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1. Introduction

Stability and performance of tokamak H-mode operation is 
crucially dependent on characteristics of plasma pedestal, thus 
predicting pedestal hight and width is essential for optimizing 
fusion devices. Due to large pressure and current gradients, 
pedestal is subject to dangerous magneto-hydrodynamic insta-
bilities, referred to as edge localized modes (ELM). These 
instabilities cause a partial collapse of the pedestal profiles, 
accompanied by significant heat and particle fluxes to mate-
rial surfaces, which may lead to significant erosion of plasma 
facing materials on reactor-scale devices.

According to experimental observations [1] and EPED 
model [2], which successfully predicts pedestal pressure pro-
file in many tokamak discharges, the onset of ELM is asso-
ciated with non-local peeling-ballooning instability at low to 
intermediate mode number. One possibility to control drastic 
ELM activity is applying resonant magnetic perturbations 
(RMP) [3], however, their inward penetration mechanism and 
effect on transport is not quite clear yet.

Another constraint, which limits pedestal buildup, is the 
nearly-local kinetic ballooning mode (KBM) with high toroidal 
mode number. Even though EPED prediction of pedestal pro-
file is reasonably good, it is important to validate the infinite- 
n MHD local calculation of KBM instability threshold using 

more realistic gyrokinetic simulation in real tokamak geom-
etry. Although KBM is the prominent candidate for driving tur-
bulent transport in the pedestal [4], other candidates, including 
micro-scale drift-wave modes, should also be investigated, as 
these instabilities can limit allowable gradients in the pedestal.

Previous gyrokinetic studies of the H-mode pedestal 
[5–8] are not conclusive regarding destabilization of KBM, 
although it was found that the results are particularly sensitive 
to the geometry model [6] and non-locality [9]. The local flux-
tube simulation models rely on the assumption that ≫⊥k L 1p , 
where ⊥k  is the perpendicular wavenumber, and Lp is the pres-
sure gradient scale length. While the local assumption can be 
mostly justified at the top of pedestal where ∼⊥k L 25p , it is not 
strictly applicable in the steep gradient region, where ∼⊥k L 5p , 
assuming ρ ≈⊥k 1i  where ρc is the ion gyroradius. This signi-
fies the importance of using the non-local model for plasma 
pedestal simulations.

Our previous electrostatic simulations of the DIII-D 
H-mode pedestal [9] using global gyrokinetic toroidal code 
GTC [10] with realistic equilibrium [11] from EFIT [12] and 
VMEC [13] are in general agreement with electrostatic results 
reported in [5]. In this study, we continue to explore linear 
instabilities in the H-mode pedestal region using electromag-
netic gyrokinetic simulations of the same DIII-D discharge 
#131997 at time 3011 ms. [14].
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Electromagnetic capability in GTC is implemented by 
using the fluid-kinetic hybrid electron model [15] based on 
the separation of the electron response into adiabatic and non-
adiabatic parts. In the lowest order in ω ∥k v/ e expansion the adi-
abatic part is approximated by massless fluid response, while 
in the higher order it is adjusted by the non-adiabatic solution 
of the drift-kinetic equation. Here, ω and ∥k  is the mode char-
acteristic frequency and parallel wavenumber, respectively, 
and ve is the electron thermal velocity. In the hybrid model, 
the electron continuity equation  is solved, in addition to the 
ion gyro-kinetic and electron drift-kinetic equations. The per-
turbed electrostatic potential ϕ and parallel vector potential 

∥A  are calculated using gyrokinetic Poisson’s equation  and 
Faraday’s law, respectively. The compressional component of 
perturbed magnetic field is neglected. The fluid-kinetic hybrid 
electron model has been successfully verified for ion-tempera-
ture-gradient (ITG) instability, trapped-electron mode (TEM), 
and KBM [16, 17], various Alfvén eigenmodes [18, 19], as 
well as kink [20] and tearing modes [21]. The hybrid approach 
is different from the kinetic closure approach [22, 23], which 
has failed to simulate microturbulence and Alfvén eigen-
modes. The main difference between these two models is that 
the kinetic closure model uses the solution of exact electron 
drift-kinetic equation to calculate current. This method suffers 
from the well-known numerical difficulty of resolving tearing 
parity in mode rational surface. The fluid kinetic approxima-
tion explicitly removes tearing parity by solving Faraday’s law 
for perturbed vector potential, and calculate electron current 
from the Ampére’s law.

