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The problem of discrete particle noise has been studied based on direct fluctuation measurements
from gyrokinetic particle-in-cell simulations of stable plasmas. From the statistical analysis of
electrostatic potential time evolution, the space-time correlation function has been measured.
Fluctuation spectra have been constructed and analyzed in detail. Noise-driven transport is
calculated using the quasilinear expression for the diffusion coefficient and the obtained noise
spectrum. The theoretical value of electron heat conductivity shows good agreement with that
measured in the simulation. It has been shown that for the realistic parameters in actual turbulence
simulations, the noise-driven transport depends linearly on the entropy of the system. This study
makes it possible to estimate and subtract the noise contribution to the total transport during
turbulence simulations. © 2007 American Institute of Physics. [DOI: 10.1063/1.2673002]

I. INTRODUCTION

Gyrokinetic (GK) particle-in-cell (PIC) simulations have
been widely used for studies of turbulent plasma since the
first working code was demonstrated in 1983." The advan-
tage of the PIC method is its ability to describe systems with
a large number of degrees of freedom? and its efficient use of
state-of-the-art computational techniques.3 Particle codes
have been successfully applied for simulating drift wave tur-
bulence such as ion temperature gradient (ITG)* and electron
temperature gradient (ETG)’ problems.

In PIC simulations, plasma is treated as a set of compu-
tational particles interacting with each other through self-
consistently generated fields. The simulation algorithm can
be divided into two major steps: first, calculation of fields
based on a given particle distribution, and second, following
the particle trajectories in these fields. The so-called “dis-
crete particle noise” is produced at the first step when the
distribution function and its moments are calculated using a
relatively small number of computational particles (N
~10' in simulations versus ~10% in experiments). Consid-
ering these particles as Lagrangian markers carrying infor-
mation about the distribution function, the problem of find-
ing moments becomes equivalent to the evaluation of
integrals in a large dimensional phase space using Monte-
Carlo techniques.ﬁ’7 Aiming to reduce the Monte-Carlo sam-
pling noise, various approaches, such as the delta-f
method,g_10 have been developed. Another source of noise is
the finite grid size in configuration space for PIC simula-
tions, or in the phase space for continuum simulations.

Many studies have focused on the statistical properties
of noise and its effect on simulated systems.z’6’7’9’13 Treating
the noise as a fluctuation of the distribution function, we
come up with the Fokker-Planck (FP) collision integral de-
scribing diffusion in phase space.14 In homogeneous systems,
random fluctuations do not produce any net flux; however, in
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the case of drift wave turbulence, where background density
and temperature gradients are present, the nonzero noise-
driven flux must be taken into account. In addition to the
generated flux, the small-scale noise could affect the dynam-
ics of large-scale modes. "

The studies of GK noise are based on the general theory
of electromagnetic fluctuations in stable plasmals.16’17 Adopt-
ing the fluctuation-dissipation theorem (FDT),'"'? the spec-
trum of the noise can be constructed and the coefficient of
the associated diffusion can be found. These approaches,
however, rely on the FDT, which is not strictly applicable in
the case of turbulent plasmas far from thermodynamical
equilibrium.m’18 Some discussions on the theory of
fluctuations in nonequilibrium systems, in particular using
the general Klimontovich approach, can be found in Refs. 10
and 19.

The approach presented in this paper does not require
theoretical calculations of noise spectra. Instead, the spec-
trum has been constructed using direct measurements of
electrostatic fluctuations from simulation. Running the GK
particle simulations with no instabilities, the only remaining
transport would be due to the noise. We must keep the finite
background temperature and density gradients in order to get
nonzero flux, however these gradients must be small enough
to prevent the development of drift instabilities. We use the
values of gradients far below linear threshold, although one
should be aware of the development of turbulence if ap-
proaching marginality.

As a result of the simulation, we can find the fluctuation
correlation function and calculate the desired transport coef-
ficient, which then can be compared with that directly mea-
sured in the simulation. Fluctuation spectra also provide us
with additional information about the nature of the noise,
which is important for understanding the effects of noise on
the drift wave turbulence. This will be the subject of future
work.

