on the
IBM SP), we didn’t compute on all 10 nodes

Some of the overhead from the streaming routines
comes from the memory copy from the array in the main
thread to the buffer. This is very similar to the overhead
when writing local I/O with a FORTRAN write
statement. The rest of the overhead is mostly due to the
overhead of the thread routines trying to transfer the
information. For Run 1 the data production rate was faster
than the streaming rate resulting in some blocks being
written to files on the PU disks.

It is clear that writing data to an NFS mounted disk
gives the worst performance in our experiments, and this
strategy, which is commonly used on clusters, should be
avoided if possible. In Figure 7 we plot the CPU load on
the PU cluster for runs writing to NFS (until time 14:50 in
the graph). The CPU usage is intermittently dropping
drastically to 50% when the NFS writes occur. This is very
different compared to writing to a disk on a parallel file
system such as PVFS. In Figure 7, for times when we write
to PVFS (time after 14:50 on the graph) the CPU load stays
somewhat constant, never going down in a dramatic fashion
as for the NFS write case. Figure 8 clearly shows that the
CPU load on the cluster is 80% when we stream data. A
detailed examination reveals a small overhead, up to 10%,
due to streaming. This overhead is due to the memory
copying (about 1% of CPU utilization, and the GridFTP
APIs account for the rest of the overhead).

The curve in Figure 9a shows the network usage on the
100 Mb microwave link for Run 3 with streaming enabled.
In this case we averaged about 55Mb, which is very close
to the estimate of 49Mbs; obtained from calculating the
GB/s produced by the GTC code. Since we send some
additional metadata, we use a bit more of the bandwidth in
the beginning. Figure 9b shows the network usage across
our OC3 ESNET for run 10 with streaming enabled. This
run clearly shows that we can stream data from NERSC to
PPPL to at least 88Mbs.

 Similar experiments, not reported in detail here, with
another code, achieved a maximum transfer rate of 93Mbits
on our PU PPPL grid cluster. The GTC code cannot
produce data for realistic runs at this rate on machines with
less than 1024 processors. More realistic runs on 16
processors produce data at the rate of 10Mbs. One of our
future goals is to stream data across from one of our largest
simulations at NERSC, Run9 shown in Table 2. Typical
runs are about 4,000 times steps, which suggest that Run 9
will produce 903GB of data per variable. In order to
determine if we could realistically stream data from the
GTC code at NERSC to our local cluster, we evaluated the
performance of the GTC code, shown in Table 1. We
conjecture that data from production GTC runs can be
effectively transferred to PPPL using our streaming
mechanism when the firewall at PPPL is upgraded to
gigabit speed.

MAIN
globus_topen()
.
.
.
.
create_fileinfo()
globus_twrite()
.
.
.
.
globus_tclose()

Thread
buffer_func()

While !closing

Waits for an
element in the
infoqueue

sends data
and/or status

updates buffer
values and
dequeues last
transfer

Page 8 of 10

8. Conclusions and Future Work

In this paper, we proposed a method to thread and buffer
the I/O layer for background processing. We performed
parallel data streaming experiments between the PU cluster
and local PPPL cluster. We achieved results which showed
that we can use 95% of the bandwidth, and by threading the
I/O layer, we achieve times which are faster than writing to
the local parallel files system. Experiments at NERSC
indicate that production runs of GTC generate data at a rate
of 100 Mbs which is still compatible with parallel data
streaming.

Our future plan includes: (1) Port our routines to the IBM
SP at NERSC, (2) Pipeline the analysis and visualization
with the simulation, (3) automate the post-run clean-up
procedure, and (4) make the system fault tolerant. We also
are trying to experiment with MPICH-G2[16] for finer
grain parallelism for some of our analysis routines in our
computational pipeline.

Acknowledgements

This work was supported by USDOE Contract no. DE-
AC020-76-CH03073. This research used resources of the
National Energy Research Scientific Computing Center,
which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC03-
76SF00098. This work was also supported by the internal
PPPL funding.

Figure 7. The first portion of this graph (until t=14:50)
shows a run where we wrote to an NFS disk. Notice the
CPU usage goes down whenever we write to disk. The
second portion of the graph (t>14:50) shows a run with
writing to PVFS. The arrow demarcates the NFS run
from the PVFS run.

Figure 8. The load on the cluster with streaming .

a) b)

 Figure 9. This shows the network usage from Run 3,
when streaming data.

