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One of the nagging, unresolved questions in fusion theory is concerned with the extent of the edge.
Gyrokinetic particle simulations of toroidal ion temperature gradient turbulence spreading using the
gyrokinetic toroidal code [Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, and R. B. White, Science
281, 1835 (1998)] and its related dynamical model have been extended to a system with radially
varying ion temperature gradient, in order to study the inward spreading of edge turbulence toward
the core plasma. Due to such spreading, the turbulence intensity in the core region is significantly
enhanced over the value obtained from the simulations of the core region only, and the precise
boundary of the edge region is blurred. Even when the core gradient is within the Dimits shift
regime (i.e., dominated by self-generated zonal flows which reduce the transport to a negligible
value), a significant level of turbulence can penetrate to the core due to spreading from the edge. The
scaling of the turbulent front propagation speed is closer to the prediction from a nonlinear diffusion
model than from the one based on linear toroidal coupling. © 2005 American Institute of Physics.

[DOI: 10.1063/1.2034307]

I. INTRODUCTION

Despite significant progress in experiment, theory, and
computation in recent years, the predictive capability of tur-
bulence and transport modeling for magnetically confined
plasmas is generally limited to case-by-case direct numerical
simulations. One of the biggest obstacles to achieving a pre-
dictive capability is understanding edge turbulence and, spe-
cifically, the dynamics of edge-core interaction and coupling.
This issue is especially crucial to understanding the forma-
tion and extent of the H-mode pedestal. In particular, the
location of the edge-core boundary is both uncertain and
dynamic (and usually posited in an ad hoc manner in trans-
port codes), so that turbulence spreading surely plays a role
in defining its location. Thus, serious challenges remain due
to the fact that virtually all models of fluctuation levels and
turbulent transport are built on an assumption of local bal-
ance of linear growth with linear damping and nonlinear
coupling to dissipation, i.e., the traditional “local balance”
paradigm of Kadomtsev.' Such models thus necessarily ex-
clude mesoscale dynamics, which refers to dynamics on
scales larger than a mode or integral scale eddy size, but
smaller than the system. In particular, zonal flows, transport
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barriers, avalanches, heat, and particle pulses are all meso-
scale phenomena.%7 Similarly, the dynamic or fluid nature of
the edge-core boundary interface is intrinsically a mesoscale
phenomenon. Such mesoscale phenomenon necessarily in-
troduces an element of nonlocal interaction, which is also
strongly suggested by several experiments, but conspicu-
ously absent from the so-called predictive models.

In our previous studies,&9 we have identified and studied
in depth the simplest nontrivial problem of turbulence
spreading, which corresponds to the spatiotemporal propaga-
tion of a patch of turbulence from a region where it is locally
excited to a region of weaker excitation, or even one with
local damping. Our published results focusing on the impor-
tance of growth and damping rate profiles in the spatiotem-
poral evolution of turbulence are in a broad, semiquantitative
agreement with the global gyrokinetic simulations of (core)
ion temperature gradient (ITG) turbulence.”'” In particular, it
has been demonstrated that turbulence spreading into the lin-
early stable zone can cause deviation of the transport scaling
from the gyro-Bohm scaling naively expected from the local
characteristics of turbulence. From these observations, it
seems likely that turbulence spreading plays a crucial role in
determining turbulence and transport profiles in the core-
edge connection region where the gradient increases rapidly
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as a function of radius. Alternatively put, since an L-mode
edge is very strongly turbulent, and since spatiotemporal
spreading and propagation of turbulence are natural aspects
of the dynamics, it is logical to consider the possibility of
backwash or spillover from the edge into the core.

Turbulence propagation and overshoot vitiate the naive
picture of turbulent transport based upon local balance,
which is assumed in virtually all modeling codes. Moreover,
energy propagation from the strongly turbulent edge into the
core can effectively renormalize the edge “boundary condi-
tion” used in the modeling calculation. This ultimately feeds
into the predictions of pedestal extent and into the so-called
“edge boundary conditions” used in modeling codes.