In Sec. II of this paper, we present simulation results for
the electrostatic potential and give a detailed analysis of fluc-

© 2007 American Institute of Physics

Downloaded 06 Mar 2007 to 128.200.29.247. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp


http://dx.doi.org/10.1063/1.2673002
http://dx.doi.org/10.1063/1.2673002
http://dx.doi.org/10.1063/1.2673002

032306-2 |. Holod and Z. Lin

tuation spectra. In particular, it is shown that the fluctuation
frequency spectrum is determined by the parallel wave vec-
tor and is practically independent of the perpendicular dy-
namics, which indicates that in our case the primary decor-
relation mechanism is due to the parallel particle motion.
Section III is devoted to calculation of the noise-driven trans-
port based on the statistical properties of fluctuations. We
demonstrate that for a wide range of noise levels, the heat
conductivity depends linearly on the fluctuation intensity,
which allows us to estimate the noise-driven transport using
a simple scaling. The validity of the quasilinear expression
for calculation of the diffusion coefficient, based on the
known fluctuation spectrum, has been tested. The corre-
sponding estimation of the electron heat conductivity shows
good agreement with the simulation result. We also present
direct measurements of noise-driven transport in simulations
in the presence of ETG instabilities, which are compared
with theoretical predictions based on linear scaling of trans-
port with the particle weight square. This comparison shows
very small differences between theory and measurements.
The noise contribution in the simulation with 1000 particles
per cell appears to be three orders of magnitude smaller than
the total flux. Finally, the main conclusions of this paper are
summarized in Sec. IV.

Il. STATISTICAL PROPERTIES OF THE NOISE

Statistical properties of the noise were determined di-
rectly by processing the simulation data. The simulation was
run with the gyrokinetic toroidal particle-in-cell code (GTo)®
in a three-dimensional full torus. Toroidal geometry is treated
rigorously using magnetic coordinates, which are desirable
for global simulations.® In this electrostatic simulation, one
species (ion or electron) is treated using the nonlinear GK
method, and the other species (electron or ion) is assumed to
be adiabatic. Thus the simulation here can be interpreted as
the simulation of the ITG or ETG mode with subcritical
background gradients. For convenience of notation, we use x
for the radial direction, y for the poloidal direction, and z for
the direction of the magnetic field line. The simulations have
the following local electron parameters: g=14, T,/T;=1,
al/Ry=0.36, and p,/R,=0.358 X 1073. Here R, and a are the
major and minor radii, 7, and 7; are the electron and ion
temperatures, ¢ is the safety factor, and p, is the electron
Larmor radius. The electron temperature and density scale
lengths are set to be Ry/Ly=1 and Ry/L,,=0.42, which is far
below the linear threshold for the ETG mode (Ry/Lyreshold
~4). The number of grid points in the toroidal direction is
N,=64, in the radial direction N,=120 and in the poloidal
direction at the radial midpoint N,=2250. The radial exten-
sion of the simulation domain is from 0.25a to 0.375a. The
number of particles per cell is two.

The initial random Jf perturbations have been set up and
evolve in time self-consistently using the nonlinear GK
equation.21 The value of the electrostatic potential was mea-
sured on a grid within the volume L, XL, XL,, where L,
=22p,, L,=24p,, and L.=(2/3)mR,. The diagnostic domain
was located symmetrically with respect to the radial position
at the center of the simulation domain and poloidal angle 6
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FIG. 1. Time correlation function of electrostatic potential, calculated at
spatial displacement r=0. Time separation is normalized by the transit pe-
riod gRy/v,.

=m/2. The data were collected over a period T=350 time
steps, which is equal to 12.5 transit periods or, equivalently,
to 4.5 X 10* gyroperiods.

The fluctuation spectral density is defined as the Fourier-
Laplace transform of the fluctuation correlation function

<|q)2|>a),k = f dtf dl'<q)(l‘, + t’r' + r)q)(t”r’)>e—iwt+ik-r’

(1)

where the angular brackets mean statistical averages over the
simulation domain, i.e., integration over ¢ and r’.

The fluctuation correlation function C(z,r)=(D(¢'
+t,r'+r)®P(¢',r’)) obtained from the simulations is shown
in Figs. 1-3. The one-point (spatial displacement r=0) time
dependence of the correlation function is presented in Fig. 1.
As we can see, the characteristic time scale, defined as

[tC(2,0)dt
T,=—" 0,
JC(t,0)dt
is of the order of 0.47,, where T,,=qR,/v, is the particle
transit period. One-time spatial dependence in the perpen-
dicular direction is plotted in Fig. 2. The signal correlation

function looks slightly anisotropic in x and y, which could be
explained by the presence of finite background gradients in
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FIG. 2. Spatial correlation function of electrostatic potential in the radial (x,
triangles) and poloidal (y, squares) directions. Spatial displacement is nor-
malized by p,.
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FIG. 3. Spatial correlation function of electrostatic potential in parallel di-
rection. The displacement is normalized by gR.

the x direction and the small (~10%) difference in grid size
for these directions. The characteristic space scale in the per-
pendicular direction is of the order of one gyroradius. The
correlation function dependence on parallel displacement is
shown in Fig. 3. The parallel characteristic distance is r
~0.03R,,.

