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Magnetic islands have been implemented in the gyrokinetic toroidal code to study the effects of the

islands on microturbulence. The pressure profile flattening is verified in the simulation with the

islands. Simulations of ion temperature gradient instability find that different toroidal modes are

linearly coupled together and that toroidal spectra become broader when the island width increases.

The real frequencies and growth rates of different toroidal modes approach each other with the

averaged value independent of the island width. The linear mode structures are enhanced at the

island separatrices and weakened at the island centers, consistent with the flattening of the pressure

profile inside the islands. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4903910]

I. INTRODUCTION

The equilibrium magnetic field in toroidal plasmas (e.g.,

tokamak and stellarator) usually forms nested surfaces to con-

fine charged particles. However, the topology of the magnetic

surfaces can be destroyed by externally imposed perturbations

such as the resonant magnetic perturbations1 or by large-scale

magnetohydrodynamic (MHD) instabilities such as tearing

modes, which create magnetic islands. The magnetic field of

the islands has a radial component, which can affect the neo-

classical transport, microturbulence, and macroscopic MHD

instabilities. For example, the plasma pressure flattening in the

island region reduces the neoclassical bootstrap current, which

leads to the growth of the island. This nonlinear tearing insta-

bility, neoclassical tearing mode (NTM), has been observed in

many tokamak experiments.2 The NTM can significantly limit

the performance of high confinement tokamak operation and

is a major concern for the ITER burning plasma.3

Meanwhile, the microturbulence regulates electron heat

conductivity, which affects the pressure profile (and associated

bootstrap current) in the island region. Furthermore, microturbu-

lence can drive sheared flows by Reynolds stress and Maxwell

stress, thus affecting the island dynamics. Therefore, fully self-

consistent NTM simulation must incorporate nonlinear interac-

tion between macroscopic MHD stability, neoclassical transport,

and drift-Alfvenic microturbulence. Because the island evolu-

tion time is typically much longer than the time scale of micro-

turbulence, static islands can be used to study the effects of the

islands on the microturbulence and neoclassical transport.

The effects of static, mesoscale (low toroidal mode number)

magnetic islands on microturbulence have recently been studied

in nonlinear simulations.4–8 Global particle and flux-tube contin-

uum simulations of the ion temperature gradient (ITG) turbu-

lence in the presence of the islands find that the ITG turbulence

nonlinearly generates a long wavelength mode with the same to-

roidal mode number as the islands and an oscillating vortex

mode with an electrostatic potential structure that coincides with

the island topology.5 The resulting vortex flows can suppress the

microturbulence.9 Finite pressure gradients inside the islands

can be maintained by the turbulent transport5 due to the turbu-

lence spreading,10 which allows finite bootstrap current inside

the islands. Gyrokinetic continuum simulations of the ITG tur-

bulence find that a nonambipolar radial current induces a torque

to damp the toroidal rotation.7 This microturbulence-induced

torque also causes an oscillation of the islands as observed in the

gyrofluid simulation of the ITG turbulence interaction with

resistive tearing mode islands in the slab geometry.8

Despite the active research in the nonlinear effects on the

microturbulence, the effects of the magnetic islands on the lin-

ear driftwave eigenmodes in the toroidal geometry have not

been studied thoroughly. A gyrokinetic theory11 finds that

small magnetic islands in a sheared slab geometry can stabilize

the ITG instability and modify the mode structure. However,

the effects of the islands in toroidal geometry could be more

complicated. For example, density and temperature profiles

inside the island are mostly flattened on the inner mid-plane

(i.e., high field side), but only partially flattened on the outer

mid-plane (i.e., low field side) due to the toroidally trapped par-

ticles.12 Moreover, electrons and ions respond differently to the

islands due to their different orbit sizes and due to the island-

trapped particles,13 which induce two-dimensional electric

fields inside and across the islands. Finally, the non-

axisymmetric nature of the island perturbations could cause the

linear coupling of different toroidal mode numbers.

In the current work, we use global gyrokinetic particle

simulations to study the effects of the static magnetic islands

on the linear eigenmodes of the ITG with adiabatic electrons.