Il. GYROKINETIC SIMULATION OF TURBULENCE
SPREADING FROM EDGE

In this paper, a program of numerical experiments is
discussed. This aims to elucidate and study the inward propa-
gation of turbulence from the L-mode edge into the core.
This propagation generates a connection zone between the
edge and core, which may be construed as a symptom of the
oft referred to but ill-defined “nonlocality phenomena.” We
focus our studies on the simple case with an ion temperature
gradient which increases rapidly with increasing r, so as to
study the inward spreading of edge turbulence toward the
core. We note that the possibility of edge turbulence influ-
encing core turbulence has been discussed before.'"'? Our
main computational tool is a well-benchmarked, massively
parallel, full torus gyrokinetic toroidal code (GTC)." Toroi-
dal geometry is treated rigorously, e.g., the radial variations
of safety factor g, magnetic shear §, and trapped particle
fraction are retained in global simulations. Both linear and
nonlinear wave-particle resonances and finite Larmor radius
effects are included in gyrokinetic particle simulations. GTC
employs magnetic coordinates which provide the most gen-
eral coordinate system for any magnetic configuration pos-
sessing nested surfaces. The global field-aligned mesh pro-
vides a high computational efficiency without any
simplification in terms of physics models or simulation ge-
ometry. Unlike quasilocal codes in flux-tube geometry which
remove important radial variations of key equilibrium quan-
tities, such as safety factor, magnetic shear, and temperature
gradient, and use periodic boundary conditions in the radial
direction, GTC does not rely on the ballooning mode formal-
ism which becomes dubious in describing mesoscale phe-
nomena including turbulence spreading.

All simulations reported in this paper use representative
parameters of tokamak plasmas14 with the following local
parameters at r/a=0.5: Ry/L,=2.2, q=1.4, and §=(r/q)
X(dq/dr)=0.78, with T,/T;=1 and a/Ry=0.36. Here R, is
the major radius, a is the minor radius, Ly; and L, are the ion
temperature and density gradient scale lengths, respectively,
T; and T, are the ion and electron temperatures, and ¢ is the
safety factor. Our global simulations use fixed boundary con-
ditions with electrostatic potential 6¢=0 enforced at r
<0.la and r>0.9a. Simplified physics models include a
parabolic profile of ¢=0.854+2.184(r/a)?. The temperature
gradient profile mainly consists of two regions, a “core re-
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gion” from r/a=0.2 to 0.5, and an “edge region” from r/a
=0.5 to 0.8 and a gradual decrease to much smaller values
toward r/a=0.1 and r/a=0.9. A circular cross section and
electrostatic fluctuations with adiabatic electron response are
used in the simulations discussed in this paper. While this
simple ITG turbulence does not apply directly as an edge
turbulence model, it can elucidate dynamics of turbulence
spreading.

The ion temperature gradient value in the core is based
on our previous studies. In the first case summarized in Fig.
1, R/Ly;=6.9 in the core, which is above the effective critical
gradient in the presence of zonal flows R/L_;=6.0, while in
the second case summarized in Fig. 2, R/Ly;=5.3 is within
the Dimits shift regime.14 We double the value of the ion
temperature gradient at the edge to model the stronger gra-
dient at the tokamak edge. We have adopted this two-step
feature for the ion temperature gradient to make comparisons
with our previous core simulations”" and with an analytic
model'® readily feasible.