The fluctuation spectra calculated as a discrete Fourier
transform of the fluctuation correlation function are shown in
Figs. 4-7. The shapes of the perpendicular spectra (Fig. 4)
are determined by a combination of the finite Larmor radius
(FLR) effects and the numerical smoothing. On the other
hand, the shape of the parallel spectrum (Fig. 5) is deter-
mined only by the numerical smoothing. Averaging in these
figures has been done over frequencies and wave numbers
other than those being plotted.

The frequency dependence is plotted for different values
of the parallel (Fig. 6) and perpendicular (Fig. 7) wave num-
bers, averaged over the perpendicular and parallel wave
numbers, respectively, and normalized by the root-mean-
square value of the fluctuation intensity. It is clearly seen that
the shape of the frequency spectra depends strongly on k,
and is practically independent of k,. Moreover, it can be
approximated by a Lorentzian form,'"*
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FIG. 4. The perpendicular wave-number dependence of fluctuation spectra
(k,, triangles; k,, squares). Wave number is in units of 1/p,.
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FIG. 5. The parallel wave-number dependence of fluctuation spectra. The
parallel wave number is normalized by 1/gR,,.

)

filw) = > ()

o + w;
where the spectral width is determined with reasonable ac-
curacy as wy=k,v,. This fact leads to the conclusion that the
primary decorrelation mechanism is the parallel thermal mo-
tion. This is important for transport scaling and will be dis-
cussed in the next section.

lll. CALCULATION OF TRANSPORT COEFFICIENTS

Considering the evolution of the guiding center distribu-
tion function in the presence of random electrostatic fluctua-
tions, the Fokker-Planck type of equation can be written us-
ing derivations similar to those in Refs. 16 and 23. The FP
collision integral would consist of several terms determined
by the fluctuation correlation function. We restrict ourselves
by taking into account only the term making a major contri-
bution to the transport, namely the guiding center diffusion
in configuration space. More sophisticated calculations might
require considering other terms, in particular the friction
term, as well.

FIG. 6. Normalized frequency spectra for different values of parallel wave
number. k.gRy=5.3 (solid line); 13.2 (dashed line); 21.1 (dotted line). The
frequency is normalized by the inverse transit period v,/gR,.
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FIG. 7. Normalized frequency spectra for different values of perpendicular
wave number. k | p,=0 (solid line); 1.3 (dashed line); 2.6 (dotted line). The
frequency is normalized by the inverse transit period v,/gR,.

Following the transition probability formalism, the
simple quasilinear expression for the mean-square displace-
ment in the x direction of the test particle’s guiding center
under the influence of the fluctuating electrostatic field can
be derived,24

(Ax®)
r BV ).

©

21c?

dow
;T<I<I>2l>w,kk§13(kmg> Sk, - w).

3)

Here, the J,, is the Bessel function of zeroth order, & is the
Dirac delta function, and V is the diagnostic volume. Equa-
tion (3) is written in the limit w < (},, and ignoring toroidal
effects, since the obtained fluctuation characteristic fre-
quency is wy/Q,~2%107* and T, < w}".

The spatial diffusion coefficient in the x direction is de-
fined as

1)

D(v) = 5

(4)
The dependence of the diffusion coefficient (4) on the paral-
lel velocity appears through the frequency in the fluctuation
correlation function, while the perpendicular velocity depen-
dence is in the argument of the Bessel function, which is the
FLR correction.

The form of the frequency dependence of the fluctuation
spectrum is crucial in determining the diffusion coefficient.
In fact, assuming, for example, a Lorentzian frequency de-
pendence, the mean-square displacement can be found ana-
lytically and it would be inversely proportional to the width
o, of the Lorentzian spectrum (2). If this characteristic fre-
quency would be determined by perpendicular motion char-
acterized by the vgxp velocity, the diffusion coefficient
would be proportional to the amplitude of the fluctuations.
Our measurements show that w, depends on parallel motion,
which is independent of the fluctuation amplitude, thus the
mean-square displacement (3) must be proportional to the
fluctuation intensity. To check this, we have varied the noise
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FIG. 8. Scaling of the electron thermal conductivity with fluctuation inten-
sity. Here x, is in v,p, units and electrostatic potential is normalized by
T,/e.

level in simulations by changing the value of the particle
weight w= 5f/f,, taking into account that the fluctuation
amplitude is proportional to w. The results for the depen-
dence of the heat conductivity on the noise intensity are
shown in Fig. 8. As we can see, the linear scaling holds up to
rms values of the fluctuation amplitude of order e®/T,
~0.01, which is much higher than a typical noise level in
PIC simulations. At these values, the quantity vgxp/7., be-
comes comparable to v,/r, and thus parallel decorrelation is
not dominant anymore.