Magnetic islands with a single helicity are superimposed to a

tokamak equilibrium with nested flux surfaces. Our simula-

tions find that the island perturbations induce a linear cou-

pling of the toroidal mode numbers and the coupling

strength depends on the island sizes. The islands reduce the

growth rate of the most unstable toroidal mode and enhance

the growth rate of the subdominant toroidal modes. The fre-

quency of the most unstable toroidal mode remains

unchanged, while the frequencies of the subdominant toroi-

dal modes approach the frequency of the most unstable
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modes when island size increases. The linear mode structures

are enhanced at the island separatrices and weakened at the

island centers, consistent with the flattening of the pressure

profile inside the islands.

The current work utilizes the particle-in-cell gyrokinetic

toroidal code (GTC),14–16 which has been extensively

applied to study turbulent transport in fusion plasmas includ-

ing ion and electron temperature gradient modes,17,18 colli-

sionless trapped electron mode,19 Alfvèn eigenmodes,20,21

energetic particle transport,22 and neoclassical transport.23

The implementation of the equilibrium current16 enables

simulation of current-driven instability such as kink24 and

tearing modes.25 Recently, three-dimensional (3D) equilib-

rium has been incorporated for simulations of stellarator and

tokamak with 3D field. Magnetic island perturbations are

implemented in the current work. These new GTC capabil-

ities lay the foundations for the self-consistent simulation of

NTM incorporating the interactions between magnetic

islands, turbulent transport, and bootstrap current. As the first

step, this paper reports electrostatic simulations of the island

effects on the ITG with adiabatic electrons.

This paper is organized as follows. In Sec. II, we first

describe the implementation of magnetic islands in the toroi-

dal geometry. Then, we derive the gyrokinetic equations of

motion with the static islands. In Sec. III, the island imple-

mentation is verified and the effects of static islands on the

ITG are discussed. Finally, the conclusions are in Sec. IV.

II. FORMULATION AND IMPLEMENTATION OF
MAGNETIC ISLANDS

A. Formulation of magnetic islands

In our simulations, the toroidal magnetic coordinate sys-

tem ðw; h; fÞ is used, where w is the poloidal magnetic flux

function, h is the magnetic poloidal angle, and f is the mag-

netic toroidal angle. The covariant representation of the mag-

netic field26 is

B0 ¼ drwþ Irhþ grf; (1)

the contravariant representation is

B0 ¼ qrw�rh�rw�rf; (2)

and the Jacobian is

J�1 ¼ rw � rh�rf ¼ B2
0

gqþ I
: (3)

The radial component of the magnetic field drw is

small and usually neglected.26 The island structure is intro-

duced through a perturbed vector potential parallel to the

background magnetic field,

AI ¼ aB0; (4)

where a ¼ a0ðwÞ cosðmh� nfÞ for a single helicity. Multiple

islands can be added straightforwardly. The magnetic field

perturbation is

dBI ¼ r� aB0 ¼
@a
@w

Irw�rhþ @a
@w

grw�rf

þ @a
@f

I � @a
@h

g

� �
rf�rh: (5)

In this work, r� B0 ¼ 0, i.e., we neglect the equilibrium

current, which has previously been implemented in GTC

simulation.16 In the presence of this static magnetic island,

the tokamak magnetic field can be represented as

B ¼ B0 þ dBI ¼ qþ @a
@w

I

� �
rw�rh

� 1� @a
@w

g

� �
rw�rfþ @a

@f
I � @a

@h
g

� �
rf�rh:

(6)

Since dBI � rw ¼ @a
@h g� @a

@f I
� �

rh�rf � rw 6¼ 0, we

need to find a new helical flux function27 whe, which satisfies

ðB0 þ dBIÞ � rwhe ¼ 0. The islands structures can be visualized

by the contour plot of the helical flux function. Rewrite Eq. (6) as

B ¼ qþ @a
@w

I

� �
rw�rn

� r w� wt

qs

� �
� gþ I

qs

� �
ra

" #
�rf; (7)

where n ¼ h� f=qs, qs is the safety factor of the resonant

surface and wt is a toroidal flux function. Keeping terms up

to the first order in r=R, the representation of the B field is

B ¼ qrw�rn�r w� wt

qs
� a0g cos mn

� �
�rf: (8)

