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Dynamics of turbulence spreading in magnetically confined plasmas
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A dynamical theory of turbulence spreading and nonlocal interaction phenomena is presented. The
basic model is derived using Fokker—Planck theory, and supported by wave-kinetic-aype
closures. In the absence of local growth, the model predicts subdiffusive spreading of turbulence.
With local growth and saturation via nonlinear damping, ballistic propagation of turbulence
intensity fronts is possible. The time asymptotic front speed is set by the geometric mean of local
growth and turbulent diffusion. The leading edge of the front progresses as the turbulence comes to
local saturation. Studies indicate that turbulence can jump gaps in the local growth rate profile and
can penetrate locally marginal or stable regions. In particular, significant fluctuation energy from a
turbulent edge can easily spread into the marginally stable core, thus creating an intermediate zone
of strong turbulence. This suggests that the traditional distinction between core and edge should be
reconsidered. @005 American Institute of PhysidDOI: 10.1063/1.1853385

I. INTRODUCTION turbulence actually retreats, rather than spreads, but the dy-
namics of these processes are quite similar. Examples of tur-
One of the most formidable obstacles to achieving highbulence spreading at the back transition include Refs. 6,7.
performance of magnetically confined plasmas, sufficient foCertainly the retreat of a barrier, as at the back transition, is
controlled fusion, is the development of the capability toa classic case of “turbulence spreadifigwalanches involve
predict and control the turbulent transport of heat, particlesiurbulence spreading mediated by local gradient steepening
momentum, etc. In recent years, progress in experimentind relaxation. It is easy to see that the spatial propagation of
theory, and computation has been dramatic, yet the “Holya turbulent region or patch is a common element of all these
Grail” of predictive capacity by other than brute force, case-phenomena. This is an especially pertinent observation, since
by-case direct numerical simulation, remains elusive. Several is equally true that virtually all models of fluctuation levels
of the remaining challenges may be loosely characterized agnd turbulent transport are built on an assumptiorioofl
related tomesoscale phenomena category which refers to  palanceof linear growth with linear damping and nonlinear
dynamics on scales larger than a mode or integral scale eddyupling to dissipatiol.Here, “local balance” refers to bal-
size, but smaller than the system size or profile scaleince at a point or in a region comparable in extent to the
length™* Transport barrierd; avalancheg,and heat and par- modal width. Such models thus necessarily exclude meso-
ticle pulses are all mesoscale phenomena. Propagating trarseale dynamics. Even when bifurcation transitions are mod-
port barriers couple a turbulence quenching “front” to theeled, they usually are treated locally, leaving the question of
buildup of steep pressure gradients, strong velocity shearparrierwidth largely unaddressed.
etc. Avalanches and pulses are due to strong, local excitation |t is certainly appropriate, then, to identify mesoscale
of turbulence causing a spillover of the profile gradient into adynamics as an important category of poorly understood
neighboring region, thus triggering more strong turbulencgphenomena. In such an instance, it is usually helpful to iden-
and transport, etc., rather like the toppling of an array oftify and study in depth the simplest, most minimal problem
dominos. Experience has shown such mesoscale dynamicsiipthe genre before proceeding to consider more complicated
be extraordinarily difficult to realize in direct numerical examples. In this case, the “minimal problem” is that of the
simulations, on account of the breakdown of the disparityspatiotemporal propagation of a patch of turbulence from a
between turbulence and transport time scales. This suggestsgion where it is locally excited to a region of weaker ex-
that a simpler approach to modeling and describing mesceitation, or even local damping. Understanding the simple
scale dynamics may be productive. problem is, as we shall see, crucial to the construction and
Nearly all mesoscale phenomena involve, to some exinterpretation of numerical simulations of microturbulence,
tent, the spatial propagation of turbulence or its direct in-as well as to understanding the physical phenomena. The
verse process, namely, the propagation and broadening phenomenon of spreading or propagation of turbulence has
transport barriers. In the case of transport barrier formationpeen the subject of attention in the research community for
some time* Describing the development of a turbulent
dAlso at Isaac Newton Institute, University of Cambridge, United Kingdom. burst, such as that which occurs at vortex tube reconnection,
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is a classic problem in fluid dynamics. Turbulence spreadingf the local saturation paradigm, and strongly support the
was first studied systematically in the context of fusion plas-argument that propagation of turbulence energy is a crucial,
mas by Garbett al,*? who sought to understand and explain fundamental problem in understanding confinement scalings
nonlocal relaxation phenomena. This study compared linedior fusion devices in which growth and damping rate profiles
(associated with toroidicify and nonlinear spatial energy vary rapidly in space. We also demonstrate that the combined
transfer processes. Subsequently, spreading phenomena hafkects of local growth and nonlinear diffusion leads to a
been observed in several computer simulatioié.in the propagating fluctuation front. Such a solution exists for fi-
past two years, there has been renewed interest in spreadinge, local nonlinear saturation, and will appear as a ballisti-
on account of the hypothesis that it may be related to theally expanding front, with speed ~ (yD)2, where D
breakdown of gyro-Bohm scaling observed in numerical=Dgy/ y,.
simulations:>*’A simple theoretical model was proposed to Another aspect of the dynamics which falls outside the
support this hypothesi$:*® Later, zonal flow coupling in to-  traditional “local balance” paradigm of the ground-breaking
roidal geometry was suggested as an alternative means afonograph by Kadomtsev is illustrated by the equation for
facilitating spreading’ e(x). First, turbulence energy propagation is intrinsically
Previously, the spreading process was described by gondiffusive, sincé(s) increases witle. This is easily seen
single phenomenological equation for the local turbulenceyy observing that foD(g)=Dge, the natural diffusive scal-
intensity e, which includes the effects of local linear growth ings for the width of a turbulent patch a®~ Dyt and
and damping, spatially local nonlinear coupling to dissipa-g¢ ~ E,=g/,,. It thus follows that the self-similarity variable
tion and spatial scattering of turbulence energy induced bys x/¢(t)=x/(DyEqt)/3, so a turbulent patch spreads As
nonlinear coupling®**These effects combine to give an en- ~ (D E)¥3 in the absence of growth or dissipation. Con-

ergy equatior(loosely of the form trary to naive expectations, this actually correspondsulo-
9 diffusivepropagation, which has the property of accelerated
e Jd de 2 ) .
e _ﬁxD(S)_&X = y(X)e =y (X)e(X)%, progression at smal| followed by slower progression at late

times. In this paper, we show that a localized pulse in a

the terms of which correspond to nonlinear spatial scatterin§onlinearly saturated linearly unstable region spreads ballis-
[i.e., typically D(s)~e], linear growth and damping, and tically with velocity given byv?=y°Do/2yy.. These analy-
local nonlinear decay, respectively. Herg () is a spatially ~ Se€s also underscore the importance of boundary conditions,
varying coupling coefficient. The local nonlinear damping stability profiles, and gradient control in determining the out-
term captures the effect of saturation via coupling to smallefome of numerical simulations. Thus, the rapid readjustment
scales due to local mixing. The local saturation leyet)  and spatial spreading of turbulence intensity profiles ob-
=y(X)/ v (X) then corresponds to the traditional and timeserved in several gyrokinetic particle simulations are quite
honored “mixing length” level. This energy equation is the likely symptoms of turbulence propagation. Although it is a
irreducible minimum of the model, to which additional equa_fact that the numerical simulations capture the locally satu-
tions for other fields, and contributions to dynamics whichrated state rather accurately, it is not clear that they run for
feedback one may be added. Note that the above energysufficient time to reveal the full effects of turbulence spread-
equation manifests the crucial effect of spatial coupling ining and the secondary saturation that is sometimes reached
the nonlinear diffusion term. The latter arises as a naturaivhen the spillover of turbulence is balanced by the damping

. H H “ T H H
consequence of nonlinear coupling in an inhomogeneou&te in the numerical “buffer zoné” It is important that _
system, i.e., these simulations be properly constructed so as to “contain”

turbulence spreading, while avoiding unphysical backscatter,
boundary reflection, etc., of propagating turbulence fronts,
such as those discussed earlier.

