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The Implementation of Magnetic Islands in Gyrokinetic Toroidal Code∗
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Abstract The implementation of magnetic islands in gyrokinetic simulation has been verified
in the gyrokinetic toroidal code (GTC). The ion and electron density profiles become partially
flattened inside the islands. The density profile at the low field side is less flattened than that
at the high field side due to toroidally trapped particles in the low field side, which do not move
along the perturbed magnetic field lines. When the fraction of trapped particles decreases, the
density profile at the low field becomes more flattened.
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1 Introduction

In fusion experiments, axisymmetric magnetic fields
form nested surfaces to confine charged particles in
toroidal geometry. However, the topology of the mag-
netic surfaces can be destroyed by external perturba-
tion or magnetic reconnection which creates magnetic
islands. The plasma pressure profile flattening across
the islands reduces the local bootstrap current and gives
rise to a nonlinear tearing instability, namely the neo-
classical tearing mode (NTM) [1]. The NTM, which has
been observed in tokamak experiments [2], can produce
large islands and limit the performance of a fusion re-
actor. Therefore, the NTM can be a big threat to the
H-mode operation in ITER (International Thermonu-
clear Experimental Reactor) [3].

The NTM prediction currently relies on empirical
scaling or reduced theoretical models [4]. A popular
dynamical model for the island growth uses a modi-
fied Rutherford equation [5] together with some ana-
lytic formulation of the instability drive of various cur-
rent channels including bootstrap current and polariza-
tion current [6]. Direct numerical simulation is needed
for better understanding and eventual real time con-
trol of tokamak plasma turbulence [7]. First-principles
NTM simulation remains a computational grand chal-
lenge due to the nonlinear interaction between multiple
physical processes covering disparate spatial-temporal
scales.

As the first step toward building the capability for
first-principles NTM simulation, we limit the current
simulation to the dynamical time scale of microturbu-
lence. Because the island evolution time is much longer
than the time scale of microturbulence, the magnetic
islands are assumed to be static during the microtur-
bulence simulations. The nonlinear interaction between
static magnetic islands and microturbulence has been
studied recently [8−12]. The response of the particle mo-
tion to the islands can be complicated in the toroidal
geometry. For example, the trajectories of test particles
may deviate from the perturbed field lines induced by
the magnetic islands [8]. The density and temperature
profiles inside the islands can be flattened more signif-
icantly in the high field side than in the low field side
because of the toroidally trapped particles [13].

In this paper, we formulate and verify the gyrokinetic
simulation with static islands. Global particle simula-
tion has been used to study the effects of the static
magnetic islands in toroidal geometry [14]. Our simu-
lations find that the ion and electron density profiles
become partially flattened inside the islands. The den-
sity profile at the low field side is less flattened than that
at the high field side because there are more toroidally
trapped particles on the low field side, which do not
move along the perturbed magnetic field lines. When
the fraction of trapped particles decreases, the density
profile at the low field becomes more flattened. Our
work utilizes the particle-in-cell gyrokinetic toroidal
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code (GTC) [15−17], which has been extensively applied
to study neoclassical transport [18], energetic particle
transport [19], ion and electron temperature gradient
modes [20,21], collisionless trapped electron mode [22],
Alfvèn eigenmodes [23,24], kink modes [25] and tearing
modes [26]. Electrostatic simulations of the island ef-
fects on the ITG with adiabatic electrons have been
studied [14]. The capabilities will provide the first-
principles tool for self-consistent simulation of NTM
including the interactions between neoclassical trans-
port, microturbulence and MHD stability.

This paper is organized as follows. In section 2, we
first describe the implementation of magnetic islands in
the toroidal geometry, and derive the gyrokinetic equa-
tions of motion in the presence of static islands. In
section 3, the island implementation is verified and the
effects of static islands on density profiles are discussed.
Finally, the conclusions are in section 4.

