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1.  Introduction

Stability and confinement of tokamak H-mode operation 
depend crucially on properties of the plasma pedestal—the 
outer region of the plasmas characterized by steep pressure 
gradients and enhanced edge currents. Due to these large gra-
dients and enhanced edge current, the pedestal is subject to 
dangerous magneto-hydrodynamic instabilities, referred to 
as edge localized modes (ELMs). These instabilities cause a 
partial collapse of the pedestal profiles, and induce significant 
heat and particle fluxes to material surfaces, which may lead 
to significant erosion of plasma facing materials on reactor-
scale devices. One possibility to mitigate or eliminate ELMs 
is to apply resonant magnetic perturbations (RMP) [1], which 
cause significant changes in the edge transport [2–4]. Fast 
transport bifurcations in and out of ELM suppression with 

static RMPs [3] and fast RMP modulation experiments [4] 
show that the response of the turbulence to the applied RMP 
is faster than the profile evolution time, suggesting a possible 
direct effect of the RMP modified 3D equilibrium on the edge 
turbulence. The effect of the RMP on the plasma equilibrium 
can be represented by a non-resonant part (ideal MHD kink 
response) and a resonant part (island formation at rational 
surfaces). A key question is whether the ideal MHD modifi-
cation of the axisymmetric equilibrium by non-axisymmetric 
vacuum RMPs fields can modify the linear growth rates of 
high-n electrostatic or electromagnetic low-n instabilities, or 
modify the damping of zonal flows sufficiently to drive pro-
file change observed in the transition from ELM mitigated to 
ELM suppressed conditions. If ideal MHD effects are insuf-
ficient to change the linear growth rates of the drift-Alfvénic 
instabilities or of zonal flows, then other physics must account 
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for the observed transport change. This additional physics 
may be related to the neoclassical response to 3D fields 
or to non-ideal MHD effects of the plasma such as tearing 
modes. The purpose of this paper is to establish that the ideal 
MHD response to the RMP is insufficient to affect fluctuation 
induced transport and thus we are drawn to the conclusion that 
other physics must come into play for affecting profile and 
fluctuation changes in the pedestal.

In principle, changes in transport in the tokamak edge 
that lead to ELM suppression by RMPs or by edge harmonic 
oscillations (EHO) [5] could arise from the effect of the ideal 
MHD kink response on the turbulent and neoclassical trans-
port. The effects of the 3D magnetic fields due to the plasma 
kink response have been studied theoretically in several pub-
lications. Using a local 3D equilibrium model, the 3D modu-
lation of the local magnetic shear was found to modify the 
infinite-n ideal MHD ballooning stability boundary in the 
α−s  parameter space [6]. The enhancement of the high-n 

ballooning mode instability by n  =  3 RMP was also reported 
in ideal MHD COBRA simulations using local geometry in 
radial and toroidal angle space [7]. The enhanced zonal flow 
damping by 3D magnetic fields has been shown in the resistive 
drift wave turbulence using an extended Hasegawa–Wakatani 
fluid model [8]. A magnetic-flutter-induced electron transport 
model was invoked to drive the enhanced electron transport by 
RMP and to induce an ambipolar radial electric field [9]. The 
effects of stochastic magnetic fields have also been studied. 
A radial plasma flow due to the electric field modified by the 
electron stochastic loss was invoked to model the pump-out 
effect [10]. Similarly, a quasilinear transport model was con-
structed to explain the RMP density pump-out in DIII-D [11].

RMP mitigation of ELMs likely involves multiple physical 
processes and their complicated interplay. Numerical simula-
tion provides a powerful tool allowing separation and invest
igation of key mechanisms using an incremental approach. In 
this work we address specifically the effect of the 3D equi-
librium due to the ideal MHD response of the plasma to an 
applied vacuum RMP in a typical DIII-D H-mode discharge. 
Other nonideal MHD effects such as island formation and 
stochasticity are left for the future work. For the purpose 
of this paper, the same density and temperature profiles are 
used in all simulations based on the experimental inhomoge-
neity scale length in the middle of the pedestal in DIII-D shot 
158103 at 3050 ms, corresponding to a typical ITER similar 
shape (ISS) discharge with ELM suppression reported in 
[3, 12] with an applied n  =  2 RMP. This means that we do 
not address the effect of profile change on stability. Rather 
we address whether such profile changes can be induced 
by a change of stability arising from the changes in the 3D 
magnetic equilibrium. For the same reason and for simplicity, 
the radial electric field, equilibrium flows and collisions are 
excluded from these simulations presented in this paper and 
will be addressed in a future work.

