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Abstract
Several issues in the toroidal angular momentum transport by the ion
temperature gradient (ITG) turbulence are addressed in this work: the system
size effect in the momentum transport, the symmetry breaking mechanism for
the generation of the spontaneous rotation and the effect of the trapped electron
dynamics. We find that the magnitude of the momentum flux scales with the
system size according to the gyroBohm scaling, with no significant size effect on
the radial structure of the perturbed toroidal angular momentum. The symmetry
breaking due to the shear of the radial electric field is found to be a mechanism
for generating the residual momentum flux. However, it is small compared
with the momentum pinch term in the case of a finite background rotation. The
trapped electrons in the ITG turbulence increase the intensity and modify the
spectral properties of the electrostatic fluctuations, leading to the increase in
the toroidal momentum pinch.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Momentum transport is one of the topics of current interest in fusion research. Recent
experimental and theoretical works [1–8] made significant progress toward the understanding
of the momentum transport mechanisms. The radial flux of toroidal angular momentum
can generally be decomposed into a diagonal (conductive) and off-diagonal (convective and
residual stress) parts

�φ = −χφ

d

dr
〈R2ωφ〉 + �conv

φ + S, (1)

where ωφ is the toroidal angular frequency, R is the tokamak major radius, χφ is the toroidal
momentum conductivity, �conv

φ is the convective flux of the toroidal momentum and S is the
residual stress flux. The angular brackets mean flux-surface averaging.
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The convective flux can be decomposed into a particle convection, i.e. the toroidal
momentum carried by the particle flux, and the remaining part, which we would call rotation
convective flux or toroidal momentum pinch flux

�conv
φ = 1

n
�n〈R2ωφ〉 + Vφ〈R2ωφ〉. (2)

The conductive flux is well understood and can usually be described by means of
the quasilinear theory [7, 8]. The off-diagonal parts of the momentum flux, in particular
the momentum pinch, are more complicated since there are several possible mechanisms
responsible for the generation of the off-diagonal flux [3–5]; however, their relative importance
has not been clearly established.

To gain a better understanding of the physics picture for the off-diagonal momentum
transport, we run global gyrokinetic particle simulations of tokamak plasmas with zero and
finite background rotation in the presence of drift wave turbulence. In our previous work [8], we
have done simulations of toroidal angular momentum transport in the ion temperature gradient
(ITG) turbulence with an adiabatic electron approximation using the gyrokinetic toroidal code
GTC [10]. An off-diagonal momentum flux has been clearly observed in the case with rigid
background rotation. Moreover, in the sheared rotation case, the conductive momentum flux
has been observed and explained by means of a quasilinear theory. The intrinsic Prandtl number
was measured in the simulation and also calculated analytically [8]. In this work we extend
the previous studies to include kinetic trapped electrons in our gyrokinetic particle simulations
of the momentum transport by the ITG turbulence. It has been shown earlier that the kinetic
effects of the passing electrons have negligible contribution to the ITG turbulence [9]. Several
aspects of momentum transport are studied in this paper. First, we consider the influence of
the system size on the momentum transport. We have found that momentum flux increases
with the size, consistent with the gyroBohm scaling. The characteristic scales of perturbed
momentum structures remain the same in terms of the ion gyroradius. Next, we focus on the k‖
symmetry breaking due to the radial electric field shear, as a possible mechanism driving the
off-diagonal flux [4]. We show that the E′

r profile, obtained as the turbulence-generated zonal
flow shear, correlates with the mean k‖ profile and momentum flux profile in the case with zero
background rotation. However, in the presence of a finite background rotation, other pinch
generating mechanisms are dominant. Finally, the effects of kinetic electrons are studied for
the cases of zero and finite rotation. Simulation results show that in the presence of trapped
electrons the toroidal momentum pinch increases in proportion to the increase in the ion heat
conductivity due to the modification of the turbulence intensity and the spectral structure by
the trapped electrons.

2. Model description

In the GTC simulation, the perturbed distribution function of gyrocenter is solved using the
nonlinear gyrokinetic equation. The equilibrium distribution function f0 is chosen to be the
local Maxwellian shifted with a parallel velocity

f0 = n

(2πT/m)3/2
exp

[
−2µB + m(v‖ − v‖0)

2

2T

]
. (3)

The background parallel rotation velocity is assumed to be small, v‖0 � vi with slow
spatial variation, such that the effect of rotation on the gyrokinetic equations [11] can be
ignored. Representing the ion distribution function f as the sum of an equilibrium f0 and a
perturbed part δf , f = f0 +δf and taking into account the form of the equilibrium distribution
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function (3), the electrostatic gyrokinetic equation for ion particle weight wi = δfi/fi can be
written as

dwi

dt
= (1 − wi)