2 Simulation formulation

In our simulations, the toroidal magnetic coordinate
system (ψ, θ, ζ) is used where ψ is the poloidal magnetic
flux function, θ is the magnetic poloidal angle, and ζ is
the magnetic toroidal angle. The covariant representa-
tion of the magnetic field [27] is

B0 = δ∇ψ + I∇θ + g∇ζ, (1)

the contravariant representation is

B0 = q∇ψ ×∇θ −∇ψ ×∇ζ, (2)

and the Jacobian is

J−1 = ∇ψ · ∇θ ×∇ζ =
B2

0

gq + I
. (3)

The radial component δ∇ψ is small and usually ne-
glected [27]. The island is introduced through a per-
turbed vector potential parallel to the background mag-
netic field,

AI = αB0, (4)

where α = α0 (ψ) cos (mθ − nζ). We neglect the equi-
librium current in this work, i.e. ∇ × B0 = 0, so the
island magnetic field perturbation is

δBI = ∇α×B0

=
∂α

∂ψ
I∇ψ ×∇θ +

∂α

∂ψ
g∇ψ ×∇ζ

+
(

∂α

∂ζ
I − ∂α

∂θ
g

)
∇ζ ×∇θ. (5)

In the current work, we only consider the effects of
magnetic field induced by the islands. The neoclassical
effects have been included in an ongoing study of island
effects on bootstrap current. Since the nested magnetic
surfaces are destroyed by the island, the poloidal mag-
netic flux function ψ is no longer valid. A new helical

flux function ψhe
[28] satisfies the constraint condition

(B0 + δBI) · ∇ψhe = 0. The helical flux function can
be represented as

ψhe = ψ − ψt

qs
− α0g cos mξ, (6)

where ξ = θ − ζ/qs, qs is the safety factor of the reso-
nant surface and ψt is a toroidal flux function on the
resonant surface. The total magnetic field with island
perturbation is

B = q∇ψ ×∇ξ −∇ψhe ×∇ζ. (7)

It is obvious that the constraint condition B·∇ψhe =
0 is satisfied. We define the island width W as the dis-
tance from island center to island separatrix at θ = 0,
which can be represented as

W =

√
4R2

0α0qs

dqs/dr
, (8)

where dqs/dr is the gradient of the q profile at the res-
onant surface and R0 is the major radius.

The gyrokinetic equation with island perturbation,
using the gyrocenter position X, magnetic moment µ,
and the parallel velocity v‖ as a set of independent vari-
ables, reads,

d
dt

fj =
[

∂

∂t
+

.

X ·∇+
.

v‖
∂

∂v‖

]
fj = 0, (9)

.

X = v‖
B
B0

+ vE + vd, (10)

.
v‖ = − 1

mj

B∗

B0
(µ∇B0 + Zj∇φ) , (11)

where index j = i, e stands for ion or electron, while Zj

and mj are the particle charge and mass, respectively.
The equilibrium magnetic field is much larger than the
island magnetic field, B0 À δBI, so we treat the is-
land magnetic field as a perturbation in the gyrokinetic
equation. B0 = B0b0 is the equilibrium magnetic field,
B = B0 + δBI , and

B∗ = B∗
0 + δBI = B0 +

B0v‖
Ωj

∇× b0 + δBI. (12)

The E×B drift velocity is

vE =
cb0 ×∇φ

B0
, (13)

and the magnetic drift velocity is

vd = vc + vg, (14)

where the magnetic curvature drift is

vc =
v2
‖

Ωj
∇× b0, (15)

and the grad-B drift is

vg =
µ

mjΩj
b0 ×∇B0. (16)
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The electrostatic potential can be found using a
gyrokinetic Poisson equation, assuming a single ion
species,

4πZ2
i ni

Ti

(
φ− φ̃

)
= 4π (Zini − ene) . (17)

The density is defined as the fluid moments of the
corresponding distribution function,

n =
∫

fdv, (18)

where ∫
dv ≡ πB0

m

∫
dv‖dµ. (19)

The distribution function can be decomposed into
equilibrium and perturbed parts f = f0 + δf . The
equilibrium part satisfies the gyrokinetic equation,

∂

∂t
f0j +

(
v‖b0 + vd

) · ∇f0j − µ

mj

B∗
0

B0
· ∇B0

∂

∂v‖
f0j = 0.

(20)
Subtracting Eq. (20) from Eq. (9) and defining the

particle weight as wj = δfj

fj
, the weight equation for ions

and electrons with island perturbation can be rewritten
as
dwj

dt
= (1− wj)

[
−

(
v‖

δBI

B0
+ vE

)
· ∇f0j

f0j

+
(

µ
δBI

B0
· ∇B0 + Zj

B∗

B0
· ∇φ

)
1

mjf0j

∂f0j

∂v‖

]
, (21)

where the operator d/dt on the left hand side is defined
by Eqs. (9), (10) and (11), and the magnetic flutter
term on the right hand side of Eq. (21) is the main
contribution of island perturbation.