The fact that noise-driven transport scales with the
square of the particle Weight10 is important for estimating the
noise contribution to the total flux in simulations of plasma
turbulence. At the initial time, when no instabilities have
developed, the proportionality coefficient ¢, between the par-
ticle weight w and the heat conductivity can be found,

X =cow?. (5)

Assuming linear dependency and having the values of the
particle weight available from simulations, we can estimate
the noise contribution to the total flux at any time.

As an example, we consider a simulation of ETG turbu-
lence that was run with GTC using 1000 particles per cell.®
Direct measurements of the noise contribution to the flux can
be done by the so-called scramble test. At a certain time
moment, the toroidal positions of particles are randomized,
keeping other parameters unchanged. This converts all ETG
signals into noise and thus the obtained heat transport is
purely the noise-driven one. The corresponding fluctuation
intensity can be considered as the upper bound for the dis-
crete particle noise level in the actual ETG simulation.

In Fig. 9, we plot the values of the noise-driven contri-
bution to the electron heat conductivity estimated by the
scramble test and by linear scaling (5). As we can see, the
agreement between two curves is very good, which means
that we can avoid doing costly scramble tests; instead, we
can monitor the noise-driven input to the flux from the avail-
able simulation data for the particle weights, i.e., the entropy
of the system. The values of electron heat conductivity mea-
sured in this GTC simulation show that the noise contribution
is three orders of magnitude smaller than the total flux.
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FIG. 9. Electron transport in ETG simulation: total (solid line), noise-driven
contribution measured by scramble test (dashed line) and estimated from &f
weight (dotted line). The electron heat conductivity is normalized by v,p,
and time is normalized by L;/v,.

Finally, we test the validity of the quasilinear expression
(3) by comparing the electron heat conductivity based on this
expression using fluctuation spectra presented in Sec. II with
the value measured from simulations of random noise. We
determine the heat conductivity as the heat flux divided by
the temperature gradient y,=—¢q/(nVT), where the heat flux
can be written as

2
q=- f dv%D(v) Vf(v)+ aTJ dvD(v) V f(v)

= Q— aTF (6)

Here f is the Maxwellian velocity distribution with tempera-
ture and density gradients in the x direction. The last term in
(6) is the contribution from the particle flux. It vanishes in
the simulation due to the quasineutrality condition, and thus
must be subtracted in the quasilinear calculations. The coef-
ficient @~ 1 is found by considering the case with no tem-
perature gradient but finite density gradient, such that g=0
and a=Q/TT'. The value of the electron thermal conductivity
calculated using Egs. (3)—(6) is x.q=4.18x107"" in p,v,
units, and the corresponding value obtained from simulation
is X, 4m=(2.41£0.35) X 107", As we can see, the theory pre-
diction is somewhat overestimated. A possible reason for that
is that we neglect the friction term in the FP collision opera-
tor. This is equivalent to the difference between the self-
consistent heat flux calculated in the simulations as Qg
= %mvzﬁv,;X Ofdv and the heat flux based on the random-
walk model Q=-[3mv>D(v)V f(v)dv. This problem is dis-
cussed for the ITG case in Ref. 26, and it will be studied
further in our future research.

IV. SUMMARY AND DISCUSSION

We have done a detailed analysis of electrostatic fluctua-
tion data obtained from gyrokinetic PIC simulations in the
absence of drift instabilities. From the obtained noise spec-
trum, we draw the conclusion that the primary decorrelation
mechanism is particle parallel motion, having a different
time scale compared to the plasma collective effects. Careful
studies, however, must be done on the problem of the inter-
play between noise and plasma turbulence, when the pres-
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sure gradient is close to or above the instability threshold,
which is beyond the scope of this paper and could be the
subject of future work.

We have found that noise-driven transport scales linearly
with the fluctuation intensity. This means that in turbulence
simulations, the contribution to transport due to the discrete
particle noise, typically a few orders of magnitude smaller
than the total flux, can be estimated with reasonable accuracy
either by direct measurements or based on the value of the
particle weights, using the linear scaling. Also we have
shown that the quasilinear expression for the diffusion coef-
ficient, based on the obtained fluctuation spectrum, gives a
value of the heat conductivity that is in rather good agree-
ment with the one measured directly.

This study finds that in the Jf simulation on the turbu-
lence time scale, the turbulent transport can reach a quasi-
steady state before the particle noise grows to a high level to
affect the turbulence. It addresses some of the recent con-
cerns about the credibility of the PIC approach for the simu-
lations of turbulent saturated states. Further extension of the
applicability regime, in order to treat transport time scales,
would require, however, using the full-f or revised of
method.
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