As in our previous studies [9] of the DIII-D pedestal instabil-
ities, we consider two separate radial locations. It is found that 
KBM is marginally dominant in the steep gradient region. In 
the pedestal top region the dominant instability is ion tempera-
ture gradient mode. Linear properties of the observed modes 
are analyzed. The simulation results reported in this paper are 
still rather qualitative, since we ignore collisions and equilib-
rium flows, that would affect the observed instabilities. We 
have also suppressed the equilibrium current drive, which may 
destabilize the kink mode. The original intent of this research 
is to identify the stability domain of various modes as a func-
tion of local pressure profile, taking into account kinetic effects 
and realistic magnetic geometry. This and previous work [9] 
are important parts of GTC validation and verification efforts.

2. GTC simulation of DIII-D pedestal

To clarify the local drift-wave instability, we perform non-
local simulation of the toroidal annulus ψ = 0.90N  –1.00 which 
includes the whole pedestal, while considering the gradients 
from two different locations within the pedestal (figure 1). To 
achieve this, we construct artificial pressure profiles to get con-
stant gradient values of ψ( )n Td ln , /d N from the pedestal top 
region (ψ = 0.95N ) and the steep gradients region (ψ = 0.98N ) 
throughout radial simulation domain. Here, ψN is the poloidal 
magnetic flux normalized by its value at the separatrix.

The constant gradient profiles are used to compare with 
local simulations and to address instabilities as function of 

pressure gradient. If the full profile would be used without 
equilibrium flow shear suppression effect, the steep gradient 
region instability would certainly dominate, due to much 
stronger drive there. Fixed boundary conditions are applied 
for all fluctuating quantities at both sides of radial simulation 
domain. The boundary conditions do not significantly affect 
the radial wavelength of the mode within simulation domain, 
which has been tested by moving inner boundary, although the 
growth rate may change if we allow mode to localize further 

Figure 1. Equilibrium temperature, density, βe and q profiles in the 
pedestal region of DIII-D discharge #131997 at time 3011 ms.
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Figure 2. Poloidal spectrum of electrostatic fluctuations at the 
nonlinearly saturated stage in GTC electrostatic simulations.
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inward, where magnetic shear is smaller, while assuming con-
stant drive. The proposed approach is not fully self consistent, 
but it allows to understand local linear instabilities dependent 
on the pressure gradients before moving towards more real-
istic simulations.

In the current work, linear simulations were performed with 
filtering modes of a single toroidal mode number n, picked 
either as the fastest growing mode or the dominant mode in 
the nonlinearly saturated state. For pedestal simulations we 
use 60 radial grid points, 32 toroidal and up to 2400 poloidal 
grid points. Grid, particle and temporal resolution has been 
tested for convergence.

In the previous electrostatic studies [9] at the maximum gra-
dient region, we observe trapped electron mode as dominant 
instability, having the growth rate increasing monotonically 
with the toroidal mode number n, since there is no corre-
sponding linear stabilization mechanism at high-n. At the top 
of the pedestal the dominant electrostatic instability is the ITG 
mode. To identify the relevant mode number we run the non-
linear electrostatic simulation including all modes. Looking at 
the fluctuation spectrum at saturated state (figure 2) we see that 
the maximum intensity is at ≈θk 1 cm−1 for both peak gradient 
and pedestal top regions, which corresponds to ≈m 60 and 

≈ ≈n m q/ 20, where m is the poloidal mode number.

Figure 3. Poloidal snapshot of the n   =   20 electrostatic potential (right panel) and parallel vector potential (left panel) fluctuations 
(equilibrium parameters from the peak gradient region, β = 0.15e %) in GTC electromagnetic simulations.

R/R0

Z/R 0

0.4

0.2

0

-0.2

-0.4

-0.6
1.00.8 1.2

Z/R0

0.4

0.2

0

-0.2

-0.4

-0.6
R/R01.00.8 1.2

Figure 4. βe dependence of the linear growth rate (top panel) and 
real frequency (bottom panel) of n   =   20 instability in the peak 
gradient region from GTC simulation. Vertical dotted line indicates 
the experimental value of βe.
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Figure 5. Toroidal mode number dependence of KBM growth rate 
(upper panel) and real frequency (lower panel) at the maximum 
gradient region with artificially increased β = 0.25e % (from GTC 
simulation).
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We begin our electromagnetic studies by focusing at the 
maximum gradient region, characterized by strong electron 
pressure gradient ( ≈R L/ 120Te0 , ≈R L/ 60ne0 ), relatively 
weaker ion pressure gradient ( ≈R L/ 50Ti0 , =n ni e), and 
β ≈ 0.15e %, where β π≡ n T B8 /e e e 0

2. The linear electromagnetic 
simulation of n   =   20 mode with local density and tempera-
ture taken at ψ = 0.98N  recovers instability with the ballooning 
mode structure rotating in the ion diamagnetic direction 
(figure 3). The instability is insensitive to kinetic electron 
effects (instability is observed even when electrons are treated 
as a massless fluid), unlike the electrostatic TEM.