When we add magnetic islands to the tokamak equi-
librium, we continue to use the equilibrium grids, i.e.,
the same grids as those used in the equilibrium with un-
perturbed, closed flux surfaces. So we can still locate
the grids using the unperturbed flux surfaces.

Assuming the radial derivatives of g and I to be zero,
the guiding center equations of motion [27] with island
perturbation are

ζ̇ =
v‖B0 (q + I∂ψα)

D
− c

I

D

(
∂φ

∂ψ
+

1
Zj

∂ε

∂B0

∂B0

∂ψ

)
,

(22)

θ̇ =
v‖B0 (1− g∂ψα)

D
+ c

g

D

(
∂φ

∂ψ
+

1
Zj

∂ε

∂B0

∂B0

∂ψ

)
,

(23)

ψ̇ = v‖B0

(
g

D

∂α

∂θ
− I

D

∂α

∂ζ

)
+c

I

D

(
∂φ

∂ζ
+

1
Zj

∂ε

∂B0

∂B0

∂ζ

)

−c
g

D

(
∂φ

∂θ
+

1
Zj

∂ε

∂B0

∂B0

∂θ

)
, (24)

.
ρ‖ = −c

(1− g∂ψα)
D

(
∂φ

∂θ
+

1
Zj

∂ε

∂B0

∂B0

∂θ

)

−c
(q + I∂ψα)

D

(
∂φ

∂ζ
+

1
Zj

∂ε

∂B0

∂B0

∂ζ

)

+c
(I∂ζα− g∂θα)

D

(
∂φ

∂ψ
+

1
Zj

∂ε

∂B0

∂B0

∂ψ

)
, (25)

where D = gq + I and ∂ε
∂B0

= µ + Z2
j

mjc2 ρ2
‖B0. The mod-

ified parallel canonical momentum is ρc = ρ‖ + α with
ρ‖ = v‖

Ωj
= mjc

ZjB0
v‖.

Assuming a Maxwellian distribution for the paral-
lel and perpendicular velocity, the gyrokinetic weight
equation for ions and electrons with island perturba-
tion can be rewritten as

dwj

dt
= (1− wj)

[
−

(
c

B0
b0 ×∇φ + v‖

δBI

B0

)
· ∇f0

f0

∣∣∣∣
v⊥

−Zj

Tj

(
v‖b0 + v‖

δBI

B0
+ vd

)
· ∇φ

]
. (26)

Here, we take derivatives at v⊥ = const instead of
µ = const. If we assume that α is independent of ψ, i.e.
∂α
∂ψ = 0 and ignore the equilibrium current I, only the
radial component is left in Eq. (5). Assuming the back-
ground density and temperature being radial ψ depen-
dent only and considering only the radial component of
the island perturbed magnetic field, the weight equa-
tion with island perturbation in Boozer coordinates is

dwj

dt
= (1− wj)

[
− c

B2
0J

(
I
∂φ

∂ζ
− g

∂φ

∂θ

)
1

f0j

∂f0j

∂ψ

∣∣∣∣
v⊥

−Zj

Tj
v‖

1
B0J

(
∂φ

∂θ
+ q

∂φ

∂ζ

)

− 1
Tj

c

B2
0J

(
mjv

2
‖

B0
+ µ

)

×
(

g
∂B0

∂ψ

∂φ

∂θ
− I

∂B0

∂ψ

∂φ

∂ζ
− g

∂B0

∂θ

∂φ

∂ψ

)

+
v‖

B0J

(
∂α

∂ζ
I − ∂α

∂θ
g

) (
1

f0j

∂f0j

∂ψ

∣∣∣∣
v⊥

+
Zj

Tj

∂φ

∂ψ

)]
.

(27)

3 Simulation results

In this section, we first use the contour plot of helical
flux to show the island structures. We then show that
ion and electron density profiles are partially flattened
across the islands. The density profile of electrons is
more flattened than that of ions, because electron or-
bits have a smaller radial width and are closer to the
perturbed field lines. Since the trapped particles cannot
move from one side of the island to the other side, they
prevent the density profile to be totally flattened in-
side the islands. When the fraction of trapped particles
decreases, the density profile becomes more flattened.