The set of magnetic equilibria is modeled by the VMEC 
code [13], which retains closed flux surface topology. Three 
cases are considered: the equilibrium with applied n  =  2 RMP 
of experimental magnitude with a vacuum /δ ∼ × −B B 5 10 4 at 
the plasma edge; the corresponding axisymmetric equilibrium 
(with no RMP), and the equilibrium with RMP amplitude 
amplified by a factor of 10. Our previous studies in axisym-
metric equilibria recover the kinetic ballooning mode (KBM) 
and show it to be marginally unstable for typical DIII-D 

HFSTop Bottom LFS
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Figure 1.  VMEC equilibria for 158103 at 3050 ms: axisymmetric (black), RMP (red), RMP  ×  10 (blue). (a) Cross-section at toroidal  
angle 0. (b) Deviation of the RMP boundary from the axisymmetry boundary. (c) Pressure profile. (d) Safety factor. (e) Parallel current density.
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pedestal parameters [14]. Thus to investigate the effect of 
RMP on the KBM, we enhance the KBM instability drive by 
artificially increasing the electron density in the simulations.

In this work we apply the global gyrokinetic toroidal code 
GTC [15] to simulate turbulence in the edge of DIII-D tokamak 
plasmas. The strong variation of plasma parameters in the ped-
estal region requires using a non-local model. The validity of 
the so-called local approximation rely on the assumption that 
⊥ �k L 1p , where ⊥k  is the perpendicular wavenumber, and Lp is 

the pressure gradient scale length. While the local assumption 
can be mostly justified at the top of pedestal where ∼⊥k L 25p , 
it is not strictly applicable in the steep gradient region, where 
∼⊥k L 5p , assuming ρ ≈⊥k 1i . The electromagnetic capability in 

GTC is implemented by using the fluid-kinetic hybrid electron 
model [17], including equilibrium current [18].

Overall, we find from the gyrokinetic simulations no 
increase of electrostatic drift-wave and electromagnetic KBM 
instability by the RMP using experimental parameters and 
the VMEC equilibria. There is a small increase of growth 
rate only for artificially amplified RMP strength at 10 times 
the applied field strength. Furthermore, the effect of RMP 
on zonal flow damping and turbulent transport is found to be 
insignificant for the perturbed magnetic field calculated from 
ideal MHD. Experimentally, large changes are seen in the 
turbulent fluctuations in the pedestal when the plasma goes 
into ELM suppression with applied RMPs. Therefore, the 
simulations presented here demonstrate that the plasma kink 
response to the RMP cannot account for the observed increase 
of the turbulence and therefore some other effects are required 
on top of the plasma kink response, such as island formation, 
that may have a stronger effect on turbulent transport.
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Figure 2.  Equilibrium density and temperature profiles of the 
DIII-D pedestal (shot 158103 at 3050 ms). Vertical dashed line 
indicates the 0.985Nψ =  location.

Table 1.  Electrostatic GTC simulation results of DIII-D shot 
158103.3050.

Axi- 
symmetric RMP RMP ×10

γ (kHz), 5± kHz 208 208 225

iχ  (m s2 1  − ), ±0.5 m2 s−1 3.0 2.9 3.0

eχ  (m s2 1  − ), ±0.5 m2 s−1 2.9 2.8 2.9

Γ (m s2 1  − ), ±0.3 m2 s−1 1.2 1.1 1.1
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Figure 3.  Time evolution of the ion heat conductivity for different 
equilibria (from GTC electrostatic simulation using local gradients 
taken at 0.985Nψ = ).
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Figure 4.  Time evolution of the electron heat conductivity for 
different equilibria (from GTC electrostatic simulation using local 
gradients taken at 0.985Nψ = ).
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This paper is organized as follows: in section 2 we describe 
the GTC simulation model, as well as the way equilibrium 
is calculated using VMEC solver. In section 3 the results of 
electrostatic gyrokinetic simulations of turbulence and trans-
port are presented. Simulation studies of the effect of RMP on 
electromagnetic KBM instability are presented in section 4. 
The conclusions are summarized in section 5.

2.  Simulation setup

In the GTC the ions are simulated by integrating the gyrokin
etic equation along the gyrocenter trajectories. The electrons 
are described by the fluid-kinetic hybrid model [16, 17] based 
on the separation of the electron response into a dominant 

adiabatic part ( )δ f a
e  and non-adiabatic correction δhe.