Figure 1 shows the spatiotemporal evolution of the ITG
turbulence envelope for the first case with R/L7;=6.9 in the
core. The simulation ran until #=300L;/c, when the turbu-
lence apparently ceases to spread further. The initial growth
in the edge region with R/L;=13.8 and a higher linear
growth rate is apparent from Figs. 1(a) and 1(b). By the time
the edge turbulence saturates at 7~200Ly;/c,, turbulence
spreading toward the core is already well in progress. The
turbulence spreading can be characterized by nearly ballistic
(~1t) propagation of the front with a velocity U,
=2.6(p;/R)c,. The time-average value of fluctuation inten-
sity during the last 1/3 of the simulation duration at r
=0.4a (core) is I~36.5(p;/a)?, which is about 60% above
the value 7~22.0(p;/a)* given by the core-only simulation
with a maximum gradient R/ LT[=6.9.9 In this case, the influx
of edge turbulence energy from the edge into the core is
comparable to the local growth of core turbulence.

Figure 2 shows the spatiotemporal evolution of the ITG
turbulence envelope for the second case with R/L;;=5.3 in
the core. The simulation ran until #=500L;/c, when the tur-
bulence apparently ceased to spread further. The initial
growth in the edge region with R/Ly;=10.6 and a higher
linear growth rate is apparent from Figs. 2(a) and 2(b). By
the time the edge turbulence saturates at ~300L/c,, tur-
bulence spreading toward the core is already well under way,
though the core region is effectively stable (i.e., within the
Dimits shift regime) due to self-generated zonal flows. Note
that at least in this case, the relaxation process which drives
turbulence spreading is strong enough to overcome the sta-
bilizing effects of the zonal flow shear. The evolving turbu-
lence profile is better characterized by an exponential decay
in space (with a characteristic “skin depth” ~25p; as we
reported before in the context of core simulations®) rather
than by the shape of a propagating front. The time-average
value of the fluctuation intensity during the last 1/3 of the
simulation duration at r=0.4a (core) is I~12.7(p;/a)?
which translates to an experimentally relevant value of
onlny~3.6p;/a. We emphasize that the observed quasista-
tionary fluctuation level in this region is driven primarily by
the inward propagation of fluctuation energy from the
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FIG. 1. Spatiotemporal evolution of the turbulence intensity from GTC

simulation for R/Ly;=6.9 in the core and 13.8 in the edge.
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strongly turbulent edge, since the core simulation with a
maximum gradient R/L;=5.3 would have yielded a fluctua-
tion level near zero, in the absence of collisional damping of
the zonal flows.'> We have also performed a GTC nonlinear
simulation for R/L7;=9.0 in the core and R/Ly;=18.0 in the
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FIG. 2. Spatiotemporal evolution of the turbulence intensity from GTC
simulation for R/L;;=5.3 in the core and 10.6 in the edge.

edge, and for R/L4;=6.1 in the core and R/L;;=12.2 in the
edge. As shown in Figs. 3 and 4, the results are qualitatively
similar to the case in Fig. 1 with R/L7;=6.9 in the core. The
front propagation velocity was U,=4.2(p;,/R)c, and U,
=2.1(p;/R)c, for R/L;;=9.0 and R/Ly;=6.1 in the core, re-
spectively. The time-average value of the fluctuation inten-
sity during the last 1/3 of the simulation duration at r
=0.4a (core) was I~65.1(p;,/a)® and I~22.9(p;/a)?, for
R/L7;=9.0 and R/Lz;=6.1 in the core, respectively. Since the
spatiotemporal evolution of the fluctuation profiles are ac-
companied by relatively small-scale corrugations, we have
estimated the “front propagation velocity” by displaying the
snapshots, separated by equal time steps, and by drawing a
straight line, by eye, through the “knees” which are apparent
symptomatics of the propagating front.

In particular, previous related work has demonstrated
that the intensity evolution equation is a modified Fischer-
type reaction diffusion equation. Fischer equations are
known to support front solutions, in which a “leading edge”
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FIG. 3. Spatiotemporal evolution of the turbulence intensity from GTC
simulation for R/L;;=9.0 in the core and 18.0 in the edge.

of one phase advances into the other. The leading edge is a
region of decaying exponential, which ultimately joins to a
region of constant order parameter. This connection necessi-
tates the existence of an inflection point in the solution. The
inflection point, in turn, sits at the knee of the profile. Thus,
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FIG. 4. Spatiotemporal evolution of the turbulence intensity from GTC
simulation for R/Lp;=6.1 in the core and 12.2 in the edge.