In order to satisfy the condition for a flux function, we

choose the form of the helical flux as

whe ¼ w� wt

qs
� a0g cos mn; (9)

B ¼ qrw�rn�rwhe �rf: (10)

The radial island width W at h ¼ 0 (defined as distance from

island center to the last island surface) can be written as5

W ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2

0a0qs

dqs=dr

s
; (11)

where R0 is the major radius and dqs=dr is the gradient of

the q profile at the resonant surface.

B. Gyrokinetic equations with static islands

We treat the static islands as the magnetic perturbation

in the gyrokinetic equation. Using the gyrocenter position X,

magnetic moment l, and the parallel velocity vk as a set of

independent variables, the gyrokinetic equation with island

perturbations can be written as

d

dt
f ¼ @

@t
þ _X � r þ _vk

@

@vk

" #
f ¼ 0; (12)

where
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_X ¼ vk
B

B0

þ vE þ vd; (13)

_vk ¼ �
1

m

B�

B0

lrB0 þ Zrr/ð Þ; (14)

where Zr is the particle charge, and m is the particle mass,

B0 ¼ B0b0 is the equilibrium magnetic field, B ¼ B0 þ dBI,

and

B� ¼ B�0 þ dBI ¼ B0 þ
B0vk
X
r� b0 þ dBI: (15)

The E� B drift velocity is

vE ¼
cb0 �r/

B0

; (16)

and magnetic drift velocity is

vd ¼ vc þ vg; (17)

where the magnetic curvature drift is

vc ¼
v2
k

X
r� b0; (18)

and the grad-B drift is

vg ¼
l

mX
b0 �rB0: (19)

The electrostatic potential can be found using gyrokinetic

Poisson equation, assuming a single ion species,

4pZ2
i ni

Ti
/� ~/
� �

¼ 4p Zini � eneð Þ: (20)

The density is defined as the fluid moments of the corre-

sponding distribution functions,

n ¼
ð

f dv; (21)

where ð
dv � pB0

m

ð
dvkdl: (22)

The gyrokinetic equation (12) can be written as

Lf ¼ 0; (23)

where the propagator is separated into equilibrium (0th

order), and perturbation parts L ¼ L0 þ dL, with

L0 ¼
@

@t
þ vkb0 þ vd
� �

� r � l
m

B�0
B0

� rB0

@

@vk
(24)

and

dL¼ vk
dBI

B0

þ vE

� �
� r� l

dBI

B0

�rB0þZ
B�

B0

�r/

� �
1

m

@

@vk
:

(25)

The first term on the right hand side of Eq. (25) is the mag-

netic flutter term and is the dominant island contribution.

The distribution function can be decomposed into equi-

librium and perturbed parts f ¼ f0 þ df . The equilibrium

part satisfies the 0th order equation

L0f0 ¼ 0; (26)

where f0 is the neoclassical solution, approximated as a local

Maxwellian in this work.

Subtracting Eq. (26) from Eq. (23), we get

Ldf ¼ �dLf0: (27)

Defining particle weight as w ¼ df
f , the nonlinear weight

equation can be written as

Lw ¼ 1

f
Ldf ¼ � 1

f
dLf0 ¼ �

f0

f

1

f0

dLf0

� �

¼ � f � df

f

1

f0

dLf0

� �
¼ � 1� wð Þ 1

f0

dLf0

� �
: (28)

In linear simulation, the weight is defined as w ¼ df
f0

and the

weight equation is reduced to

L0w ¼ � 1

f0

dLf0: (29)

The linear weight equation with island perturbation is

L0w ¼ � vk
dBI

B0

þ vE

� �
� rf0

f0

þ l
dBI

B0

� rB0 þ Z
B�

B0

� r/

� �
1

mf0

@f0
@vk

: (30)