( )δ δ δ δφ
ψ
δψ δ≡ + = +

∂
∂

+
⊥

f f h
ef

T

f
h ,a

v
e e e

0

e
eff

0
e� (1)

where f0 is the equilibrium Maxwellian distribution, Te is the 
equilibrium electron temperature, ψ and δψ is the equilibrium 
and perturbed poloidal magnetic flux function, respectively. 
The effective potential δφeff determines the parallel electric 
field as ∥ ∥δ δφ= −∇E eff. In the electrostatic simulations the δψ 
term in (1) vanishes and δφeff becomes the electrostatic poten-
tial δφ obtained by solving the gyrokinetic Poisson’s equa-
tion. In the electromagnetic case the δφeff is obtained from 
the adiabatic relation using perturbed electron density calcu-
lated by the electron continuity equation, and δψ is obtained 
from the Faraday’s equation. Finally, the non-adiabatic cor-
rection δhe is obtained by integrating the electron drift-kinetic 
equation subtracted by the adiabatic equation involving only 
free streaming terms. The fluid-kinetic hybrid electron model 
provides excellent numerical efficiency while preserving the 
important kinetic effects.

GTC employs magnetic Boozer coordinates for particles, 
and unstructured field-aligned mesh for the field solvers. 
Realistic magnetic equilibrium and plasma profiles are 
implemented using the external input files [19]. GTC capa-
bility to simulate general toroidal geometry has been recently 
expanded to include non-axisymmetric configuration. The 
equilibrium geometry and magnetic field data is provided in 
the form of Fourier series coefficients Acn, Asn in ζ-expansion: 
ψ θ ζ ψ θ ζ ψ θ ζ=∑ +=A A n A n, , , cos , sini

N
cn sn1 i i( ) [ ( ) ( ) ( ) ( )], where 

( )ψ θ ζ, ,  are poloidal flux, poloidal angle, and toroidal angle, 
respectively, forming the right-handed Boozer coordinate 
system. The equilibrium data is provided for the magnetic 
field strength B, and cylindrical coordinates ( )ΦR Z, ,  of points 
forming magnetic flux surfaces. Additionally, the flux func-
tions representing poloidal ( )ψg  and toroidal ( )ψI  currents, 
magnetic safety factor ( )ψq , and minor radius ( )ψr  defined as 
a distance from the magnetic axis along the outer midplane, 
are provided. The data is presented on the uniform ( )ψ θ,  grid 
for all ( )…n nN1  toroidal harmonics. To reduce the compu-
tational load and memory usage, the transformation of non-
axisymmetric variables into spline function of ζ is chosen for 
implementation in GTC, with spline coefficients associated 

with a particular grid point ζi being stored by processors with 
corresponding toroidal rank using message passing interface 
(MPI) parallelization.

In all our simulations the convergence in time step, grid 
size and number of particles is achieved. In this work the typ-
ical number of macro-particles per cell for both electron and 
ion species is  ∼100, the typical time step is ∆ Ω ≈t 5ci . The 
typical spatial grid resolution is /ρ∆ ≈r 0.2i , /θ ρ∆ ≈r 1i , and 
32 grid points in the toroidal directions are required to resolve 
the parallel field variations. The perturbed potentials are cal-
culated assuming homogeneous Dirichlet radial boundary 
conditions.

The non-axisymmetric equilibria used for GTC simula-
tions presented in this paper are constructed by the VMEC 
code [13] in the free boundary mode [20], based on provided 
axisymmetric kinetic equilibrium and magnetic coils con-
figuration of DIII-D. The axisymmetric kinetic equilibrium 
is computed by the EFIT code using the measured thermal 
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Figure 5.  Time evolution of the ion diffusivity for different 
equilibria (from GTC electrostatic simulation using local gradients 
taken at 0.985Nψ = ).
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Dashed line indicates the inner boundary of the radial simulation 
domain.
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pressure and computed beam ion pressure and using the Sauter 
model of the edge bootstrap current as well as the magnetic 
and internal motional stark effect (MSE) measurements of the 
magnetic geometry. VMEC, which is a nonlinear, single-fluid, 
ideal MHD equilibrium code, then solves for force balance, 
∇ = ×P j B, enforcing nested flux surfaces. The resulting 
equilibrium is a fully 3D equilibrium, including the applied 
RMP field from the internal coils (I-coils) and its ideal MHD 
plasma response. The latter means that the kink response is 
included, while any tearing response (magnetic islands) is not.