in order to relate simulation results to the theoretical models
discussed here and in previous papers, it is natural and logi-
cal to track the location of the fluctuation intensity front by
tracking the position of the knee in the intensity profile. Of
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course, this is the crudest possible procedure, and a detailed
quantitative fit to the simulation data is necessaary for a
more accurate comparison of theory and simulation.

lll. ANALYTIC THEORY OF TURBULENCE SPREADING
FROM THE EDGE

Our analytic study of turbulence spreading is based on a
model equation for the local turbulence intensity I(x,1),
which includes the effects of local linear growth and damp-
ing, spatially local nonlinear coupling to dissipation, and
spatial scattering of turbulence energy induced by nonlinear
coupling:&m’17

ﬁ_l — i (9_1 _ 1+8

P (?xX(I) P + y(x)[ - al' *P. (1)
The terms on the right-hand side correspond to nonlinear
spatial scattering [i.e., typically x(I) ~ xoI? where B=1 for
weak turbulence, and B=1/2 for strong turbulence], linear
growth and damping, and local nonlinear decay, respectively.
Here « is a nonlinear coupling coefficient. Note that « and
Xo could be functions of radius. This equation is the irreduc-
ible minimum of the model. This equation has been derived
from a Fokker—Planck-type analysis of the evolution of the
turbulence intensity field in space (i.e., assuming a random
walk of intensity with a step size equal to the integral scale
and a time step equal to the correlation time).'® The walk
yields the nonlinear diffusion term, while local evolution is
described by the growth and nonlinear decay terms. In this
respect, the model equation is similar to a type of K-e
model'®" (or, more accurately, a K model) for the turbu-
lence intensity field used in subgrid-scale modeling. Possible
extensions of our model include the additional equations for
other ﬁelds,20 and contributions to dynamics such as zonal
flows which feed back on 1.*! In this paper, we work within
the framework of a simple, single intensity field model. The
applicability of such a model to the Dimits shift regime is
somewhat questionable, as the Dimits shift is a regime of
modest deviation from marginality and small zonal flow
damping, so that zonal flow effects may be important. In the
context of the present one-field model, the stabilizing effect
of zonal flow-induced shearing (e.g., in the Dimits shift re-
gime) can be absorbed into a shift (reduction) in y(x). A
two-field model of turbulence spreading is a major undertak-
ing, which is beyond the scope of this paper. In this section,
detailed comparisons to our analytic theory are made for the
cases, above the Dimits shift threshold, presented in Figs. 1,
3, and 4.

To pursue a study of turbulence spreading based on lin-
ear eigenmodes in toroidal geometry, one should consider a
higher-order ballooning mode formalism.”*** Note that the
above equation manifests the crucial effect of spatial cou-
pling in the nonlinear diffusion term. This implies that the
integrated fluctuation intensity in a region of extent 2Ax
about a point x [i.e., fjﬁﬁl(x’)dx’] can grow, even for nega-
tive y(x), as long as x(I)dl/ ﬁx|§fﬁ§ is sufficiently large. Al-
ternatively, I can decrease, even for positive y(x), should
x(Dall o7x|x+AX be sufficiently negative. Thus, the profile of

x—Ax
fluctuation intensity is crucial to its spatiotemporal evolution,

Phys. Plasmas 12, 090903 (2005)

ty
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FIG. 5. A cartoon illustrating that the integrated fluctuation intensity in a
region of extent 2Ax about a point x [i.e., [**A*/(x")dx'] can grow, even for

X,
negative y(x), as long as x(I)al/ ox[**3" is sufficiently large. Alternatively, I

can decrease, even for positive y(x), should x(1)dl/ ﬁx|z§f§§ be sufficiently

negative.

as illustrated in Fig. 5. This notion can be further quantified
by arguing by an analogy to tearing instability theory.24 In-
tegrating Eq. (1) in radius as described above, we obtain