[
−κ · ṽE − Zi

Ti
(v‖ − v‖0)b̂ · ∇δφ − 1

Ti
(µB + mi(v

2
‖ − v‖v‖0))

∇B

B
· ṽE

]
,

(4)

where Ti, mi and Zi are the ion temperature, mass and charge, respectively. The E × B drift
velocity is vE = v̄E + ṽE , v̄E = c

B
b̂ × ∇φ0, ṽE = c

B
b̂ × ∇δφ, with δφ being the perturbed

electrostatic potential and

κ = ∇ni

ni
+

[(
µB

Ti
+

mi(v‖ − v‖0)
2

2Ti

)
− 3

2

] ∇Ti

Ti
+

m(v‖ − v‖0)∇v‖0

Ti

is the gradient of equilibrium density, temperature and toroidal velocity.
A fluid-kinetic hybrid model is used to describe the evolution of the electron distribution

function [9, 12, 13]. The electron response is expanded using a smallness parameter δ =
ω/ωe � 1, where ω is the mode frequency and ωe is the electron transit frequency,

fe = f0eeδφ/Te + δhe.

In the lowest order, the electron response is adiabatic,

δne

n0
= eeδφ(0)/Te .

At the higher order, the dynamics of electrons (in particular, the trapped electrons) is
treated using the drift kinetic equation, modified by the presence of the background rotation

dwe

dt
=

(
1 − eδφ(0)

Te
− we

) [
− ṽE · κ − ∂

∂t

eδφ(0)

Te
− me

Te
v‖0v‖

∇B

B
· ṽE

+

(
− c

eB
(µB + m(v2

‖ − v‖0v‖))b̂ × ∇B

B
+ ṽE

)
· ∇ e〈φ〉

Te
+

e

Te
v‖0b̂ · ∇δφ(0)

]
,

(5)

where we = δhe/fe.
The electrostatic potential is corrected at the higher order by the electron non-adiabatic

response [9, 13].

3. Results and discussions

In our simulations, toroidal angular momentum transport is driven by the electrostatic
collisionless ITG turbulence with the following parameters at a minor radius r = 0.5a:
R0/LT = 6.9, R0/Ln = 2.2, a/R0 = 0.358, a/ρi = 250 or 500 and Te/Ti = 1, where R0 and a

are the tokamak major (on the axis) and minor radii; LT and Ln are the equilibrium temperature
and density gradient scale lengths; Te and Ti are the electron and ion temperatures, respectively,
and ρi is the ion gyroradius. The safety factor is q = 0.581 + 1.092r/a + 1.092(r/a)2.

The toroidal angular momentum flux is calculated as a flux-surface-averaged value
�φ = mi〈

∫
dvRv‖δfiṽEr〉. The particle flux �n = 〈∫ dvδfiṽEr〉 in the adiabatic electron

case is non-zero due to the toroidicity effect (see the appendix for details), but practically
negligible. The perturbed toroidal angular momentum and momentum flux are normalized by
miR0vi and miR0v

2
i , respectively, where vi is the ion thermal velocity.
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Figure 1. Radial profiles of toroidal angular momentum (upper panel), toroidal angular momentum
flux (middle panel) and turbulence intensity (lower panel), for the case with adiabatic electrons,
system size a/ρi = 250 and no background rotation.

We begin by considering the effect of the simulation system size for the ITG turbulence
with adiabatic electrons. The perturbed momentum and momentum flux profiles obtained for
the cases of a/ρi = 250 and a/ρi = 500 are shown in figures 1 and 2, respectively. As we can
see, the radial structures of the perturbed momentum have approximately the same size in terms
of ρi. The maximum perturbations of the toroidal momentum are larger in the case of smaller
system size due to a stronger turbulence intensity, consistent with the gyroBohm scaling in the
large device size regime (i.e. small ρ∗ = ρi/a) [14] (lower panels of figures 1 and 2).

Next, the symmetry breaking and momentum flux generating mechanisms due to the radial
electric field shearing [4] are examined. In figure 3 we compare the time-averaged profiles of
the turbulence-generated zonal flow shear and the flux-surface-averaged parallel wavenumber
defined as

〈k‖〉 =

∫
J dθ dζ

∑
ω

k‖δφ2
k‖ω

∑
ω

δφ2
k‖ω

∫
J dθ dζ
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Figure 2. Radial profiles of toroidal angular momentum (upper panel), toroidal angular momentum
flux (middle panel) and turbulence intensity (lower panel), for the case with adiabatic electrons,
system size a/ρi = 500 and no background rotation.

where the Jacobian is [15]

J−1 ≡ ∇ψ · ∇θ × ∇ζ = B2

gq + I
.