C. Implementation in Boozer coordinates

Assuming @I
@w ¼ 0 and @g

@w ¼ 0, the guiding center equa-

tions26 with the island perturbation are

_f ¼
vkB0 qþ I@wa

� �
D

� c
I

D

1

Z

@e
@B0

@B0

@w
þ @/
@w

	 

; (31)

_h ¼
vkB0 1� g@wa

� �
D

þ c
g

D

1

Z

@e
@B0

@B0

@w
þ @/
@w

	 

; (32)

_w ¼ c

Z

@e
@B0

I

D

@B0

@f
� g

D

@B0

@h

� �
þ cI

D

@/
@f
� cg

D

@/
@h

þ vkB0

g

D

@a
@h
� I

D

@a
@f

� �
; (33)

qk
: ¼ �c

1� g@wa
� �

D

1

Z

@e
@B0

@B0

@h
þ @/
@h

	 


�c
qþ I@wa
� �

D

1

Z

@e
@B0

@B0

@f
þ @/
@f

	 


þ c
I@fa� g@hað Þ

D

1

Z

@e
@B0

@B0

@w
þ @/
@w

	 

; (34)

where
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B0 ¼ drwþ Irhþ grf; (35)

D ¼ gqþ I: (36)

The modified parallel canonical momentum is

qc ¼ qk þ a; (37)

with

qk ¼
vk
X
¼ mc

ZB0

vk; (38)

a ¼
AIk
B0

: (39)

And we use

@e
@B0

¼ lþ Z2

mc2
q2
kB0: (40)

According to Eq. (30), the gyrokinetic equation for ions is

dwi

dt
¼ � vk

dBI

B0

þ vE

� �
� rf0i

f0i

þ l
dBI

B0

� rB0 þ Zi
B�

B0

� r/

� �
1

mif0i

@f0i

@vk
: (41)

It is more efficient to simulate tokamak in Boozer coordi-

nates26 ðw; h; fÞ, where w is a poloidal magnetic flux func-

tion, h is a poloidal angle, and f is a toroidal angle. The

source terms in the right hand side of Eq. (41) need to be re-

written in Boozer coordinates. Assuming Maxwellian for the

equilibrium distribution function in ðvk; v?Þ, the island per-

turbation terms on the RHS of Eq. (41) are

�vk
dBI

B0

� rf0i

f0i
þ l

dBI

B0

� rB0

1

mi

1

f0i

@f0i

@vk
¼ �vk

dBI

B0

� rf0i

f0i

����
v?

:

(42)

The notation rf jv? represents derivative taken at v? ¼ const

instead of l ¼ const. The E� B term on the RHS of Eq. (41) is

�vE �
rf0i

f0i
¼�vE

f0i
� rþ �l

rB0

B0

� �
�B0

Ti

� �" #
f0iþvE �

lrB0

Ti

¼�cb0�r/
B0

1

f0i
�rf0i

f0i

����
v?

�Zi

Ti
vg �r/:

(43)

The B� term on the RHS of Eq. (41) is

Zi
B�

B0

� r/
1

mif0i

@f0i

@vk

¼ Zi b0 þ
dBI

B0

þ
vk
Xi
r� b0

� �
r/

1

mif0i

mivk
�Ti

f0i

¼ � Zi

Ti
vk b0 þ

dBI

B0

� �
r/� Zi

Ti
vc � r/: (44)

So, the gyrokinetic equation for ions with the island pertur-

bation can be written as

dwi

dt
¼ � c

B0

b0 �r/þ vk
dBI

B0

� �
� rf0i

f0i

����
v?

� Zi

Ti
vk b0 þ

dBI

B0

� �
þ vd

	 

� r/: (45)

The form of Eq. (45) (instead of Eq. (41)) is convenient

for equilibrium Maxwellian distribution function in

ðvk; v?Þ. Equation (45) can now be cast in Boozer coordi-

nates. Assuming only radial dependence of the background

density and temperature, the first term on the RHS of

Eq. (45) is

� c

B0

b0 �r/ � rf0i

f0i

����
v?

