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The fluid-kinetic hybrid electron model is verified in global gyrokinetic particle simulation of

linear electromagnetic drift-Alfv�enic instabilities in tokamak. In particular, we have recovered the

b-stabilization of the ion temperature gradient mode, transition to collisionless trapped electron

mode, and the onset of kinetic ballooning mode as be (ratio of electron kinetic pressure to magnetic

pressure) increases. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4798392]

I. INTRODUCTION

Plasma confinement and transport depend on nonlinear

interactions between multiple physical processes with wide

range of spatial and temporal characteristic scales. Thus fully

self-consistent simulation of burning plasmas must incorpo-

rate global geometry, wave-particle interactions, and cross-

scale coupling between micro and meso-scale turbulence.

Anomalous transport in tokamak plasmas generated by micro-

instabilities can be significantly affected by the presence of

magnetic perturbations. The b-stabilization of the ion temper-

ature gradient (ITG) mode,1,2 and destabilizing of the kinetic

ballooning mode (KBM) bellow critical MHD b-limit3 are

just few examples of such influence. Therefore, fully self-

consistent simulation must include the finite-b effects in order

to properly study the turbulent transport in burning plasmas.

Electromagnetic gyrokinetic simulation incorporating

electron dynamics is numerically challenging. The verification

of the electromagnetic simulation models is thus important.

There are few linear electromagnetic benchmarks between

major gyrokinetic codes (in the local limit),4–6 as well as some

nonlinear comparisons.5 Several global gyrokinetic particle

codes also have electromagnetic capabilities,7–9 but, until now,

there are no published electromagnetic cross-verifications

among them.

The small electron mass presents a numerical difficulty

for simultaneously treating the dynamics of ions and elec-

trons in simulations. A fluid-kinetic hybrid electron model10

currently implemented in the gyrokinetic toroidal code

GTC11 overcomes this difficulty by expanding the electron

drift kinetic equation using the electron-ion mass ratio as a

small parameter. The model accurately recovers low fre-

quency plasma dielectric responses and faithfully preserves

linear and nonlinear wave-particle resonance. Maximum nu-

merical efficiency is achieved by overcoming the electron

Courant condition and suppressing tearing modes and high

frequency modes thus effectively suppressing “electron

noise.” Extension to treat the collisionless tearing modes is

currently underway.12

The fluid-kinetic hybrid electron model avoids the well-

known “cancellation problem” in some gyrokinetic particle

and continuum codes.7,9,13,14 The “cancellation problem”

arises when solving a particular form of the Ampère’s law,

where two large terms are artificially added to the original

Ampère’s law. These two terms are needed because canonical

momentum is used as an independent variable to overcome a

numerical difficulty of calculating the inductive electric field

by an explicit time derivative. Analytically, these two terms

should cancel with each other exactly. However, a small error

in numerically evaluating these two large terms can give rise

to a residue, which leads to a large error in solving the

Ampère’s law. In contrast, the fluid-kinetic hybrid electron

model is based on the original Ampère’s law, which is free

from the “cancellation problem.”

A single version GTC is currently capable of both full-f

and df simulations, gyrokinetic or fully kinetic ions, kinetic

electrons and electromagnetic fluctuations, general toroidal

geometry with shaped, up-down asymmetric equilibrium and

experimental plasma profiles, equilibrium current for kink

drive, multiple ion species, neoclassical effects with Fokker-

Planck collision operators conserving particle, momentum

and energy, equilibrium radial electric field with toroidal and

poloidal rotations, and sources/sinks and external antenna.

GTC is a platform-independent program using standard

FORTRAN, message passing interface, and OpenMP, and

achieves nearly perfect scalability on massively parallel

computers, including the world fastest computer with more

than 105 cores and graphic processing unit acceleration.

GTC has been well benchmarked for electrostatic sim-

ulations with kinetic electrons.15,29 The comparison of lin-

ear growth rate and real frequency as a function of gi

between different codes is shown in Fig. 1. Building on the

successful and extensive applications to electrostatic micro-

turbulence16 and energetic particle physics,17 GTC has

demonstrated the capability to simulate mesoscale MHD

modes such as toroidal Alfv�en eigenmode,18 reversed shear

Alfv�en eigenmode,19,20 beta-induced Alfv�en eigenmode,21

and ideal ballooning mode.22 The kinetic effects of elec-

trons can be important for such low- and intermediate-n

electromagnetic modes, e.g., damping effects by trapped

electrons.19 In this work, we present the linear results of

electromagnetic gyrokinetic particle simulations of drift-

Alfv�enic instabilities in order to verify the validity of the

fluid-kinetic electron model, especially the kinetic effects

for the high-n modes. Verified electrostatic results can

serve as a reference point for electromagnetic simulations

as be ¼ 8pneTe=B2
0 approaches zero.
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This paper has the following structure. In Sec. II, we