The purpose of this paper is to discuss finendationsof
the theory of turbulence spreading and propagation. We dem-
onstrate that an equation for the mean fluctuation energy
density, with the structure given above, can be obtained by
either a Fokker—Planck analysis of the energy density evolu-
Coupling ink and scattering in space are inexorably coupledtion or by the application of quasilinear theory to the wave
In particular variation in the spatial envelope of turbulencekinetic equation. The spatial evolution equation forob-
will result in intensity profile readjustment. The energy equa-tained in each case {got surprisingly the same. Physically
tion implies that the integrated fluctuation intensity in a re-motivated argumentthased on considerations familiar from

gion of extentA about a poink [i.e.,ff_'ﬁs(x’)dx’] can grow, K-e modeling for the form of the nonlinear diffusion term

even for negativey(x), so long asD(e)de/dx|} is suffi-  are supplied as well. The crux of these arguments is that in
ciently large.Alternatively, ¢ can decreasesven for positive an inhomogeneous medium, spatial scattering and spreading
¥(x), should D(s)&s/a’rxﬁﬁﬁ be sufficiently negativeNote  are necessarily coupled to spectral transfer to small scale.
that sgn[D(s)as/axiﬁﬁ] thus defines a simple nonlocal cri- Thus, the turbulence spreading phenomena is seen to be ge-
terion, in terms of the fluctuation intensity profile, for the neric. Notice that this model is inherently different from that
influx or outflow of turbulent energy from a given interval in in Ref. 22 in an essential way, in that it describes the evolu-

radius. These simple observations nicely illustrate the failurg¢ion of the fluctuation “wave action” rather than its deviation

_ J _d
k-kK' X 24 bo|*re, — — —D—gp + k2Dsy,
(k-k _)|¢|_<| ck' €k 9x ﬁxk o~ €k

where

D= E |vrk,
K’ )

2TCL(’ .
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from the SOC value. This is important, since the symmetryin light of the fundamental nonlinear couplings of the primi-
arguments of those models do not apply to this one. tive equations.

Indeed, the model presented here has many similarities The basic components of a Fokker—Planck theory of tur-
to K—e models, familiar in the context of fluid turbulence. bulence intensity propagation a¢éx,t), the local turbulence
We consider various cases, depending on the local growtenergy density, anti(x, Ax, At), the transition probability for
and damping profiley(x), the (initial) fluctuation profile, as a “step” of the intensitye(x,t) of sizeAx in time intervalAt.
parametrized byA’ =(1/e)D(e)de/ dxX)|5., where[x_,x,] de-  Here the steps correspond to random radial couplings on me-
notes the spatial interval of interest. In particular, we aresoscales, i.e., spatial scales in excess of the mode correlation
especially concerned with the dynamics and extent of propdength and times longer than the local correlation tifne.,
gation driven by a strongly localized source and with deter-Ax>Ax. and At> 7). Thus, spreading is ultimately tied to
mining the depth of propagation into a locally stable region.the inherent fluctuations in, or unpredictability of, integral
As a simple, basic example, we demonstrate that the similaiscale(i.e., mixing length scaleeddies or modes. Here(x,t)
ity solution for an initially localized slug of turbulence, refers to the intensity at, integrated ovem, ¢. Of course,
which expands in a medium with constants yy,, andD, conservation of probability requires
exhibits a front solution propagating at constant speed. This
result suggests that local saturation models, suchDas
=y/k?, miss an important element of the dynamics. They
also suggest that toroidicity and zonal flow effects are not f d(AX)T(x,Ax,At) =1, 1)
necessary to realize ballistic spreading. Indeed, ballistic
spreading has also been shown to occur in a related system

with subcritical excitation. A variety ofy(x) profiles for the so the transition probability must be normalizable. Further-

unstable— da'.“ped transition regl_ofl.e., gra}dual, abrupt, more, y(x) here is the local excitation or growth rate, while
etc) are examined. We also consider the time required for

“ , ) . vnL(X) represents the local nonlinear damping rate, represen-
turbulence to 'tl,.lnnel thro_ugh a stgblg region of finite €X"tative of local nonlinear transfer to dissipation. Thus,
tent. Our predictions are discussed in light of, and compareda
to, results from recent gyrokinetic particle simulations.
The remainder of this paper is organized as follows. In
Sec. Il, a Fokker—Planck theory of turbulence spreading is ML) = e, (2)
presented and discussed. The local, nonlinear drift-diffusion
equation for turbulence intensity is presented and discussed. . - .
A derivation of the intensity equation based on wave kineticé’vhere Y IS a coefficient and 1/2 a<1. Typically, a~1
is also presented. Toroidicity effects are modeled by a radiaﬁOr weak turbulence_, and~1/2 for strong turbulenc_e, on
group velocity in the outboard direction, with a magnitudeaccoum of the amplitude de_pendence of the correlation time.
set by the curvature drift velocity. Section Il presents studiesThus'S(X’t) evolves according to
of the dynamics of turbulence spreading. We derive a simi-
larity solution of the nonlinear energy equation for the case
of constant coefficients. The time asymptotic solution is one (Xt +At) =z(x,t) + [¥(X)&(X) = y e (X)]
of spreading at constant velocity. Propagation in various pro-
files of y(x) is examined, as well. Section IV contains a +Jd(Ax)T(x,Ax,At)s(x—Ax,t). (3)
discussion and conclusions.
Note that the first ternfin bracket$ corresponds teadially
Il FOKKER—PLANCK THEORY OF TURBULENCE Ioca! growth anq decay, while the second corresponds to
SPREADING spatial propagation. Of course a Fokker—Planck argument as-
sumes Markovian evolutiomab initio. The justification for
In this section, we present a Fokker—Plafialodel of  this is that we are concerned with the fluctuation intensity
turbulence intensity spreading and propagation. The aim herenvelope, which is slowly varying in space and time in com-
is to derive a simple theoretical model of spatiotemporal inparison to the fluctuations themselves, i.&s<we and
tensity evolution and to understand the physics underpinningye <ke. The fluctuations themselves determine the step
such a model. We proceed very much in the spirit da sizes and times. We also neglect flow interaction and evolu-
—¢e model of turbulence by deriving a nonlinear evolution tion, and assume that the second moment of the local transi-
equation fore(x,t), the local(in radiug turbulence intensity. tion probability is convergent. Violation of the latter would
K-€e models have been used to study both fluid and plasmaecessitate a treatment @fevolution via fractional kinetics.
turbulence. The dynamics efx,t) include local growth and Now, we proceed by assuminixe’/e <1, so that an
local nonlinear dissipation, as well as nonlocal couplingsgexpansion of the interaction kernel is possible. The validity
represented by an integral operator incorporating a transitioof this approximation requires that the step six& be
probability (Ref. 24, or see Ref. 25 for a recent revjefor ~ smaller than the gradient scale of the fluctuation intensity.
spatial steps, or spreading. We first proceed via Fokker¥his approximation may fail at the edge, at the boundary of
Planck theory and thus derive a nonlinear diffusion equatioriransport barriers and in other regions with steep gradients,
for e(x,t). The structure of this equation can be understoodn which case Eq(3) becomes
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£0) + A2 = [ - yueTet
+f d(AX)T(x,Ax,At)e(X,t)
- i{f d(Ax)T(x,Ax,At)Axa(x,t)}
JX