¼ � c

B2
0J

I
@/
@f
� g

@/
@h

� �
1

f0i

@f0i

@w

����
v?

:

(46)

The third term on the RHS of Eq. (45) is

� Zi

Ti
vkb0 � r/ ¼ � Zi

Ti
vk

1

B0J

@/
@h
þ q

@/
@f

� �
: (47)

The fourth term on the RHS of Eq. (45) is

� Zi

Ti
vd � r/ ¼ � Zi

Ti

miv
2
k

B0

þ l

 !
1

Zi

c

B2
0

B0 �rB0 � r/

¼ � 1

Ti

c

B2
0J

miv
2
k

B0

þ l

 !

� g
@B0

@w
@/
@h
� I

@B0

@w
@/
@f
� g

@B0

@h
@/
@w

� �
:

(48)

Since the radial component of the island magnetic field

accounts for the most important modification of particle

orbits, we consider @a
@w ¼ 0 for simplicity, which means the

helical flux perturbation is independent of w. So, the source

term of island perturbation on the RHS of Eq. (45) is

�vk
dBI

B0

� rf0i

f0i

����
v?

� Zi

Ti
vk

dBI

B0

� r/

¼
vk

B0J

@a
@f

I � @a
@h

g

� �
1

f0i

@f0i

@w

����
v?

þ Zi

Ti

@/
@w

" #
: (49)

Finally, the linear gyrokinetic equation (45) in Boozer coor-

dinates can be rewritten as

dwi

dt
¼ � c

B2
0J

I
@/
@f
� g

@/
@h

� �
1

f0i

@f0i

@w

����
v?

� Zi

Ti
vk

� 1

B0J

@/
@h
þ q

@/
@f

� �
� 1

Ti

c

B2
0J

miv
2
k

B0

þ l

 !

� g
@B0

@w
@/
@h
� I

@B0

@w
@/
@f
� g

@B0

@h
@/
@w

� �

þ
vk

B0J

@a
@f

I � @a
@h

g

� �
1

f0i

@f0i

@w

����
v?

þ Zi

Ti

@/
@w

" #
: (50)
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III. SIMULATION OF ITG IN THE PRESENCE OF STATIC
ISLANDS

A. Verification of island implementation

There are two steps to verify the implementation of

magnetic islands in the GTC code. We first create the con-

tour plot of helical flux to demonstrate the island structure.

Since the particles move along the perturbed field lines, the

density and temperature profiles inside the island region

become flattened after several transit times. We then verify

the island implementation by demonstrating that the density

profile is flattened inside the island region for simulation

with uniform temperature.

Since the equilibrium poloidal flux surfaces are no lon-

ger valid, the helical flux function is used to describe the

island structures. Fig. 1 is the contour plot of the helical flux

at f ¼ 0 for the islands described by a perturbed vector

potential AIk ¼ �0:0001R0B0 cosðmh� nfÞ. The closed lines

represent the helical flux surfaces. The inverse aspect ratio is

a=R0 ¼ 0:42, where R0 and a are the tokamak major and

minor radii. The island width is w ¼ 0:16a and the island

helicity is m¼ 2, n¼ 1. We will use these islands in the fol-

lowing simulations. In the contour plot, the two islands have

different sizes at the high field and low field sides because

the Jacobians are different.

The density and temperature profile can be flattened

inside the islands due to the parallel motion of the particles.

In the simulation, we use uniform temperature and

R0=Lni ¼ 1:9, where Lni ¼ ni

dni=dr is the initial ion density

scale length at the center of islands. Because a=qi ¼ 150 and

w=qi ¼ 24, the finite-Lamor-radius effect is not significant.

By excluding the self-consistent electric field and collisions,

the only perturbation is the magnetic islands. In this regime,

ions can move along the perturbed field lines in the presence

of magnetic islands. So the ion density profile inside the

island should be flattened. In Fig. 2, the ion density gradient

at the island center at the high-field side decreases to zero

after about 19 ion transit times (120 R0=cs) and slightly oscil-

late around zero after that.