We choose m=2, n=1 islands and define
the island perturbed vector potential as AI‖ =
−0.0001R0B0 cos (2θ − ζ) in the simulation. The in-
verse aspect ratio is a/R0 = 0.42 . The island width
is 0.16a. Fig. 1 is the contour plot of the helical flux
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for the islands at ζ = 0, π
2 , π, 3π

2 . We can see that the
islands rotate in the toroidal direction, i.e., the poloidal
position of the island center changes differently at dif-
ferent toroidal angles. The islands therefore break the
toroidal symmetry and induce the mode coupling for
toroidal drift-wave modes.

Fig.1 Helical flux surfaces of (2, 1) islands in the poloidal

planes with the toroidal angle ζ = 0, π
2
, π, 3π

2
(panel a, b, c,

d, respectively)

We first investigate the ion density flattening across
the islands, assuming uniform temperature. The ini-
tial ion density gradient at the center of the islands
is R0/Lni = 1.9, where Lni = ni (dr/dni) is the ion
density scale length. Since the island width is much
larger than the ion gyroradius, W = 24ρi, the ion finite-
Lamor-radius (FLR) is not important. In the simula-
tion, we do not include the self-consistent electric field
or ion collisions. We exclude the electric field of the
turbulence in this paper to illustrate the effects of the
island on the density profiles in the absence of drift
wave instabilities. GTC simulation with self-consistent
electric field for the drift wave instabilities in the pres-
ence of magnetic islands has been published [14]. The
only perturbation to the ion density profiles is the is-
land perturbation. Since the ion should move along the
field lines inside the islands, the density profile should
be flattened. As shown in Fig. 2, at the island cen-
ter on the high-field side, the ion density gradient de-
creases to zero after several ions transit times. After
that, the value of ion density gradient oscillate up and
down around zero because there is no collision to re-
lax the system to a steady state. The time average of
R0/Lni from 150R0/cs to 250R0/cs is 0.11, which shows
that the ion density profile at the island center on the
high-field side is almost flattened.

As shown in Fig. 3, the ion density profile at the low
field side is less flattened than that at the high field
side. The vertical lines are the island boundaries at
θ = 0, π. The toroidally trapped ions are mostly at the
low field side. Compared with the motion of passing
ions, the bounce motion of trapped ions can hardly be

affected by the island perturbation. Since the trapped
ions do not move across the islands, the ion density
profile cannot be totally flattened at the low field side.

Fig.2 Time history of ion density gradient at the island

center on the high field side

Fig.3 The equilibrium ion density profile at θ = 0, π (red

solid line), the ion density profile at the high field side (green

dotted line) and the ion density profile at the low field side

(black dashed line)

For the electrons, we perform the simulation until the
electron density gradient at the island center becomes
zero. Then we plot electron density profiles at θ = 0, π.
In Fig. 4, the electron density profile at the low field
side is also less flattened than that at the high field
side due to the trapped electrons in the low field side.
However, comparing with the ion density profile at the
low field side, the electron density profile at the low field
side is more flattened. Because the orbit widths of the
trapped electrons are much smaller than those of ions,
the trapped electrons can be affected more significantly
by the islands than the ions.

In order to clarify the relation between the trapped
particles and the density profile flattening, we investi-
gate the radial profiles of ion density on the low field
side for different trapped fractions. We change the in-
verse aspect ratios to get different trapped fractions η.
When the inverse aspect ratios equal 0.42, 0.29 and
0.20, the corresponding trapped fractions are 0.48, 0.40
and 0.32, respectively. In Fig. 5, when the trapped
fraction decreases, the ion density profiles become more
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flattened because there are more passing ions which can
move across the islands.

Fig.4 The equilibrium electron density profile at θ = 0, π

(red solid line), the electron density profile at the high field

side (green dotted line) and the electron density profile at

the low field side (black dashed line)

Fig.5 Ion density at the low field side (θ = 0) with differ-

ent trapped fractions (η = 0.48, 0.40, 0.32). The red solid

line is the equilibrium ion density profile

4 Conclusions

We have implemented magnetic islands in the GTC
and studied the flattening of the density profile inside
the islands. The ion and electron density profiles be-
come partially flattened inside the islands. The density
profile at the low field side is less flattened than that at
the high field side due to the toroidally trapped parti-
cles. When the fraction of trapped particles decreases,
the density profile at the low field becomes more flat-
tened since there are more particles moving along the
perturbed field lines.
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