+ E% { ( J d(Ax)T(x,Ax,At)AxAx)

Xe(X, t):| ) (4)

Now, noting the normalizability o and rewriting the inte-
grals over T yields

f d(AX)T=1, (53
Jd(Ax)TAx:<AX>, (5b)
f d(AX)T(AX)? = (AXAX). (50)

Thus, the intensity evolution equation then follows as

§s<x,t> = [9(%) - yeee(xt) - [%([VES(XJ)]

+ %[Ds(s)s(x,t)], (6a)
where
V, = (Ax/At) (6b)
is the intensity drift velocity and
D (AXAX/2At) (60

is the intensity diffusivity. Note that botV, and D, are
fluctuation intensity dependents.

Equation (6a) is a Fokker—Planck equation for the
coarse-grainedon scale ofA.) turbulence energy density.
The key unresolved issue is, of course, how to calculate th
drift and diffusionV, and D,, a challenge which, in turn,
requires us to face up to the underlying physics of radiaﬁ
propagation of turbulence energy. We argue by correspon-

dence with the familiar wave kinetic equation
oN J oN
E"'(Ugr"'v)' VN_ﬁ_X(w"'k'U)'E:?’NCNr (7)

which states that the wave population densithich usually,
but not always, corresponds to the wave action denssty
conserved along ray trajectories given by

dx

at (8a)

=vgtu,

Phys. Plasmas 12, 032303 (2005)

dk -4
—=—(w+k-v),

dt  odx (8b)

up to nonpopulation density conserving processes, repre-
sented byyycN, on the right-hand sidéRHS) of Eq. (7).
Note that integrating Eq7) overk yields an evolution equa-
tion for a local wave density. Thus, by correspondence with
Eg. (8a), in which v(x,t) is a local flow velocity on scales
large and/or slow as compared to those of the underlying
waves, andq is the wave group velocity, we can write

dx

a SUgrt (vp) + vy

(9a)

Herevy, is the radial group velocity of the fluctuations,
(v;) is the mean radial wave energy flow, aidd, is the
fluctuating large-scale flow, which induces mesoscale ran-
dom radial couplings and the resulting random walk of tur-
bulence energy density. Physicaldy, is associated with the
spatial variability of the integral scale fluctuations, and thus
must be determined by their space-time scales. Application
of standard methods from the theory of random processes
gives

d

aé)(— ov,, (9b)
0

D= f d6v,(0)dv,(7)) = Dye". (9¢)

This variability is inexorably coupled to the mixing process
which underlies the general concept of the mixing length.
The dynamics responsible for each is nonlinear coupling.

Clearly some further explanation of space and time
scales is in order. Herdp,) refers to a mean radial flow,
coherent and large scale as compared to both the underlying
turbulence and waves, and the processes responsible for the
propagation of turbulence. Crudely ptit,) may be thought
of as a quasicoherent convective cell, or a “streamer” flow
field.

év, then is due to fluctuations in this flow field, on ac-
count of nondeterministic behavior in the radial convection
velocity. Thus,év, corresponds to fluctuations in the radial
flow induced by integral scale eddies and waves. Note that
the model thus involvefour scales namely,Ax. (the corre-
Ieation length of the basic turbulenge¢ (the length scale for
random walk of turbulence intensjtyA¢ (the length scale of
uasicoherent convective célland the macroscopic scale
engths associated with gradients and the system size. In
practical terms,5¢ is set by the turbulence mixing length
scale. Again, we see that the concepts of turbulence spread-
ing and turbulent mixing are quite closely related, and both
stem from the same characteristic scale of turbulent motion.
We caution the reader here that the mixing length does not at
all necessarily correspond to the linear mode width, as is
usually assumed.

The fluctuationsév, on scalesé¢ correspond to fluctua-
tions in radial flow rates induced by large incoherent eddies.
These motions may be thought of as somewhat related to
“avalanches,” except that here we are concerned with trans-
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port of fluctuation intensity, not heat, particles, etc. Never-cay, respectively. Equatiofillb) represents a hybrid of a
theless, the obvious synergism between gradient drive andave kinetic equation and la—e model equation for turbu-
fluctuation level strongly suggests that these two phenomenrance, as a consequence of its mixture of linear and nonlinear
are related, and that intensity bursts are possible. Thus, affects. Note also that the diffusion here is nonlinear, since
inclusive model of turbulence propagation should treat theD ~&“. The space-time dynamics of the turbulence intensity
evolution of profiles and the electric field, as well &%, t). are described by Edq11b), which can be recast in conserva-
Indeed, simple forms of such an archetypical model havdive form as
already been constructed and used to describe transport bar-
rier dynamics(which may be thought of as the spreading of %4 ira =S,. (123
“antiturbulence). Here, however we focus on self-scattering gt ox
and self-spreading of turbulence alone, and thus do not Ahere
tempt to present a complete model including profile evolu- ’
tion. It is, however, important to stress that the statistical
structure of the transition probability needt be Gaussian.
Indeed, studies of avalanches lead us to expect That
likely quasi-Gaussian for moderafe, with a non-Gaussian is the intensity flux and
tail for large Ax. The latter may indeed be a power law, _ _ @
which in turn could render the second momelats given in S =00 = muefle (129
Egs. (6b) and (60)] of T undefined. In such a case, the tur- is the local source and sink. The intensity flux contains de-
bulence propagation will be strongly bursty and intermittentterministic drifts (proportional tovy,) and a nonlinear Fick-
and must be described via a fractional kinetics appr&gch. ian diffusion term(Dg &%) de/dx, the latter implying that
Proceeding with the calculation, we hereafter assumeurbulence intensity gradients drive a diffusive flux of fluc-
(for simplicity) that no large-scale coherent flow is presenttuation energy. Nonlinear interaction and coupling enter in
and thus ignorév,). We shall later consider a simple model two ways, namely, as a local sink on the RHS, which repre-
that includes the radial mean intensity flux driven bysents local transfer to dissipation, and as spatial coupling
fluctuation-fluctuation coupling. Such a model has differenteffects on the LHS. This reflects the fact that the nonlinearity
characteristics, since the nonlinear diffusione@X,t) occurs  scatters fluctuation energy both spatially and in wave number
via its advection by the mean radial flow similar to the ad-space.

de
I.=(vge) - (Do,asa)g (12b)

vection of a passive scalar. Equation(123 also gives a simple relation for the time
Thus neglectindv,), V, andD, may be written as rate of change of fluctuation energy in the finite interval
- [x_,x,]. Integrating Eq(123 straightforwardly yields
V, = vgix) +V,, (108 ’
&—E——F|X++s (13
D, =Dg & (10b) ot ek T

Here, as beforeq=1 for weak turbulence and=1/2 for  where T',[}* is the net flux infout of the region arlis the

strong turbulence, wherB, , gives the relevant scaling of integrated sink term. ThusjE/at>0 is possible if either

the diffusion coefficient for fluctuation intensity, which in [*>0 orS>0, so that a linearly stable region can support
. . . . . EIX_ !

practice is set by the scaling of the nonlinear couplings ag c1;ations which are excited elsewhere and couple into it.