After the ion density gradient at the island center

becomes zero, we perform a time average of the radial ion

density profile at h ¼ 0; p from time t ¼ 120R0=cs to 250

R0=cs. In Fig. 3, the vertical lines are the island separatrix.

The density profile at the low field side (black dashed line) is

less flattened than that at the high field side (green dotted

line) because there are more toroidally trapped ions in the

low field side, which do not move along the perturbed mag-

netic field lines. Unlike the passing ions which can move

from one side to the other side across the island regions, the

deeply trapped ions only bounce at one side of the island.

This bounce motion of the toroidally trapped ions prevents

the flattening of the equilibrium density profile at the island

center.

In order to get an intuitive picture of the density distri-

bution across the islands, we plot this density averaged over

the period t ¼ 120–250R0=cs in the poloidal plane at f ¼ 0

in Fig. 4. The black lines in Figure 4 are the helical flux

surfaces. The ion density inside the island region is almost

FIG. 1. Helical flux surfaces of (2, 1) islands in the f ¼ 0 poloidal plane.

FIG. 2. Time history of ion density gradient at the island center at the high

field side.

FIG. 3. Radial profile of ion density at h ¼ 0; p. The red solid line is equilib-

rium ion density profile. The green dotted line is the ion density profile in

the high field side (h¼p). The black dashed line is the ion density profile in

the low field side (h¼ 0).

122513-5 Jiang et al. Phys. Plasmas 21, 122513 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.200.44.221 On: Fri, 12 Dec 2014 17:33:06



uniform, while finite density gradient exists near the island

boundary.

In conclusion, the density profile becomes partially flat-

tened across the islands (shown in Figs. 3 and 4). Instead of

setting the density profile artificially flat, our simulation

allows the system to evolve self-consistently to the steady

state induced by the island perturbation. A more systematic

study of the equilibrium density profiles in the presence of

the magnetic islands including the effects of collisions will

appear in another paper.13 Our next simulation about effects

of static islands on the ITG instability will start at this new

equilibrium state, in which the density profile is partially flat-

tened across the islands region.

B. Effects of static islands on ITG

After verification of the island implementation, we use

GTC to study the effects of magnetic islands on the ITG

instability. The pressure gradient is maximal at the radial

position r=a ¼ 0:5. The parameters for the background

plasma are R0=LTi ¼ R0=LTe ¼ 6:0, R0=Lni ¼ R0=Lne ¼ 1:9
at r=a ¼ 0:5, and Te ¼ Ti. Electrons are adiabatic.

Diagnostic is taken at the radial position r=a ¼ 0:5, where

q ¼ 2 and ŝ ¼ 0:38. We start the simulation without turbu-

lence and only keep the island effects. When the system

reaches the new equilibrium in Fig. 3, in which the ion den-

sity profile is flattened inside the islands, we turn on the tur-

bulence to study the effects of static islands on ITG.

We investigate the toroidal modes spectrum to clarify

the linear coupling of different toroidal modes induced by

the islands. In the linear simulation keeping all the toroidal

modes, we measure the mode amplitudes with different to-

roidal numbers and normalize these toroidal modes ampli-

tudes such that the maximal mode amplitude is unity. Fig. 5

shows the toroidal modes spectrum from four simulations

with different island widths. The red line represents the to-

roidal mode spectrum without islands, where there is only

one dominant mode with n¼ 10 or khqi ¼ 0:267. In the case

of W ¼ 0:16a, the toroidal mode spectrum becomes broader

due to the toroidal mode coupling by the islands. When we

decrease the island width by half (W ¼ 0:08a), the spectrum

becomes narrower but still broader than that without islands.

As we increase the island width (W ¼ 0:32a), the spectrum

becomes even broader than that with (W ¼ 0:16a) islands. In

conclusion, the islands can induce toroidal mode coupling.

When we increase the island width, this coupling becomes

stronger, which leads to a wider toroidal mode spectrum.

Furthermore, the islands can cause frequencies and

growth rates of different toroidal modes to couple together.