We further investigate the properties of observed instability 
for the dependence on βe by changing electron density while 
keeping the gradient ψnd ln /de N unchanged. The dependence 
of linear growth rate and real frequency on βe is shown in the 
figure  4, where vertical dotted line indicates experimental 
βe-value. As we can see, at low βe the growth rate remains 
approximately constant at electrostatic value, which corre-
sponds to the trapped electron mode (positive real frequency). 
At β ⩾ 0.14e % the KBM instability takes over. From the top 
panel of figure 4 the KBM stability threshold can be extrapo-
lated at β ≈ 0.12e % which is slightly below experimental value 
of β = 0.15e % at ψ = 0.98N . (figure 1, bottom panel). Unlike 
the growth rate, the real frequency of TEM mode decreases 
with βe (figure 4, bottom panel), such that mode becomes more 
of the interchange type. This can be explained by the reduc-
tion of parallel electric field due to the increased inductive 
component that partially cancels the electrostatic component.

To address the dispersion properties of KBM we plot the 
dependence of the linear growth rate and real frequency on the 
toroidal mode number (figure 5). We have slightly increased 
the βe value to 0.25% to stay away from the TEM–KBM tran-
sition point, to make sure we are dealing with clear KBM 
mode. As we can see, the KBM growth rate is peaked at 

≈n 20, which is in agreement with experimental observations 
[4]. Thus our choice of n   =   20 as a relevant toroidal mode 
number is justified for both electrostatic end electromagnetic 
simulations.

Since KBM is linearly stabilized at higher toroidal mode 
number, while the TEM growth rate increases monotoni-
cally with n, the TEM–KBM transition occurs at higher βe for 
higher toroidal mode numbers. In fact, for n   =   60 the tran-
sition occurs at β ≈ 0.2e %, and KBM becomes subdominant 
at the experimental value of pressure. Thus, to get a com-
plete picture of relevant instabilities, one needs to go beyond 
linear analysis and to take into account nonlinear saturation 
mechanisms.

Figure 6. Poloidal snapshot of the n   =   20 electrostatic potential (right panel) and parallel vector potential (left panel) fluctuations 
(equilibrium parameters from the pedestal top region, β = 0.37e %) in GTC simulation.
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Figure 7. βe dependence of the linear growth rate (top panel) and 
real frequency (bottom panel) of n   =   20 instability in the pedestal 
top region in GTC simulation. Vertical dotted line indicates the 
experimental value of βe.
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Finally, we consider the pedestal top region (ψ = 0.95N ), 
which is characterized by weak gradients of density and elec-
tron temperature ( ≈R L/ 2ne0 , ≈R L/ 25Te0 ), and relatively 
stronger ion temperature gradient ( ≈R L/ 30Ti0 ). Linear elec-
tromagnetic simulations recover unstable mode with extended 
ballooning structure (figure 6), rotating in the ion diamagnetic 
direction. To identify the observed mode we have varied the βe 
value by changing the electron density. The linear growth rate 
and real frequency dependence on βe are shown in figure 7. 
At the top panel of figure 7 we see the familiar β-stabilization 
of ITG mode and the onset of KBM, similar to our results 
reported in [16]. The KBM becomes dominant at β > 0.7e %, 
with the estimated instability threshold at β ≈ 0.6e %. As we 
can see, the experimental value of β ≈ 0.4e % at ψ = 0.95N  cor-
responds to the electromagnetic ITG branch.

3. Conclusions

We have done non-local gyrokinetic simulations using real-
istic equilibrium and profiles of H-mode pedestal in DIII-D 
discharge #131997 at time 3011 ms. Two radial locations are 
considered : steep gradient region and pedestal top region. The 
dominant instability in the pedestal top region is identified as 
finite-β ion-temperature gradient mode. In the steep gradient 
region the kinetic ballooning mode is dominant for ∼θk 1 
cm−1 range, corresponding to the maximum KBM growth 
rate. By artificially varying plasma pressure we observe the 
transition from ITG to KBM branch at the pedestal top region, 
and transition from TEM to KBM branch in the steep gradient 
region. Due to the lack of linear TEM stabilization mechanism 
for high n, the transition from TEM to KBM occurs at higher 
pressure for short wavelength modes.
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