Iarge scales. Following the Stratonovich caIcﬁTueterpre- Even if S<0, a sufficiently largel,[** is sufficient for local
tation of the Fokker—Planck theory, , corresponds to that . . : -
: growth. It is also interesting to observe that

piece of the drift, which is associated with the spatial gradi-
ent of D,, i.e., T = vyl +ALe, (143

~ J
Ve="(Dgae). (119  where
ox
i i i i J DO a81+a X
Thus, nonlinearity and fluctuation profile structure produce a  Alg= ——*——| .
mean turbulence energy drift, as well as a diffusion. The ox l+a |y
equation fore(x,t) can then be written as

(14b

In the absence of local sources or radial wave propagation,
we see thabE/dt >0 requiresA’e >0, which defines a con-
dition on the fluctuation intensity profile for local growth.
(11b) Obviously Ale >0 implies a netinflux of turbulence to the
region[x_,X.], while A’e <0 implies an outflow. As is ob-
Equation(11b) is the working equation foe(x,t) which is  vious, shouldA e be sufficiently large, growth in the region
the primary focus of our attention hereafter. The variouscan occur even ify<0.
terms in Eq(11b) correspond to linear propagation of energy It is also illuminating to amplify and extend the discus-
by waves, spatial flow of energy induced by fluctuation in-sion of the relationship between turbulence spreading and
tensity gradient, spatial diffusion of energy by random non-mixing length theory. For simplicity, consider simple shear-
linear couplings, and local linear growth and nonlinear de-driven, incompressible Navier—Stokes turbulence. In that

d 1% 1% de
—e+—[(v ——Dg e =[v(X) - “e.
&ts 8X[( gs)] ax 0 € X [¥(X) = yaLe“]e
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case[for \_/=V(x)2+\~/], the mean intensity flux/(x) evolves =~ models of turbulence. Note also that this analysis pinpoints

according to the Reynolds averaged equation the fundamentally nonlinear dynamics of spreading, since
this phenomenon emerges directly from a consideration of
J VLY V) the triple moment
—(V(X)) == —(V, V) + v—>3", (159 pie moment. ,
at IX X Wave kinetics yields yet another alternative and useful

while the average turbulence kinetic energy evolution is govper§peptlve on tu_rbul_ent spregdmg. See. the Append!x for a

ermed by derivation of a bivariate diffusion equation using this ap-
proach.

2 e(x0) + = (Vo) =~ Uy (vy - L, P

(;t<8(x’ ) ,;x< xe) ==V Z>(;X< 2 ax< xP) lll. DYNAMICS OF TURBULENCE SPREADING

-] V\_/|2>. (15b) A. Intensity front dynamics and propagation

In this section, we examine the dynamics of turbulence

Here,e=|V[2/2, p=1 for convenience, and symmetry ynz ) ) .
is assumed. Equatiail5b) states that the mean flow evolves s_preadmg.and prop.agatlon, as described by the energy den-
sity evolution equation

via Reynolds stress-induced momentum transport and vis-
cous dissipation, while Eq15h) balances fluctuation energy de de 4 ( N (98) : wrl
input by Reynolds work and pressure work, with energy — gr T U9gx ~ gx| D08 D=2 | = ¥(X)e =y (¥)e®,
transport and viscous dissipation. For inconlpressible turbu- (19)
lence, the pressure work is negligible and {hgp) term is
hereafter neglected. This system of simple averaged equéerived by Fokker-Planck methods in the preceeding sec-
tions may be closed by invoking the mixing length hypoth-tion. For the case where=1 (weak turbulencg y=0, yy_
esis, which relates fluctuations to “mixing” of averaged=0, vg=0, andDy=const, Eq.(18) has a well-known self-
quantities over a scalé, called the mixing length® In the  similar solutiorf®

mixing length ansatz, the fluctuation axial fldw is given A
by e(x,t) = tl_’?’[l -x2/d(t)210(|d(t) - X)), (199
~ IV
V,=- 6%, (169  Where
d(t) = (BADg) Y43, (19b)

and the energy density fluctuation by This solution expressed in terms of the similarity variable
¥e) x/d(t) ~ x/t3, describes the self-similar subdiffusive expan-
—. (16b) : . : e
IX sion of an initially localized slug of turbulence with initial
- impulse A= [dxe(x,0), wheree(x,0) has compact support.
Note that Eq.(168 may be rewritten agV,/(V)[~¢/L,,  Hahmet al!® considered the effects of and yy_ on this
whereL,*=|(1/(V))a(V)/ x|, which has the traditional form case perturbatively, with encouraging results.
of a mixing length rule. For flow in pipes or jets, the mixing The other case isg,=const, y=const, andyy =0, for
length ¢ is usually associated with some macroscopic scalewhich another similarity solution can be obtained, which is
such as the distance from the wall, etc. In plasma confine- (1= (x= v 7d(®)?)

F=-

ment guesstimated, is usually related to a linear mode e(x,t) = Ae” " 7 6(|d(t)—(x—vgxt)|)
width or (preferably a radial correlation length. (" =11/

Equations(15@ and(15b) then can be reexpressed as (203

d a Ky & where now

—t<V> =T ok T VPM (179

XX d(t) = (6D6A) (e~ 1/ y]*™, (20b)
and

Notice that the effect of group velocity is easily captured by
2 - a Galilean transformation. Convective propagation toward
) - K(VV)?). (17D the low-field direction may be viewed as a surrogate for
spreading via toroidicity-induced coupling of poloidal har-
Here, the turbulent viscosity; (also called the “eddy vis- monics. This solution does not saturate, and it spreads “ex-
cosity”) is given by ponentially” fast, due to the fact that the nonlinear damping
12 is set to zero. Indeed, it seems clear that exponential spread-
vr=(e)"A. (170 ST .
ing is indicative of the neglect of proper damping or satura-
Equation(17b) states that fluctuation energy spreads diffu-tion processes in the theory. In addition to their intrinsic
sively at the same rate at which the mean flow relaxes. Thiphysics interest, these solutions define practical benchmark
simple exercise suggests that just as turbulent transpocases for any numerical solution of Ed.8). Figure 1 dem-
mixes mean quantities during relaxation, it also mixes andnstrates the excellent agreement between numerical solu-
transportdluctuation energyThus, turbulent spreading goes tions and the analytical, self-similar solutions. The numerical
hand-in-glove with mixing dynamics and mixing length solutions establish the relevance of the similarity solutions:

By 9 He)_
&t<8> v —VT(

ax | ax

)
X
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Initial Spreading for constant Spreading of turbulence for =0
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FIG. 1. Behavior of the solutions for the cagasy=0.5 and(b) y=0.0, with yy, =0. The dots correspond to the result of numerical integration and the solid
line corresponds to the exact analytical solution. fei0 the usual scaling=x/t'? is obtained, whereas foy=0.5 exponential spreading is observed.