provide a general GTC overview and more detailed formula-

tion of the fluid-kinetic hybrid electron model. Simulation

setup and results are discussed in Sec. III, where we present

a be dependence of mode real frequency and linear growth

rate, recovering the b-stabilization of the ITG mode, ITG-

CTEM (collisionless trapped electron mode) transition, and

the onset of KBM. Section IV concludes with the summary.

II. GTC FORMULATION

The GTC simulates plasma consisting of three particle

species: electrons, thermal ions, and energetic particles or

impurities. The dynamics of particle’s gyrocenter is deter-

mined by solving corresponding equations of motion. In

addition, the df method23 is adopted in which the gyrokinetic

equation describing particle’s weight is integrated along the

perturbed trajectories, to improve numerical efficiency and

reduce noise.

The gyrokinetic equation, together with gyrocenter

equations of motion describing toroidal plasmas in the inho-

mogeneous magnetic field, using the gyrocenter position X,

magnetic moment l and parallel velocity vk as a set of inde-

pendent variables in the 5D phase space, reads24

d

dt
fsðX; l; vk; tÞ �

@

@t
þ _X � r þ _vk

@

@vk

� �
fs ¼ 0; (1)

_X ¼ vk
B

B0

þ vE þ vd

_vk ¼ �
1

ms

B�

B0

� ðlrB0 þ Zsr/Þ � Zs

msc

@Ak
@t

:

(2)

Here, index s¼ i, f, e stands for the particle species, Zs is the

particle charge, and ms is the particle mass, B0 � B0b0 is the

equilibrium magnetic field, B � B0 þ dB, and

B� ¼ B�0 þ dB ¼ B0 þ
B0vk
Xs
r� b0 þ dB:

Other terms in Eq. (2) are the E� B drift velocity

vE ¼
cb0 �r/

B0

and magnetic drift velocity

vd ¼ vc þ vg;

where the magnetic curvature drift is

vc ¼
v2
k

Xs
r� b0;

and the grad-B drift is

vg ¼
l

msXs
b0 �rB0:

In our description, we exclude the compressional component

of the magnetic field perturbation by assuming dBk ¼ 0, thus

dB ¼ dB? ¼ r � kB0; (3)

with k ¼ Ak=B0.

In Eq. (1), the electrostatic potential / and vector poten-

tial Ak represent corresponding gyroaveraged values for ions.

A. Fluid-kinetic hybrid electron model

The fluid-kinetic hybrid electron model10 is developed to

improve the numerical properties of simulations with kinetic

electrons for the micro- and meso-scale turbulence. The idea

of hybrid method is in the expansion of the electron response

FIG. 1. Linear growth rate c and real frequency x of electrostatic ITG and CTEM modes as a function of gi. GTC, GT3D, and FULL data from Ref. 29, HD7

data from Ref. 31, and XGC1 data from Chang and Ku (Ref. 33).
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into a dominant adiabatic part and a high-order kinetic pertur-

bation, based on the small electron-ion mass ratio.

In the lowest order, adiabatic part is described as a mass-

less fluid using continuity equation. In the higher order, the

fluid response is corrected by subtracting from it the non-

adiabatic part which is treated kinetically with all the nonlin-

ear effects preserved. Using the fluid-kinetic hybrid electron

model avoids dealing with the electron Courant condition

and unnecessary high-frequency modes. This model is the

most efficient electron model for kinetic simulations of elec-

tromagnetic turbulence in the absence of tearing modes.