Here, we use n¼ 9 and m¼ 18, n¼ 10 and m¼ 20, n¼ 11

and m¼ 22 harmonics to measure the real frequency and

growth rate. In Fig. 6(a), the growth rates of these three

modes approach the same value as the island width

increases. The average of the growth rates of these three

modes is 0.281, which is independent of the island widths. In

Fig. 6(b), the real frequencies of n¼ 9, 10, 11 modes

FIG. 4. Poloidal snapshot of ion density with islands.

FIG. 5. Toroidal mode spectrum from four simulation cases with different

island sizes.

FIG. 6. Growth rate (a) and real fre-

quency (b) of different toroidal modes

from four simulations with different

island sizes.

122513-6 Jiang et al. Phys. Plasmas 21, 122513 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.200.44.221 On: Fri, 12 Dec 2014 17:33:06



FIG. 7. Poloidal snapshot of electro-

static potential without islands (panel

(a)) and with W¼ 0.16a islands at dif-

ferent times (panels (b), (c), and (d)).

FIG. 8. Poloidal snapshot of electrostatic

potential with W¼ 0.16a islands at dif-

ferent toroidal angles f ¼ 0; p
2
; p; 3p

2

(panels (a), (b), (c), (d)).
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approach that of the n¼ 10 mode as the island width

increases. The average of the real frequency of these three

modes is 0.682, which is independent of the island widths.

Our simulation results show that the island-induced coupling

is not complete as different toroidal modes maintain slightly

different real frequencies and growth rates.

In Fig. 7(a), snapshot of the electrostatic potential in the

f ¼ 0 poloidal plane shows good ballooning mode structure

with the dominant poloidal number m ¼ 20 in the absence of

the islands. But when we include the island perturbation, the

mode structure is changed due to the toroidal mode coupling.

The mode structures are results of linear superposition of dif-

ferent toroidal mode numbers (dominated by n¼ 9, 10, 11).

The poloidal mode structure at an early phase of the expo-

nential growth (defined as time t¼ 0) is shown in Fig. 7(b).

The electrostatic potential is enhanced at h ¼ p
2
; 3p

2
(i.e.,

island separatrices) and weakened at h ¼ 0; p (i.e., island

centers). The mode structures at later times ct¼ 11.3 and

ct¼ 22.6 are shown in Figs. 7(c) and 7(d), respectively. The

mode structure rotates very slowly due to the slightly differ-

ent real frequencies of the three dominant toroidal mode

numbers (n¼ 9, 10, 11). In fact, the mode structure changes

are very insignificant over a period of 22.6 linear growth

times (from Figs. 7(b) to 7(d)). The linear growth time is a

relevant time scale since the linear mode structure will be

destroyed over a period of the linear growth time by nonlin-

ear effects in the nonlinear simulation.

Fig. 8 shows poloidal contour plots of ITG mode structure

at four toroidal locations f ¼ 0; p
2
; p; 3p

2
at the same time of

panel (d) in Fig. 7. ITG is always suppressed in the island cen-

ter, which moves to different poloidal angles at different toroi-

dal angles. Therefore, both Figs. 7 and 8 show that linear ITG

mode structures are enhanced at the island separatrices and

weakened at the island centers, consistent with the flattening

of the pressure profile inside the islands as shown in Fig. 4.

IV. SUMMARY

In this work, we have implemented magnetic islands in

the GTC and studied the effects of magnetic islands on the

ITG instability. The density profile flattening due to the

islands is verified in the simulation, which only includes

island fields. In the ITG simulations, the ITG toroidal modes

spectrum becomes broader when island width increases. The

real frequencies and growth rates of different modes tend to

couple together. Due to the coupling between different toroi-

dal modes, several modes structures with different toroidal

numbers are superimposed to form the new mode structure.

The linear mode structures are enhanced at the island separa-

trices and weakened at the island centers, consistent with the

flattening of the pressure profile inside the islands. In the

next step, the drift-kinetic electrons will be included in the

non-linear simulation of islands and microturbulence to

study the effects of islands on the zonal flows.
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