the final asymptotic forms are nearly independent of the ini- ) 1 _ d(t)cosh‘l(ed“)/Z)

tial conditions. Note that these are not “traditional” solutions ~ d'(t) = 2 2e A4 +e290 = (233
of the diffusion equation, since the nonlinear term plays an "

important role in setting the diffusion rate. Another class of ;.4

solutions of interest is that for the casg=const, v\

=const andDy=const. As this case corresponds to constant 1 Ocosh(ed/2)

or slowly varying background, it is discussed in some detail ~ f(t) = 1 — 4g72d0 4 (= 4 +eXdMy32 - (23b)

here. After the re-scalingsx— (yy./2Dg)Y%,t— vt,&

— (mu/v)e(x,1), Eq.(18) may be rewritten as An implicit solution ford(t) follows directly from Eq.(233

de 1 &2 in the form

—-———&’-¢e(l-¢)=0. (21

at  4ox
Equationg20g and(20b) are immediately recognizable as a
variant of the well-known Fisher—Kolmogorov—Petrovski— ., . : : : '
Piskunov (Fisher-KPP equation for logistic-limited epi- £
demic propagatioﬁ?’31 now with nonlinear diffusion. The
Fisher-KPP equation is a reaction-diffusion type equation
which is well known to exhibit spatiotemporally propagating |
front solutions’> A numerical solution of Egs(20a and
(20b) (for localized initial conditionsis shown in Fig. 2.
This rather clearly suggests that the profilestk,t) time-
asymptotically approaches an expanding front, which decays osf
exponentially in space. This structure is similar to that of a
“leading edge,” which is a well-known solution of the Fisher
equation. Motivated by these observations, we ansatz the
similarity solution

e(x,t) = f(t)(1 — e x-d0l — ghxrdvly (22)

1]

Equation(22) describes a bounded, localized solution with _,¢ . . s . . ol
extent 2i(t) and with two expanding fronts, propagating in - - ° : ° )
opposite directions at speeldt), where the dot denotes dif- . _
ferentiation with respect to time. Substituting E§2) into FIG. 2. Constant velocity expansion for the cagesconst andyy, =const.

’ The numerical simulation represented by the dots is in excellent agreement

Eq.(21) yiel_ds(for t.—>°°) a differential equation fod(t) and it the asymptotic analytical solution represented by the solid lines. Even
an expression relatind(t) to f(t). These are more complex initial conditions approach the same asymptotic solution.
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sini{2 cosh(e¥V/2)] - 2 cosh’(e4V/2) = €. (24)  due to localized pulse initial conditiongorces nontrivial

_ _ _ envelope dynamicsi.e., spreading av=("Dy/2yn)Y.
d(t), as given by the solution of Eq24), defines an exact, These nontrivial envelope dynamics occur on time scales
asymptotic solution of Eq21) in the form suggested by Eq. |gnger than those local fluctuations but much shorter than

(22). Itis interesting to observe that for-, Eq.(24) has  gangport time scales, and thus are a prime example of me-
the simple solutiord(t)=t/2. Restoring dimensional quanti- ¢5scale dynamics.

ties, this implies that the fluctuation energy front expands
according to

d(t) = vt (259
) ) We now consider the spreading of turbulence into locally
with a constant front velocity marginal or damped regions from zones of linear
¥?D, \ 12 instability.19 To understand the radial spreading of turbulence
v= (—) (25D into a linearly stable region, we should consider what hap-
pens near the boundary between stable and unstable regions.
This solution suggests that the dynamics:0f,t) devel-  The simplest way to model such a boundary is to assume
oping from a localized source evolves in two steps. Firsty(x)=y0O(-x), where©(x) is the unit step function. The tur-
there is rapid growth to logistically limited local saturation at bulence in the unstable region is expected to grow until a
e=vylyy . Second, the value=vy/yy_ defines an effective local saturation is reached, and to spread until it covers the
value of the fluctuation energy diffusiorD=Dge/4  entire unstable region. The turbulence will then start to
=Dgy/4yy . The effect of the spatial coupling induced by “spill” into the stable region, leading to a steady state in the
such diffusion then combines with local growth to produce along time limit. This steady state is reached when the rate at
classic Fisher-KPP front with velocity=(2yD)Y2. Hereyis  which turbulence spills into the stabler damped region is
the local effective reactiofgrowth) rate, which corresponds equal to the damping rate of turbulence in the region. Thus,
in this case to turbulence growth, abdis the net effective for the marginally stable case, it takes an infinite time to
diffusion, D=vyDy/4yy.. It is interesting to note that the actually reach a steady state, which involves an infinitely
front of turbulence energy propagates ballisticailg., d(t) large damping region with an exponentially decaying inten-
=ut]. This occurs in the absence of toroidicity-induced cou-sity profile. It is possible to estimate this steady state solution
pling of poloidal harmonics. Thus, rapid propagation ob-based upon local balance and the matching conditions at the
served in turbulence simulations does not follow exclusivelyboundary. The steady state profile in the 0 region satisfies
from linear coupling of poloidal harmonids.e., ballooning 1
effect9, but rather can be a more general consequence of the =g,(¢?) +& —&2=0. (269
dynamics. Indeed, this dynamical ballistic expansion rate can
easily exceed that due to toroidal coupling. Note that formultiplying by 4,(¢2) and integrating, we obtain
standard “gyro-Bohm” scalingsy~uv+i/L,, yw ~vTi/L,

and Do~piZUTi/Ll, sov ~ pjuti/L | ~ V4. In this normaliza- e/ (X)= + (e - 1) /s(x)2+ ES(X) + }_ (26b)
tion, ¢ is dimensionless and is scaled to the square mixing e(x) 3 3

length level, sce~ 1 at local saturation. Takingg, of order . . . .
of the curvature drift speed for the purposes of simulating thelzt Is possible o further integrate and then invert E26b) to

coupling of poloidal harmonicsygc~ pur/R~ éVar. Thus, Obtain an exact solution fag(x). However, for quantifying

vivg~(1/e), so we find that dynamically driven expansion the_sp|_llover of turbulence, only th? sqluthn n .tl =0
g . L . region is relevant. The relevant solution in this region can be
and spreading can progress ballistically, and in faster

X g . .
than geometrically induced spreading due to toroidicity. Thewmten ase=age™. To find a one should match the solution

speed of this dynamically induced ballistic spreading is se?nd its derivative across the discontinuity, i€=zo and

by the geometric mean of local growthe., reaction ratey) go—1 |, 2 1

and diffusion (D=Dye=Dgyy/y\.). Note also that ballistic €0 g0t 3%t 3= "% (279
front propagation at finite speed requires finite local nonlin-

ear dampingi.e., y, #0), S0 as to allow a meaningful lo- Which yieldsap=1/22/%, Hence, in the linearly stable region,
cally saturated state. Indeed, local nonlinear damping is eghe solution is

sential in order to accurately distinguish between nontrivial y {e(x) _m}
spreading phenomena and simple readjustment of an unsat- €= 213 ,
urated intensity profile. The implications of neglecting non- I
linear damping in Eq(18) are further elaborated later in this where\=+/(2Dy/ y\.) is thus the skin depth or penetration
paper. Whereas E@22) together with Eq(24) or Eq. (253 length of the turbulence. The results of a numerical study of
is an example of ballistic spreading, the solution in Elg  the same problem are shown in Fig. 3. Note that the solution
is an example of exponential spreading. More generally, thiseached steady state in about 50—100 time ynidsrespond-
simple example is a splendid illustration of the breakdown ofing to w;}) and is in good agreement with the analytical
the local saturation paradigm. In particular, this result statesolution. It should be noted that the final turbulence profile
that though the turbulence comes to a local saturafien, appears to be more or less independent of the initial condi-
v=vnLE), the presence of a gradientér(i.e., a leading edge, tions for this equation.