Table 1. Comparison of CPU time (in seconds) to
stream data versus different methods to write data to
local disk. %-overhead is computed by comparing the
run with no I/O. All runs were on 16 processors, with 4
variables written per iteration, and 10 time steps. Runs
[1-6] produced data at the rate of (167, 75, 49, 41, 30,
19) Mbs. [A=average overhead]. *Run 1 made the
streaming run write to disk for part of the data.

id mesh
(part
icles)
(M)

GB
data
size

(a)
no
IO
secs

(b)
local
IO
secs

(c)
pvfs
secs

(d)
nfs
secs

(e)
stream
(secs)

1 33.6
(4)

5.10 228 238
 4%

376
65%

470
106%

250*
10%

2 8.4
(12)

1.32 132 134
2%

176
 33%

196
48%

144
9%

3 8.4
(16)

0.13 203 211
4%

249
23%

274
35%

212
4%

4 33.6
(4)

5.10 893 914
2%

1057
18%

1150
29%

1027
15%

5 16.8
(64)

2.50 634 680
7%

713
9%

929
47%

688
 9%

6 0.5
(4)

0.08 32 32
0%

46
43%

49
53%

36
13%

A 3% 33% 53% 10%

Table 2. Performance on the IBM SP at NERSC. Run 9
is a realistic high resolution run. Notice that the code
was 18% slower because of I/O. Runs produced data at
(75, 41, 95) Mbs. Runs 7-8 were on 16 processors, Run 9
was on 1024 processors. [A=average overhead]. All runs
were sampled over 10 time steps

id mesh
(particles)
(M)

GB
data
size

(a)
no
IO
secs

(b)
 local
IO
secs

(c)
GPFS
secs

7 8.4
(12)

1.32 228 238
 4%

376
65%

8 33.6
(64)

5.10 203 211
4%

249
23%

9 115.6
(512)

2.3 195 241
24%

A 4% 37%

Page 9 of 10

Table 3. Performance on 12 processor SGI Onyx at
NERSC using 8 processors, with 10 time steps.

id mesh
(particle
s)
(M)

GB
data
size

(a)
no
IO
secs

(b)
 local
IO
secs

(c)
hdf5
local
secs

(d)
stream
secs

10 8.4
(12)

1.28 186 192
 3%

N/A 198
6%

References

[1] Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, and R. B.
White, Science 281, 1835 (1998).

[2] Lee, W.W., Gyrokinetic approach in particle
simulation, Phys. Fluids 26, 556 (1983).

[3] Lee, W.W., Gyrokinetic Particle Simulation Model,
JCP 72, 243 (1987).

[4] Z. Lin and W. W. Lee, Method for Solving the
Gyrokinetic Poisson Equation in General Geometry, Phys.
Rev. E 52, 5646-5652 (1995).

[5] A. Dimits, W. W. Lee, J. Comput. Phys. 107, 309
(1993).

[6] Foster, Kesselman , Computational Grids., Chapter 2 of
"The Grid: Blueprint for a New Computing Infrastructure",
Morgan-Kaufman, 1999.

[7] Allcock, Bester, Bresnahan, Chervenak, Foster, C.,
Kesselman, Meder, V. Nefedova, D. Quesnal, S. Tuecke.
Data Management and Transfer in High Performance
Computational Grid Environments. Parallel Computing
Journal, Vol. 28 (5), May 2002, pp. 749-771.

[8] Bethel, Shalf, Consuming Network Bandwith vith
Visapult, The Visualization Handbook. Ed. Hansen,
Johnson, Academic Press, 2003.

[9] Beyon, Kurc, Sussman, Saltz, Design of a Framework
for Data-Intensive Wide-Area Applications, Heterogenous
Computing Workshop , pp. 116-130. 2000.

[10] Karonis, Papka, Binns, Bresnahan, Insley, Jones, Link,
High-Resolution Remote Rendering of Large Datasets in a
Collaborative Environment, Preprint ANL/MCS-P1030-
0203, Feb. 2003.

 [11] Beyon, Chang, Catalyurek, Kurc, Sussman, Andrade,
Ferreira, Saltz, Processing Large-Scale Multidimensional
Data in Parallel and Distributed Environments, Parallel
Computing, 2002.

[12] Allcock, Bester, Bresnahan, Foster, Gawor, Insley,
Link, Papka, GridMapper: A Tool for Visualizing the
Behavior of Large-Scale Distributed Systems, Proceedings
of High Performance Distributed Computing 11,
Edinburgh, Scotland, 2002.

[13] T. Fredian and J. Stillerman, MDSplus Remote
Collaboration Support – Internet and the World Wide Web,
Fusion Engineering and Design 43, (1999).

[14] HDF5 User Manual,
http://hdf.ncsa.uiuc.edu/HDF5/doc/H5.intro.html.

[15] Ma, Winslett, Lee, Yu. Improving MPI-IO Output
Performance with Active Buffering Plus Threads.
International Parallel and Distributed Processing
Symposium (IPDPS'03), April 22 - 26, 2003, Nice, France.

Page 10 of 10

Figure 10 . A “serial” visualization of the GTC code from a streaming data experiment. This run was produced
700GB of data during a 72 hour run. The electrostatic potential is shown at different times during the simulation. At
T=500, the potential still has a uniform distribution of turbulence. Later in time, we see coherent structures form in
the potential. These finger-like structures act as energy dissipating channels for the energy of the system. As a second
instability develops the flow becomes stochastic again.