X+Ax

J x+Ax
—J dx’](x’,t):A’(I)I(x,t)+f dx'[y(x")I

at x—Ax x—Ax
—al"*P]. (2)

Here, A'(I)= xy(d/ 0x)[5]§fﬁj characterizes the net flux of
turbulence'® into (out of) [x—Ax,x+Ax] via a net jump in
the slope of fluctuation intensity. We recall that the classical
tearing mode stability parameter A’, which characterizes the
free energy in the equilibrium current gradient, is defined as
a jump in the slope of perturbed flux function across the
resistive layer.”* Equation (2) clearly indicates that the sign
of A’ plays a crucial role for the growth of turbulence inten-
sity. As illustrated in our previous work,? simple relations
y~A'(I)/Ax and Y, ~ U,/ Ax elucidate the physical mean-
ing of A’(I) as the influx of turbulence intensity into the
radial layer of width 2Ax. It is also instructive to note that
the tearing mode theory®* predicts yoc 75A’#5, and the re-
sistive layer width Axoc2?°A’YS  which satisfies 7y
A’ p/Ax, i.e., the magnetic flux is destroyed across the re-
sistive layer at a rate proportional to nA’.

These simple observations nicely illustrate the failure of
the conventional local saturation paradigm,1 and strongly
support the argument that propagation of turbulence is a cru-
cial, fundamental problem in understanding confinement
scalings for fusion devices in which growth and damping
rate profiles vary rapidly in space. Focusing on the weak
turbulence regime, in which global gyrokinetic simulation
results are well documented,"” we take B=1 for the rest of
this paper.

We can make further analytic progress by considering
profiles of ¥(x), a, and x, which are constant in radius.
Equation (1) is obviously a variant of the well-known Fisher-
KPP (Kolmogoroff-Petrovsky—Piscounoff) equation for
logistic-limited epidemic propagation,zs’26 with nonlinear
diffusion when y(x)>0. It is well-known that a reaction-
diffusion-type equation including the Fisher-KPP equation
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FIG. 6. Dependence of the front propagation speed and the time-averaged
value (during the last 1/3 of the simulation duration) of the fluctuation
intensity at /a=0.4 on the ion temperature gradient.

exhibits a ballistically propagating front solution. Both ana-
lytic and numerical solutions have been presented in detail in
Ref. 16. The front velocity is simply given by U,
=\V¥*Xxo/2a. This solution indicates that the dynamics of
I(x,r) developing from a localized source of turbulence
evolves in two steps. First, there is a rapid growth to local
saturation at /=(x)/ . Second, the value I=7(x)/« defines
an effective value of the intensity-dependent fluctuation dif-
fusion x=yxo/=xo7y/a. A classic Fisher-KPP front with ve-

locity U,= \«"m is a consequence of the spatial coupling
induced by a combination of local turbulence growth (with
growth rate y) and the effective diffusion (y=x,7y/«). This
front propagation on a hybrid time scale is a good example
of a mesoscale phenomenon, which would be lost in a local
or quasilocal model. It is crucial to note that the front of
turbulence intensity can propagate ballistically (i.e., Xgon
=U,1), even in the absence of toroidicity-induced coupling of
neighboring poloidal harmonics. Therefore, the rapid propa-
gation observed in simulations®’ does not imply the domi-
nance of linear coupling of poloidal harmonics. Rather, rapid
propagation should be considered as a more general conse-
quence of the nonlinear dynamics. Since the scaling of U,
from our nonlinear theory (which increases with I and ) is
drastically different from the expectations from the one
based on linear toroidal coupling,12 our gyrokinetic simula-
tions with the R/Ly; scan provide crucial information on the
dominant mechanism responsible for turbulence spreading.
As shown in Figs. 1, 3, and 4, since the front propagation
velocity changed significantly from U,=2.1p,c,/R to U,
=2.6p;c,/R, to U,=4.2p,c,/R as we increased the core gra-
dient from R/Ly;=6.1, to R/L;=6.9 to R/Ly;=9.0, our gy-
rokinetic simulation results [which approximately scale like
U, (R/Ly)"?] agree better with the scaling from a nonlinear
diffusion model'® than with that from the linear toroidal
couping U, * p;c,/R. These results are summarized in Fig. 6.