B. Intensity spillover into a stable region

2L

(27b
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Steady state solution I(x) €

08F

X range X
06

____________ FIG. 5. Turbulence penetration depth calculated by considering eddies that
are traveling with constant speed in theirection, while being damped. An

04 obvious analogy is with kinematics, where the height is relatesl to

a linearly damped region, the skin depttiemains the same,
but the turbulence definitely terminates»atxg, in contrast
o = L . yeaae * : to the finding of_exponenhal decay_for the=0 case. When
x the growth rate in the unstable regigg and the decay rate
FIG. 3. Steady state solution for steplikéx) profile, wherey=0 in the in the decaying regiory, are not equal in magnitude, a more

stable region. The dots denote the numerical integration, whereas the solgeneral expression fofO can be written as

line is the analytical solution in the outer region calculated by a matching
argument.

1
1
1
'
0.2 1
'
1
\
1

3 /
Xo=\ cosh‘l(——(%JL + 1) . (28b)

2[4(1+ 'YQ/'Yd)]lB
Notice thatx,, which is the termination point of the turbu-
When the case of two regions, one wifh>0 and an-  ence region, varies mainly withy,/y, such that fory,
other with y<<0 (i.e., %4=|¥], ya=-|7], whereyg andysare 5. the turbulence penetration depth becomes large.
the linear growth and damping rates in the corresponding  another straightforward way of computing the turbu-
regions is considered, a very similar picture emerges. In facience penetration length is to consider the turbulence in the
it is not difficult to find the solution fore(x) in the y<<0 decaying region as being made up of eddies of decaying
region by matching the function and its derivative across thg,rpulence. As the eddies enter the damped region they will
interface. The solution in that case turns out to be persist for a lifetime or a “flight time” defined as the time of

4 EY X = Xo decay of an eddy of initial “heightz. It is clear that
£=—O(X)O(X—X0)— smr?(— , (283
3 L 2 tiight = /74,

where xo=\ cosi(7/4) to match the solution in the>0  wherey, is the decay rate. In practice, this is the time it takes
region. This solution is shown in Fig. 4. Thus, in the case offor ¢ to e-fold in the damped region. Since the left hand side

of Fig. 5 corresponds to the saturated region, in which the
expansion is ballistic, with velocity given in Eq25b), the
range of the eddy is

€ /D
Thesseenn,, .. T AX = vtgigne = —0
9 2vq
08 .,

. This is essentially the same as which was calculated by
L w ) ] solving the steady state problem exactly in the two regions
sk . and matching these two solutions. It is remarkable that al-
though the flight time and the velocity both change in the
damped regiorithe expansion is not ballistic in the damped
region), probably due to self-similarity, this simple argument
still gives the correct answer.

Steady state solution I(x)

o.2f

]

]
02 ! Notice that although the above argument for the turbu-
o4 ! _ lence penetration, assumes ballistic spreaciimg the stable

e inia il bbbty region as well as the unstable regipit is dimensionally
-osr 1 valid for other cases as well. This is particularly relevant for
08 s - : : s boundary control of numerical simulations, in which turbu-

N ° : ) ° . lence penetration, into a stable boundary buffer layer, can

. . _ _ occur. The depth of this penetration in numerical simulations
fIG. 4." Stgady state solution for steplllyéx) prpﬂle, wherey<0 in the seems to be roughly a fem’s. However, it is not clear if
stable” region. The dots denote the numerical integration, whereas the solid ~ . . ” .

line is the analytical solution in the outer region calculated by a matchingthis is the true “steady state” after turbulence spreading. Fur-

argument. ther study of the effects of penetration and spreading into the
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Turbulence profile around a locakzed turbulence source Turbulence profile around a localized turbulence source
e 4 T T L) T

ast @)

FIG. 6. Turbulence due to a strongly localized source modeling the spreading of turbulence that is produced in the edge, into the deyevtegrion,
is varied buty is kept constant(b) when y,, andy are varied in such a way that yy, is kept constant.

buffer layer of the simulation domain is clearly necessaryto explain such a region. This transition region could have
For instance, Eq(28b) indicates thatyy, which is related to  significant impact on confinement predictions, as it would
the damping that is introduced near the boundary of simulaextend the effective extent of the edge.

tion domain, should be largée., larger than the growth rate

in the simulation domain If this is not the case, turbulence C. Tunneling through stable gaps

will penetrate more than just a few’s into the buifer layer, We have demonstrated that turbulent fluctuations can

and then be reflected and backscatter into the core. Morﬁéak or spill into stable regions. This suggests that they can

\?v\;\?cr;’htZﬁl C?;;;is;r?]?n': d(ijaetgvftla:crlrjc;:i]otr]hsein?glrggilunrrol\(jlilr’ealso tunnel through locally stable regions of finite wicitle.,
y ' “gaps” in the growth rate profije The tunneling problem is

;gz:;t'r;ergg(:ﬁ: )S(’SV;/]Z'SB (Ians(iil;Jndaieae\(/jeeﬁé?de:esepnoer;?eii;cr)l tg(i",lemonstrated in Fig. 7. We considered tunneling through
' gerp - “Both marginally stable and heavily dampeg= y,) regions.

%Such gaps might correspond to small local transport barriers,

where y(x) <0, which form on account of pressure gradient

When a localized source of turbulence is considered, the ; o .
. S . teepening, mean electric field shear, islands, etc. The pre-
spreading effect is similarly important, and therefore shoulas.

; . ~ diction of exponential decay for a marginal region with
ggne)ézmtla ?g??ﬁﬁ;ﬁg‘f é?y%@sg)nzhié%?#]lé??:rpgr:;attrhae =0/[i.e., Eq.(27b] indicates that the turbulence camentu-
P o' Vd g ally tunnel through marginally stable gaps alf sizes Of

damping rate is small. This suggests one particular appllca(Eourse, it will take a very long time to tunnel through larger

tion of the penetration idea, namely, the spreading of turbu- aps. A simple but interesting plot of gap width versus tn-

lence towards the core region when it is produced in thel b . - o . o
strongly turbulent edge, as in L mode. In this case if thenehng time is given in Fig. 8. This plot indicates that the

damping rate[i.e., maxXvy ,79] is small, the turbulence expansion of turbulence into the linearly stable regiaith

would spread a distance A= x, [see Eq(28b) for x] into nonlinear da_mpm)g proceeds in tlme_z asc- " W't.h "

the core. Figure 6, showing the turbulence due to a localized 1/4-1/5. Finally, a complete analysis of propagating front
source, can be thought as a visualization for the spreading of

turbulence, which is produced in the region of steeper gradi- €
ents as in an L-mode edge, into the core region. A simple
analog is that of a sprinkler. Additional dependenceyqp,

the nonlinear damping rate, is shown both for fixetso that

as yy. decrease the local saturation level increaaed for
fixed y/yy . This figure also clearly shows that quite deep 70 >0
spreading into a quasimarginal region is possible. This effect —
is particularly important in hot L-mode plasmas, where the
core, likely to be marginal with respect to ion temperature

the opposite effect when the zonal shears are strong.

gradient driven mode8TG), is adjacent to a turbulent edge. =0

In such a case, the dynamics of spreading from the edge x
. o\ . I II I

would produce a strongly inward turbulent transition region

interTBediate betVVeen the _marginal core and the _turbmerﬁlG. 7. A sketch of the turbulence tunneling problem. “Tunneling” is said to
edge’” No additional instability mechanism need be invokedhave occurred when turbulence is observed in the third region.
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FIG. 8. Turbulence tunneling time vs width of the stable region. The initial
time offset is the time elapsed before the turbulence spreads to the edge of
the gap. The solid line is a power law fit to an expression of the form
Ax/(At)". Here Ax is normalized to\=+/(2Dy/ y.) and time is normalized

to the linear growth rate.