We have found rather strong correlation between these two profiles, with the correlation
coefficient C = 0.64, calculated for two variables A and B as

CAB =
∑

i(Ai − A)(Bi − B)√∑
i(Ai − A)2(Bi − B)2

,

i.e. C = 0 indicating no correlation, C = 1 a perfect correlation and C = −1 anti-correlation.
In figure 4 we plot the radial profiles of 〈k‖〉〈φ2〉 and toroidal momentum flux. The

correspondence between these profiles is characterized by the coefficient C = 0.75, which
also indicates strong correlation. The flux-surface-averaged parallel wavenumber 〈k‖〉 is
multiplied by the fluctuation intensity 〈φ2〉 in order to match the proper radial envelope
of the momentum flux. Note that the profile of fluctuation intensity is smooth (see lower
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Figure 3. Time-averaged profiles of radial electric field shear and flux-surface averaged 〈k‖〉, for
the case with adiabatic electrons and no background rotation.

 

 

Figure 4. Time-averaged profiles of momentum flux and flux-surface averaged 〈k‖〉, for the case
with adiabatic electrons and no background rotation.

panels of figures 1 and 2) and itself cannot be responsible for the strong correlation between
〈k‖〉〈φ2〉 and toroidal momentum flux. The results obtained so far confirm the role of
the radial electric field shear in generating the residual stress component of the toroidal
momentum flux.

However, in the case of a finite background rotation (figure 5), the E × B-shear and
momentum flux profiles show no apparent correlation (C = −0.05), suggesting that the
convective flux, which is stronger than the residual stress in this case, has a different driving
mechanism [7]. As the evidence for pinch-like nature of the momentum flux in the rigid
rotation cases, in figure 6 we plot the time evolution of the momentum flux for the cases
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Figure 5. Time-averaged profiles of momentum flux and radial electric field shear, for the case
with adiabatic electrons and rigid rotation at ωφ = 0.2vi/R0.
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Figure 6. Time evolution of the rms value of total momentum flux (solid lines) and particle
convective flux (dashed lines), for the case with kinetic electrons and rigid background rotation at
ωφ = 0 (black), ωφ = 0.1vi/R0 (red) and ωφ = 0.2vi/R0 (blue).

with kinetic electrons for different values of the background rotation velocity. As we can see,
the momentum flux has a finite residual value at zero rotation and increases proportionally
to the angular frequency ωφ , indicating that it is consistent with the general form of
equation (1).

We now focus on the effect of kinetic electrons on the momentum transport. To study the
effect of kinetic electrons, we compare the radial profiles and time evolutions of the toroidal
angular momentum and ion heat fluxes for the cases with adiabatic and kinetic electrons,
respectively. In the top panel of figure 7, we plot the initial and perturbed profiles of the
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Figure 7. Initial (dotted line) and perturbed radial profiles of toroidal momentum (panel (a)),
time-averaged toroidal momentum flux (panel (b)), time-averaged heat conductivity (blue line) and
time-averaged turbulence intensity (red line) (panel (c)) for cases with adiabatic (solid line) and
kinetic electrons (dashed line) with rigid rotation at ωφ = 0.2vi/R0. Here, the turbulence intensity
in the adiabatic electron case (red solid line in panel (c)) is multiplied by the factor of 1.5.

toroidal angular momentum for the case of rigid background rotation with an angular frequency
of ωφ = 0.2vi/R0. As we can see, in both the adiabatic and kinetic electron cases, there is
a significant redistribution of the toroidal angular momentum, leading to the spinning up of a
plasma toward the center of the tokamak.

In the middle panel of figure 7, we plot the radial profile of the momentum flux. Here, we
observe the enhancement of the inward momentum flux in the kinetic electron case, similar to
a theoretical result in [6].

Finally, in the bottom panel of figure 7, we plot the ion heat flux and turbulence intensity
profiles. The correspondence between the two profiles in both the kinetic and adiabatic cases
indicates that the ion heat transport is a diffusive process [16–18]. Here, we also observe
the enhancement of both the ion heat flux and the turbulence intensity in the kinetic electron
case [9, 19].
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Figure 8. Time evolution of the rms value of momentum flux divided by the ion heat flux, for the
case with rigid background rotation at ωφ = 0.2vi/R0.

From the quasilinear theory we know that the momentum diffusivity is determined by the
turbulence intensity and spectral properties of electrostatic fluctuations [8]. To separate these
two factors, we divide the volume-averaged ion heat conductivity by the volume-averaged
intensity. For the adiabatic electron case with a rigid rotation of ωφ = 0.2R0/vi this ratio is
(χi/χGB)/(I/I0) = 0.3, where χGB = ρ∗cTe/B and I0 = ρ∗2e2/T 2

e , while for the kinetic
electron case the ratio is 0.2. These lead to the conclusion that kinetic electrons affect both
turbulence intensity and spectral structure. The increase in the turbulence intensity when
kinetic electrons are included is due to a reduction in the ITG mode dielectric constant by a
reduction in the fraction of electrons that are adiabatic [9]. On the other hand, the ratio of
the toroidal momentum flux to the ion heat conductivity remains roughly the same for both
the adiabatic and the kinetic electron cases, as shown in figure 8. The fact that the ratio of the
momentum pinch to the ion heat conductivity is independent of turbulent structure is similar
to the theoretical results of [5, 20].