VMEC equilibria are computed for three cases: axisym-
metric equilibrium, the equilibrium with RMP of experimental 
amplitude, and the equilibrium with RMP amplitude amplified 
by a factor of 10. The axisymmetric case does not include 3D 
fields, while the RMP cases include the n  =  2 field, applied 
by the I-coil during the DIII-D experiments. In the RMP  ×  10 
case the currents in the I-coils are magnified by a factor of 
10. Figure 1(a) shows the poloidal cross-section for all cases 

overlaid. The axisymmetric case in black and the RMP case in 
red are almost on top of each other. Only the RMP  ×  10 case 
in blue makes the 3D structure of the equilibrium clearly vis-
ible. The deviation of the VMEC boundary from the axisym-
metry boundary is shown in figure  1(b). In the RMP case 
∆r varies about 1 cm, while in the RMP  ×  10 case it varies 
about 7.4 cm. The variation is the largest near the upper and 
lower X-points of the diverted shape. Figures 1(c)–(e) show 
the pressure-, q- and current density profiles respectively. The 
profiles agree in all three cases, so the RMP only changes the 
structure of the flux surfaces, especially in the edge region.

3.  RMP effect on electrostatic microturbulence  
and transport

In this section  we present the results of nonlinear electro-
static gyrokinetic simulations of the DIII-D pedestal under the 
effect of RMP magnetic perturbation. Due to strongly varying 
plasma parameters in the pedestal region, it is difficult to iden-
tify the dominant local instabilities. In order to do so, in the 
simulations we use a uniform pressure gradient for the whole 
radial simulation domain. Similar to our previous studies [14], 
in this work we construct equilibrium density and temper
ature profiles using the constant gradient scale length values 
of / =R L 96ne0 , / =R L 247Te0 , / =R L 131Ti0  taken from the 
radial location corresponding to ψ = 0.985N  in the DIII-D 
shot 158103 at time 3050 ms (figure 2). The smallest equi-
librium inhomogeneity scale length is still larger than the ion 
gyroradius, /ρ ∼L 0.2Tei , ensuring the validity of gyrokinetic 
ordering [21]. The deuterium ion equilibrium density is set to 
be equal to the electron density, assuming quasineutrality. Our 
radial simulation domain ranges from ψ = 0.85N  to ψ = 1.0N , 
covering the entire pedestal region. While plasma temperature 
and density profiles are set artificially to drive instabilities 
from the specific locations inside the pedestal, in GTC sim-
ulation we use realistic magnetic geometry modeled by the 
VMEC code. The inconsistency between plasma pressure pro-
file, used in the simulation, and the magnetic geometry would 
manifest itself on the profile relaxation time, which is well 
beyond our time frame of interest.

Electrostatic GTC simulations find strong driftwave turbu-
lence in all three equilibrium cases (axisymmetric, RMP, and 
RMP  ×10). Time evolution of electron and ion heat conduc-
tivities and particle diffusivity from the nonlinear GTC simu-
lations using different equilibria are shown in the figures 3–5. 
Here, the time is normalized by local proton gyrofrequency 

 Ω = × −1.8 10 sp
8 1, the heat conductivity and particle dif-

fusivity is normalized by local Gyro-Bohm coefficient 
( / ) /    ρ= ≈ −D a k T eB 0.7 m ss0 B e

2 1.
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Figure 7.  Time evolution of zonal shearing rate magnitude 
(from GTC electrostatic simulation using local gradients taken at 

0.985Nψ = ).
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Figure 8.  Poloidal snapshot of electrostatic potential from GTC 
simulation of n  =  20 KBM with RMP (panel (a)) and RMP 10×  
(panel (b)). Dashed line indicates the inner boundary of the radial 
simulation domain.

Table 2.  Linear electromagnetic n  =  20 GTC simulation results of 
DIII-D shot 158103.3050.

Axi- 
symmetric RMP RMP  ×  10

fr (kHz), ±5 kHz 146 146 146

γ (kHz), ±5 kHz 310 315 334
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From the initial exponential phase, before nonlinear 
saturation, we can find the mode linear growth rate, γ. 
Corresponding values of the growth rate for the different RMP 
levels are shown in table 1. The largest increase of the growth 
rate is observed for the RMP  ×  10 case, which deviates from 
the symmetric case by less than 10%.

In the table 1 we also present the time averaged saturated 
values of ion and electron heat conductivities and particle 
diffusivity. As we can see, the difference between various 
equilibria lies within corresponding statistical errors. We 
emphasize that our simulations are not fully comprehensive, 
since we ignored collisions and equilibrium flows, thus the 
values presented in table 1 should only serve for comparison 
purpose.

The electrostatic turbulent transport is qualitatively deter-
mined by the statistical properties of fluctuation spectra and 
self-generated zonal flows. We have looked at the effect of the 
ideal MHD response on these two factors.