Phys. Plasmas 12, 032303 (2005)

to a variant of the familiar Fisher-KPP equation. A bal-
listically propagating front solution, with V
=(v’Do/2y)Y? is shown to emerge from the
asymptotic limit of a similarity solution. The solution is
consistent with the behavior of the well-known leading
edge behavior of Fisher fronts.

The penetration of a stable region has been studied. In
particular, the depth of penetration into a marginal re-
gion as a function of time has been determined, and the
penetration depth into a damped region has been calcu-
lated. In particular, significant turbulence penetration
from a strongly turbulent edge into a marginally stable
core is shown to be possible. Several studies of the in-
teraction of a propagating front with a stable “gap” re-
gion[i.e., wherey(x) <0] have been completed. Results
indicate that turbulence can jump through modest gaps
on dynamically interesting scales.

These results have many implications of interest in the

context of confinement physics. These implications are as
follows.

position versus time for varioug(x) profiles can be found in
Fig. 9. Fi i Y
g. 9. Figure 9 systematically compares turbulence sprea
ing, first without nonlinear dampin@Fig. 9a)], then with
nonlinear dampindgFig. 9b)]. Note that in the absence of
local nonlinear damping, the front position extends without
limit exponentially. Even caséc), which has a substantial
region with y<0 shows no tendency of saturation. On the
other hand, with nonlinear dampir{gig. 9b)], spreading
can saturate, depending on the profileygx). In particular,
case(c) now saturates. The mechanism of this saturation is
nonlinear coupling of the stabléy<0) and unstable(y
>0) regions mediated by spreading. Note also that, even
with nonlinear damping, the turbulence can jump gaps in
¥(x), as in casdg), for example. Notice that for cagé),
since the particular gap size is larger than the turbulence
penetration depth, tunneling does not occur, however fol3
smaller gaps, the same dynamics results in tunneling for that
case as well.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have studied the dynamics of turbu-
lence spreading and nonlocal phenomena in magnetically
confined plasmas. The principal results of this investigatiorm)
are listed below.

(1) A model for the local turbulence intensity evolution was
derived using Fokker—Planck theory. The model is fur-
ther elucidated by comparison and contrast with wave
kinetics and withK-e type turbulence closures. The
model involves local growth y(x)], local nonlinear
damping [ vy ()] nonlinear diffusion(D,=Dge®),
and radial group propagation as a mock-up of toroidicity
effects.

(2) The simple model has been extensively explored, using
combined analytical and numerical calculations. For the(5)
casey=1yy_ =0, a well-known self-similar solution indi-
cating subdiffusive spreading is recovered. More inter-
estingly for constanty, yy., andD,, the model reduces

The time-honored local saturation paradigie., y/k*

=D) is clearly inadequate and incomplete. A finite initial
pulse of turbulence spreads on dynamically interesting
time scales, and more rapidly than rates predicted by
considerations of transport, alone. For example, the pre-
dicted intensity velocity is the geometric mean of the
local growth rate and the turbulent diffusivity. Efforts at
modeling based on the local saturation paradigm should
be reconsidered.

) Ballistic fluctuation energy front propagation is possible

via dynamics alone, and does not require toroidicity-
induced coupling, zonal-flow induced side-band cou-
pling, and other intricate effects. Such front propagation
may break gyro-Bohm scaling.

) Since turbulence propagation fronts can jump modest

gaps in the local growth rate profile, the width of a trans-
port barrier probably must exceed a certain minimum in
order for a barrier to be identifiable. Additional physics
in the model may be necessary to define a barrier, as
well. In particular, modest regions of linear stability may
not correspond to the locations of barriers, and the linear
growth rate may not be a good indicator of a barrier.
Since turbulence can tunnel into marginal or stable re-
gions, fluctuation energy originating at the strongly tur-
bulent edge may spread into the marginal core relatively
easily, thus producing an intermediate region of strong
turbulence. This phenomenon blurs the traditionally as-
sumed distinction between the core and edge, and sug-
gests that the boundary between the two is particularly
obscure in L mode. It also identifies one element of the
global profile readjustment which follows the—H
transition, namely, the quenching of turbulence in the
core which originated at the edge.

Tunneling can also allow turbulence to penetrate the
“buffer layers” usually setup at the boundaries of nu-
merical simulation domains. Note that should the simu-
lation run time exceed the buffer layer penetration time,
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FIG. 9. The front position vs time for various steplikéx) profiles(a) with yy, =0 (i.e., locally unsaturated turbulencéb) y\, =1 (i.e., locally saturated
turbulence. Notice that in(b), y(x) profile of (f) gives exactly the same result as the profilé®f since the steady state turbulence skin depth is less than the
gap size for this particular gap size. In particular in p@jtit is clearly seen that if there is no saturation, the spreading is exponential, even when the
turbulence is strongly damped in one regjae., as in profile(c)]. Part(b), on the other hand, demonstrates the phenomena of reaching steadliyesteftar
profiles(c) and(h)], constant velocity front propagatidne., for profile(e)], tunneling through barriers and later assuming the same $pegdor profile(g)],

and finally a constant speed spreading followed by a decelerating phase in the marginally stable region fad)profile

unphysical backscatter of energy from the boundary mayion would likely inhibit turbulence spreading. Indeed, the
occur. Thus, spreading phenomena may limit the time ophenomenon of transport barrier formation is a special case
validity of numerical simulations. of turbulence spreadin@.e., turbulence retrepntThe inhibi-

_tion of turbulence spreading by means of shear layers has

We identify and discuss two extensions of the baSICbeen predicted by, and observed in, several models of fluc-

theory. These will be addressed in detail in future pUb“Ca'tuation energy and mean flow evolution. Alternatively mod-

tions. First, we consider the role of toroidicity and its conse- : : . .
erate zonal flow coupling migrgnhancespreading via spa-

quent induced coupling of poloidal harmonics on turbulence

energy propagation. This can be approached by retaining téal sideband coupling, as recently advocated by other

radial group velocit§/2 term in the energy equatiofas done authors™® We thus note fthat the effects of zona_ll flows on
here or, more appropriately, by considering a lattice Ofturbu_lence energy evolution are numerous, and likely to vary
coupled poloidal harmonics and the energy transfer betweelQ" different regimes of zonal flow damping, turbulence ex-
them. The latter corresponds to a study of ballooning effect§itation, etc. One upshot of this wealth of possibilities is the
in real space. This may be facilitated by working in a basis of0ssibility of alternating domains consisting predominantly
mode|et3, as recently discussed by Connor and H:glsﬂe of turbulence and zonal ﬂOWS, reSpeCtiVely. Such domain
second issue is the effect of zonal flo@@iamondet al,3® Wave patterns can propagate through the systeéthThis
and references thergion the spreading dynamics. By shear- phenomenon o€orrugated spreadingias been observed in
ing the underlying turbulence, zonal flows can produce regyrokinetic simulations and in numerical studies oKae
gions of steep fluctuation intensity gradient, which in turntype model with mean field coupling. Thus, spreading may
drive spreading. A broad region of strong zonal flow excita-be either smooth or structured and corrugated. At present,
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there is no clue as to how the system selects its pattern struc,, Tutbulence Intensity
ture from between these two possibilities. 12
A second possible extension concerns the validity of the L e~ - LA
Fokker—Planck theory. It is well known that the Fokker— s}
Planck equation provides a means to compute the time evo os}
lution of the probability distribution function for a stochastic esr] jweor
system, given the input of the “microscopid¢l.e., single 02 !
step transition probability. The latter must be normalizable % =52 6 o 0 20 % & %
and must have a finite second moment for the Fokker—Plancl