We also note that a numerical solution of Eq. (1) using
the parameters in the simulations (the case with R/L;=6.9 at
the core) shows a spatiotemporal evolution of turbulence
patches (Fig. 7) which is very similar to the simulation re-
sults shown in Fig. 1.

In the first significant numerical study addressing turbu-
lence spreading which has been performed in the context of a
global mode coupling analysis of toroidal drift waves,'? it
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FIG. 7. Spatiotemporal evolution of the turbulence intensity from a numeri-
cal solution of Eq. (1) using the parameters used for GTC simulation in Fig.
1.

was observed that the linear toroidal coupling of different
poloidal harmonics played a dominant role in the convective
propagation of fluctuations into a region with a zero-level
background of fluctuations in most parameter regimes. It is
worthwhile to note that Ref. 12 was published before the
important role of the self-generated zonal flows in regulating
turbulence in toroidal geometry was fully realized.”® In a
similar fashion to the way mean EXB flow shear causes
decorrelation of turbulence in the radial di1recti0n,28‘29 ran-
dom shearing by zonal flows™! (which was not included in
Ref. 12) would make linear toroidal coupling much weaker.
This is shown by the measured reduction in the radial corre-
lation length of the fluctuations®” as radially global toroidal
eigenmodes are trimmed or destroyed by the zonal flows in
gyrokinetic simulations."® Thus, we believe that the ballistic
front propagation observed in our gyrokinetic simulations
should be considered as a more general consequence of the
nonlinear dynamics, rather than as one due to linear toroidal
coupling. We note that turbulence spreading has also been
observed in the absence of toroidal coupling,33’34 and with
temperature profile evolution.” Analytic studies of turbu-
lence spreading have recently been extended to subcritical
turbulence as well.*®

IV. CONCLUSION

The sum of these studies suggests that turbulence
spreading is a simple, generic problem and not one due ex-
clusively to toroidal geometry. An important element of the
rationale for model building is to develop an analytic repre-
sentation of turbulence spreading. Our results indicate the
key importance of the fluctuation intensity profile and gradi-
ent in determining the spreading rate. This observation calls
into question models which attempt to treat spreading by
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averaging over a given region in an ad hoc manner.

The time-honored local saturation paradigm (i.e., y/ ki
=D) is clearly inadequate and incomplete. A finite initial
pulse of turbulence spreads on dynamically interesting time
scales, and more rapidly than rates predicted by consider-
ations of transport alone. For example, the predicted inten-
sity velocity is the geometric mean of the local growth rate
and the turbulent diffusivity. Efforts at modeling based on
the local saturation paradigm should be reconsidered. Indeed,
a recent ﬁnding37 also indicates that flux-tube intuition based
on the ballooning formalism is of dubious utility in describ-
ing mesoscale dynamics involving streamers. Since turbu-
lence can tunnel into marginal or stable regions, fluctuation
energy originating at the strongly turbulent edge may spread
into the marginal core relatively easily, thus producing an
intermediate region of strong turbulence. This phenomenon
blurs the traditionally assumed distinction between the
“core” and ‘“edge” as some profiles from experiments
indicate,*® and suggests that the boundary between the two is
particularly obscure in the L mode. It also identifies one el-
ement of the global profile readjustment which follows the
L— H transition,”** namely, the quenching of turbulence in
the core which originated at the edge. Application of this
model has helped elucidate the dynamical connection be-
tween the core and edge, and the appearance of a connection
zone, driven by the “spillover” of energy from the strongly
turbulent edge into the quasimarginal core.
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