The electron perturbed distribution function can be

expanded using a small parameter dm�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
me=bemi

p
�x=kkvk,

such that

fe ¼ f0e þ df ð0Þe þ dhe: (4)

Here, f0e is the equilibrium distribution satisfying

ðvkb̂0 þ vdÞ � rf0e �
l

me

B�0
B0

� rB0

@f0e

@vk
¼ 0: (5)

The solution for df ð0Þe can be found from the electron drift-

kinetic equation (1), keeping just the lowest order terms

vkb0 � rdf ð0Þe ¼ �vk
dB?
B0

� rf0ejv? þ vkf0e
e

T0e
b0 � rd/eff ;

(6)

where the equilibrium distribution f0e is assumed to be

Maxwellian for the parallel velocity, with no inhomogeneity

along the magnetic field lines, and the effective potential

d/eff is determining the parallel electric field

dEk ¼ �b̂ � rd/eff :

The continuous solution of Eq. (6) is

df ð0Þe

f0e
¼ ed/eff

T0e
þ @ ln f0e

@w

����
v?

dwþ @ ln f0e

@a

����
v?

da; (7)

describing the adiabatic electron response, i.e., electrons are

isothermal along the perturbed magnetic field line, with the

Boltzmann response to scalar potential. In deriving Eq. (7),

we have used the Clebsch representation for the toroidal

magnetic field

B ¼ B0 þ dB? ¼ rðwþ dwÞ � rðaþ daÞ; (8)

where w and a ¼ qðwÞh� f are equilibrium poloidal flux

and magnetic field line label respectively, with h and f
being the poloidal and toroidal angles in magnetic

coordinates.

Since the electron response (7) is adiabatic only for non-

zonal (kk 6¼ 0) modes, Eq. (6) excludes zonal components

(with kk ¼ 0) of the perturbed potentials. Zonal fields are

solved separately.8,25

In the hybrid scheme, the adiabatic density response

obtained by integrating Eq. (7) over the velocity space is

used to calculate the effective potential

ed/eff

T0e
¼ dnð0Þe

n0e
� @ ln n0e

@w
dwþ @ ln n0e

@a
da; (9)

where

dnð0Þe ¼ dne �
ð

dvdhe: (10)

The non-adiabatic part of the electron distribution function

dhe is obtained from the drift-kinetic equation (1), taking

into account Eqs. (4)–(6)

1

f0e

ddhe

dt
¼�vE � r ln f0ejv? �

@

@t

df ð0Þe

f0e
� vd � r

df ð0Þe

f0e

þ e

T0e
vd � r/� cb0�rh/i

B0

� rdf ð0Þe

f0e
þ

evk
cT0e

@hAki
@t

;

(11)

where the angular brackets denote zonal components of the

perturbed potentials.

Equations (9)–(11) are solved iteratively. At the first

iteration, we use dnð0Þe ¼ dne to find d/eff , which is then used

in the right hand side of Eq. (11) to calculate the kinetic cor-

rection dhe.

The perturbed density dne is calculated using the elec-

tron continuity equation, obtained by integrating the drift-

kinetic equation (1) over the velocity space

@dne

@t
þ B0 � r

nedujje
B0

� �
þ dB? � r

n0edujje
B0

� �
þ B0vE � rne

�ðn0ev� þ 2nevEÞ �
rB0

B0

¼ 0; (12)

where

v� ¼ �
1

n0eB0

b0 �rðdPjje þ dP?eÞ;

and the perturbed pressure

dP?e ¼
ð

dvlB0dfe ¼ n0ed/eff þ
@P0e

@w
dwþ

ð
dvlB0dhe;

dPjje ¼
ð

dvmev
2
kdfe ¼ n0ed/eff þ

@P0e

@w
dwþ

ð
dvmev

2
kdhe;

with

P0e ¼ n0eT0e:

More general formulation of Eq. (12) including the effect of

equilibrium current can be found in Ref. 25.

The electron current is determined from the Ampère’s

law

enedujje ¼
c

4p
r2
?dAk þ

X
s 6¼e

Zsnsdujjs; (13)

while the parallel component of vector potential is found

using the Faraday’s law
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1

c

@dAk
@t
¼�dEk �b0 �rd/¼ b0 �rðd/eff �d/Þ � b0 �r/ind:

(14)

Note that using Faraday’s law to calculate the parallel vector

potential, although being very computationally efficient,

excludes even (tearing) parity of dAk. Alternatively, one may

calculate the electron current from the nonadiabatic response

dhe and use the Ampère’s law to find dAk, as it is done in the

split-weight approach.26

The nonzonal electrostatic potential d/ is found by solv-

ing the gyrokinetic Poisson’s equation27 formulated for mul-

tiple ion species

X
s 6¼e

ðd/� d~/sÞ
n0sZ

2
s

T0s
¼
X
s 6¼e

�nsZs � ene; (15)

where

d�ns ¼
ð

dZd3ðXþ q� xÞdfsðZÞ;

and

d~/s ¼
ð

dZd3ðXþ q� xÞd�/ðXÞ f0sðZÞ
n0s

:

The magnetic field line perturbations dw and da
are related to the parallel vector potential, and, taking into

account Eq. (14), can be found from

@dw
@t
¼ �c

@/ind

@a
;

@da
@t
¼ c

@/ind

@w
:

(16)

III. SIMULATION RESULTS

To verify the electron model used in the GTC, we run

series of linear simulations using the Cyclone Base Case

parameters28 for the background plasmas. These are R0=LTi

¼ R0=LTe ¼ 6:9;R0=Lni ¼ R0=Lne ¼ 2:2, and Te ¼ Ti. The

inverse aspect ratio is a=R0 ¼ 0:36, where R0 and a are the

tokamak major and minor radii, respectively. Diagnostic is

taken at the radial position r/a¼ 0.5, where q¼ 1.4 and

ŝ ¼ 0:78. In the simulations, all ions are protons. For trapped

electrons, the higher-order kinetic correction is taken into

account using realistic mass ratio me ¼ 5:45� 10�4mp. We

only consider perturbations with fixed toroidal mode number

n¼ 10 which corresponds to the fastest growing mode of

khqi ¼ 0:22. The simplified s� a equilibrium model with

circular cross-section is used in current simulations.

We start with the convergence study to determine the

necessary device size for recovering the local flux-tube

results. The dependency of the real frequency and linear

growth rate of electrostatic ITG mode on the radial system

size (Fig. 2) shows saturation at near a=qi ¼ 125 which is

used for further simulations. The convergent time step used

in the simulations is Dt ¼ 0:005R0=cs. We use the equal grid

size in the radial and poloidal directions Dr � rDh � qi and

32 grid points in the toroidal directions. The number of par-

ticles per cell is 20 for both electrons and ions.

FIG. 2. Real frequency x (dashed line) and linear growth rate c (solid line)

of khqs ¼ 0:22 electrostatic ITG mode as a function of simulated device

size.

FIG. 3. Real frequency x of khqs ¼ 0:22 electromagnetic mode as a func-

tion of be.

FIG. 4. Linear growth rate c of khqs ¼ 0:22 electromagnetic mode as a func-

tion of be.
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FIG. 5. Poloidal snapshot of electrostatic potential d/ (a) and parallel vector potential dAjj (b) for electromagnetic ITG mode taken at be ¼ 0:5%.

FIG. 6. Poloidal snapshot of electrostatic potential d/ (a) and parallel vector potential dAjj (b) for electromagnetic CTEM mode taken at be ¼ 1:3%.

FIG. 7. Poloidal snapshot of electrostatic potential d/ (a) and parallel vector potential dAjj (b) for KBM mode taken at be ¼ 1:75%.
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The verification of the electromagnetic fluid-kinetic

hybrid electron model is performed by running simulations

with different on-axis electron density, which corresponds to

varying be. The electrostatic regime represents the limiting

case of be ¼ 0. The dependence of the linear growth rate and

real frequency is show in Figs. 4 and 3, respectively. In

Fig. 4, we can observe the initial reduction of the growth

rate as be increases, which corresponds to the effect of b-

stabilization of the ITG mode1,2 (negative real frequency in

Fig. 3, corresponding to the ion diamagnetic direction). As be

approaches zero, both real frequency and linear growth rate

approach electrostatic limit recovering previously published

results.15,29 The mode has a distinct ballooning structure as

shown in Fig. 5. At be � 1:15% the ITG growth rate becomes

equal to the growth rate of the CTEM30 which later becomes

dominant (switch to the positive real frequency in Fig. 3).

The poloidal mode structure at be ¼ 1:3% is shown in Fig. 6.

At be � 1:5%, the growth rate of the KBM increases suffi-

ciently to become dominant and another switch in the real fre-

quency sign occurs. The growth rate of the KBM mode

continues to increase as be further increases. The poloidal

mode structure at be ¼ 1:75% is shown in Fig. 7.

IV. SUMMARY

In this work, we have demonstrated the results of electro-

magnetic simulation of the linear drift-Alfv�enic microinstabil-

ity. The dependency of the growth rate and real frequency on

be demonstrates the stabilization of ITG mode, transition to

the CTEM, and the onset of KBM mode. This is in agreement

with previously published results of gyrokinetic flux-tube sim-

ulations with full drift-kinetic electron description.5,32 As be

approaches zero, the growth rate and real frequency reach

their electrostatic values. Obtained results verify the validity

of the fluid-kinetic hybrid electron model for linear global

simulation of drift-Alfv�enic instabilities in tokamak.
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