approach to be valid. It is by no means clear that the local , _ ______________ RadalMean Flow —_______ ] Y__.
transition probability for turbulent spreading widictually o5k v g /
have a convergent second moment. Indeed, since spatic ",

spreading and spectral transfer in wave number space ar
strongly coupled, it is quite possible that since the wave
number spectrum follows a power law, so does the distribu- T
tion of spatial steps. For self-similar processes described by **[

power law, this requirement imposes severe constraints of % %0 % 0 0 0 10 % % 4
the spectrun%f5 Violation of the condition of a convergent
second moment suggests that a nondiffusive Levy processc. 10. Turbulence tunneling with the coupled two equation model.
underlies the spreading phenomenon. We speculate here ttereading, in the gap region, with this model is observed to be diffusive
the divergence of the second moment in the Fokker—Planck®-Ax~At'*?). This could be due to numerical diffusion.

theory would also signify a breakdown in weak turbulence

theory as the latter is also based upon the assumption of a

quasi-Gaussian pdf.A well-known example of such a non- istence of it on the othgrthe latter is immediately restored.
diffusive spreading is the Richardson dispersion law, whichsince the gradient is always supplied at the same point by the
predicts thatt, the separation between two points in a turbu-drive, the mean flow speeds at that point increase without
lent flow grows ast?~ et®. This possibility will be investi-  |imit, until other effects set in. This is the reason we call this
gated in a future publication. type of transport accumulative. Such effects enhance the tur-
Another point is that although we used convenientpylence tunneling considerably. Although the existence of
Heaviside step functions for growth rate profiles, in the studyfirst-order spatial derivatives in Eq&29) and (30) and the
of tunneling problem, in fact the basic modek., Eq.(18)]  fact that the mean flow grows to such large magnitudes near
assumesy(x) to be nonzero, continuous, and differentiable.the boundary layer make the numerical problem somewhat
For a turbulent diffusivity derived rigorously from the basic more difficult, a qualitative picture of what happens can be
equations it is easily seen that is tied toy, via the scaling  found in Fig. 10.
of the saturated intensity with drive. Alternatively put, there  Finally it is worthwhile to discuss the results of this pa-
is a time lag(related to the cross phaseetween fluctuations per on the context of related studies of the theory of turbu-
and nonlinear interaction. Thus, the above model is not actence spreading. This discussion is limited to three works,
curate wheny=<0. To take this case into account, one needshamely, the pioneering study of Garkdtal, in 19941 the
a minimum of a two-field model. We will consider the sim- recent turbulence model of CHIR® and collaborators,
plest possible case, which in practice introduces a time delayased on zonal flow coupling effects in toroidal geometry,
between growth and fluctuation-driven radial transport, anchnd a new study for the case of subcritical turbulence by Itoh
this treats the transport as “accumulative.” Such a delay igt al, which is otherwise similar to this paper. Simply put,
clearly present in the basic theory. The two-field model is the paper by Garbett al. uses a fluid drift wave model and
neglects zonal flows. It predicts diffusive spreadifig.,

»

J J Jd —

—e(X,t) +vg(X)—e(x,t) + B—[e(X,D)V(X,1)] Ax?~t) for weak turbulence in a cylinder, ballistic spreading

o X X (i.e., Ax~t) for weak turbulence in a torus, and an interme-
= y(X)e(X,1) + Yy (X)e(x,1)2=0, (29)  diate scaling for strong turbulence, in both cylinder and

torus. In contrast, we predict that ballistic spreading is pos-
J— J sible without toroidal coupling effects, for either weak or
EV(XJ) + Q&S(X’t) =0. (300 strong turbulence. The second work does not present a sys-
tematic study of spreading dynamics and its parameter de-
In practice fore ~ e, one can integrate the equation for the pendencies, but the authors have stated that spreading can be
mean flow and recover the initial modele., Eq.(21)], with  “exponentially fast.*> Here we find that exponentially fast
Dy=pBaly. For the more general case, a sharp gradient neapreading can occur only if local, nonlinear saturation is ne-
the edge enhances the outward mean intensity flux simply bglected. This limit appears questionable, in that it only seems
acting as a conservative force that accelerates the flux. Thisossible to define spreading meaningfully relative to a qua-
in turn advects the turbulence outward, reducing the intensitgisteady state, which is locally saturated. This model of Chen
gradient, but since it is the differential drive that produceset al. cannot treat strong turbulence, and leaves the important
the gradient(i.e., existence of drive on one side and nonex-(indeed, crucial for their cagaessue of the effect of zonal
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zonal flow damping is weak, as in the Dimits shift regime, (A2b)

formation of a barrier may be triggered and mean field evo-

lution must be treated as well. At the very least the stronglefine the strain-induced fluxes in space and wave-number
zonal flow shears in the Dimits shift regime should impedespace. Application of either quasilinear theory or standard
spreading by shredding apart extended eddies. On the othEpkker—Planck methods then vyields a bivariate diffusion
hand, if the zonal flow damping is moderate or strong, zonaequation for the meatN), namely,

flow excitation is minimal, so the effect of zonal shears on

spreading is likely to be weak. The recent work of Ilteh AN + vgxi<N> - kaw - iDXw =(C(N)),

al.* predicts that ballistic spreading is possible for subcriti- at 26 dky " Ky X T OX

cal turbulence, provided the size of the initial patch of tur- (A3a)
bulence exceeds a minimum scale size. In that case also,

ballistic expansion of a turbulence intensity front appears iﬁ/vhere

the context of a S|m_ple model. It seems as though substantial D= qf,k)z(l'ﬁqlzi)‘{e[R(k,g)], (A3b)
further research will be necessary in order to resolve the q

many questions which persist in the theory of turbulence

spreading. Dy= 2 [0g2ReRk,Q)], (A3c)
q

flow damping on spreading dynamics unaddressed. If the J o~
k= _&_)((krvx)N
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APPENDIX: A BIVARIATE DIFFUSION EQUATION

The wave kinetic equation describes the adiabatic evolu
tion of fluctuation “numberTi.e., quanta densitjN(k,x,t),
which is usually, but not always, the wave action derjdity
a “slow” straining flow. Thus, the wave kinetic equation is a d ~ ~
natural description for the evolution of smaller scale waves at + M>Vq = f(Q)zk: 9(KINg(K). (A4)
and turbulence in the presence of comparatively larger, °
slower (i.e., integral scaleflows. The wave kinetic equation Here theg(k) is a generic coupling coefficient ari¢h) is the
gives inverse of the large-scale dispersign,s the decay/growth

P P dN rate. Thus, théN) equation is seen to be nonlinearhh as

EN +ug-VN+V-VN- 5((I_<-\_/) dk =C(N), (Ala) shown in the earlier Fokker—Planck derivation. Finally, we

= - remark that joint reflection symmetry considerations may be

where used to derive a bivariate Burgers’ equation for pulses of
dk wave population density. These pulses may be thought of as
==-V(k-V+7,%). (Alb) avalanches irix, k) space. This theory is elaborated in Refs.
e — 18 and 22.
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