The electrostatic mode structure in the nonlinearly satur
ated states is shown in the figure  6 for RMP equilibrium 
(panel (a)), and for extreme RMP  ×  10 equilibrium (panel 
(b)). The color represents the amplitude of electrostatic poten-
tial. In both RMP, and RMP  ×  10 cases the fluctuation spec-
trum is peaked at  ≈θ −k 0.5 cm 1, and no significant difference 
is observed in the spectral shape.

The time evolution of self-consistently generated zonal 
shearing rate magnitude, ω = ∂× ×vE B r E B, is shown in the 
figure  7. Our simulation demonstrates insignificant effect 
of non-axisymmetry on zonal flow generation. Moreover, 
we have found that in this localized edge simulation elec-
trostatic turbulence is saturated by resonant detuning, rather 
than by zonal flow shearing, even though the shearing rate 
is stronger than the mode growth rate. This conclusion is 
based on the small difference between heat fluxes observed in 
self-consistent simulation, and in the simulation where zonal 
flow is artificially removed. Similar behaviour of reduced 
turbulence suppression by zonal flow due its fast variation is 
described in [22].

4.  Effect of RMP on kinetic-ballooning mode 
stability

We have carried out electromagnetic studies by using the 
same equilibrium profiles as for electrostatic simulations 
(figure 2), corresponding to the maximum pedestal pressure 
gradient in the DIII-D shot 158103. However, due to rela-
tively low electron density, the KBM is found to be stable in 
this case. In order to enhance the KBM instability we have 
artificially increased the local plasma density used in simula-
tions by roughly a factor of two, while keeping the gradients 
at the experimental value. As a result βe has increased well 
above the KBM stability threshold. This demonstrates that 
the original profile is close to the KBM threshold, as found in 
other studies [14].

Based on our previous simulations of KBM in DIII-D ped-
estal [14], we have focused on the dominant n  =  20 mode. 
To address the effect of perturbed magnetic geometry we run 

simulations with the identical plasma profiles using axisym-
metric, RMP, and RMP  ×  10 magnetic equilibria.

The poloidal KBM mode structure observed in simula-
tions with RMP and with RMP  ×  10 equilibrium are shown 
in the figure 8, with the color representing the amplitude of 
the perturbed electrostatic potential. The mode structure looks 
similar in both RMP, and RMP  ×  10 cases, despite the strong 
distortion of the shapes of magnetic flux surfaces.

The real frequencies and growth rates of the n  =  20 KBM 
obtained from linear electromagnetic GTC simulations are 
shown in the table 2. As we can see, there is no significant 
effects of RMP perturbation on the stability of KBM, com-
pared to the axisymmetric case. The detectable destabilizing 
effect can only be observed in the case of 10×  magnified 
RMP level.

5.  Conclusions

In this work we present the results of gyrokinetic simulations 
addressing the effects of vacuum resonant magnetic pertur-
bation on pressure gradient driven instabilities and transport 
in a typical DIII-D experiment with applied n  =  2 RMP. 
Specifically the analysis focused on the effects of the ideal 
MHD response to the vacuum resonant RMP calculated by the 
VMEC code. The ideal MHD response contains the coupling 
of the external fields to the plasma kink response but excludes 
resonant field effects in the plasma such as island formation. 
Three reference equilibria were constructed: axisymmetric (no 
RMP) equilibrium, n  =  2 RMP equilibrium, and artificially 
amplified RMP  ×  10 equilibrium. It is found that even in the 
extreme RMP  ×  10 case the turbulent transport is practically 
unaffected by the ideal MHD kink response magnetic pertur-
bation. Statistical properties of the turbulent spectrum and 
zonal flow shearing rate are not significantly affected either. 
Electromagnetic simulations reveal no significant effects of 
RMP perturbed ideal MHD equilibrium on the stability of the 
kinetic ballooning mode. Very modest (below 10%) increase 
of KBM growth rate is observed when 10×  amplified RMP is 
applied. These results demonstrate that other physics must be 
controlling the transition in transport responsible for the pro-
file changes leading to ELM suppression. More specifically, 
the transition to ELM suppression cannot be due to the direct 
effect of the ideal MHD plasma response on electrostatic or 
electromagnetic modes. This leads to one of two remaining 
possibilities: (i) that the ideal MHD response of the plasma 
affects a different (nonturbulence) transport channel, and/
or (ii) that nonideal effects associated with the formation of 
resonant internal fields play a dominant role in the changes 
to edge transport leading to profile modification and the ELM 
suppression.
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