There is, as expected, a significant increase in particle convective flux in the case with
kinetic trapped electrons, as shown in figure 9. However, this effect is unimportant, since
the convective contribution to the total momentum flux is small in the ITG turbulence, with a
typical value of about 10% (see figure 6 for example). However, it could be more important in
the collisionless trapped electron turbulence where the particle flux could be much larger [21].

4. Conclusions

We have performed gyrokinetic simulation of the toroidal angular momentum transport in
the presence of ITG turbulence. Cases with zero and finite constant background rotation are
considered. Three aspects of momentum transport have been addressed: the effect of system
size, the symmetry breaking mechanisms and the effect of kinetic electrons. We have found
momentum flux increasing with the system size according to the gyroBohm scaling for large
device size. The characteristic scales of perturbed momentum structures remain the same in
terms of the ion gyroradius. We have observed a symmetry breaking due to the electric field
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Figure 9. Time evolution of the rms value of convective momentum flux, for the case with rigid
background rotation at ωφ = 0.2vi/R0.

shear, correlating with a residual momentum flux. However, this correlation is subdominant
in the presence of a finite background rotation. The effect of kinetic electrons has been
investigated. Simulation results show that in the presence of trapped electrons the convective
momentum flux increases by the same factor as the ion heat flux. This indicates that the
physical mechanism for these enhancements is the same and it is related to the modification
of the turbulent spectra and intensity by the kinetic electrons.
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Appendix. Particle flux in ITG turbulence with adiabatic electrons

The radial flux of particles in the ITG turbulence with adiabatic electrons can be expressed as

�n = 〈δneδvr〉 (6)

where the definition of the flux-surface averaging is

〈. . .〉 =

∫ 2π

0

∫ 2π

0
. . . J dθ dζ

∫ 2π

0

∫ 2π

0
J dθ dζ

. (7)

The adiabatic electron response implies
δne

n0
= eδφ

Te
. (8)
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We use Boozer coordinates (ψ, θ, ζ ), where ψ is the poloidal magnetic flux, θ is the
poloidal angle, ζ is the toroidal angle and the Jacobian is [15]

J−1 ≡ ∇ψ · ∇θ × ∇ζ = B2

gq + I
.

The covariant representation of the magnetic field in Boozer coordinates is

B = I∇θ + g∇ζ + δ∇ψ.

The perturbed velocity δvr is the radial component of the perturbed E × B velocity

δvr = B × ∇δφ

B2
· ∇ψ.

Decomposing the gradient as

∇δφ = ∂δφ

∂θ
∇θ +

∂δφ

∂ζ
∇ζ +

∂δφ

∂ψ
∇ψ,

we can write

δneδvEr = n0eδφ

Te

∂δφ

∂ζ

1

B2
I∇θ × ∇ζ · ∇ψ +

n0eδφ

Te

∂δφ

∂θ

1

B2
g∇ζ × ∇θ · ∇ψ

=
(

δφ
∂δφ

∂ζ
I − δφ

∂δφ

∂θ
g

)
n0e

Te

1

gq + I
. (9)

For the circular cross-section tokamak B = B0 + B1 cos θ . Since δφ is periodic in the ζ

and θ directions,∫ 2π

0
dζ δφ

∂δφ

∂ζ
= 0.

Let us represent δφ = ∑
m(δφc

m cos mθ + δφs
m sin mθ), then the following integral is non-zero

only for the m = 1 harmonics, assuming B1 � B0∫ 2π

0
dθ

1

B2
δφ

∂δφ

∂θ
= 3πB2

1δφc
1δφ

s
1

2B4
0

.

Thus, using equation (6), particle flux is

�n = −3B2
1δφc

1δφ
s
1n0eg

4B4
0Te

	= 0. (10)

The divergence of the particle flux is also generally non-zero

〈∇ · Γn〉 =
〈

1

J
∂ψ(JΓn · ∇ψ)

〉

= 1

4π2

∫ 2π

0

∫ 2π

0

1

J
∂ψ(JΓn · ∇ψ)J dθ dζ = ∂ψ 〈Γn · ∇ψ〉.

This result can be generalized to the case of non-circular magnetic field configuration. In
this case, the non-zero particle flux �n ∝ ∑∞

m=1 φ2
mB2

m, where Bm is the poloidal harmonics
of the equilibrium magnetic field. We note that the particle flux in equation (10) for the case
of adiabatic electrons is much smaller than that for the case of kinetic electrons and is of the
same order as some higher order terms neglected in the current formulation of the gyrokinetic
theory.
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