Overview of C-2W: High Temperature, Steady-State Beam-Driven FRC Plasmas

Hiroshi Gota TAE Technologies, Inc.

HNOLOGIES

IAEA FEC2020 (virtual) | May 12, 2021

Outline

- TAE's Concept, Motivation and History
- Key Program Accomplishments
- Highlights of Experimental Results
- Summary

TAE's concept – advanced beam-driven field-reversed configuration (FRC)

FRC: field-reversed configuration

Large orbit ions via Neutral Beam injection

- High plasma β ~ 1
 - Compact and high power density
 - Aneutronic fuel capability (e.g., p-¹¹B)
 - Indigenous large orbit particles
- Tangential Neutral Beam Injection
 - Large orbit ion population
 - Increased stability and reduced transport
- Easier design and maintenance due to simple geometry
- Linear unrestricted divertor facilitates power, ash, and impurity removal

Key program accomplishments

- Established beam-driven high- β FRC physics test bed with unmatched operating flexibility
- Demonstrated high-temperature FRC sustainment via neutral-beam injection and edge biasing
 - FRC sustained up to 30 ms (limited by the energy storage on-site)
 - Achieved total plasma temperature > 3 keV
 - Extended operational boundary, S*/E > 3 (historical limit ~3)
- Established collaboration with academia and industry to accelerate progress
 - PPPL, UCI*, UCLA*, LLNL, ORNL, Univ. of Pisa (Italy), Univ. of Wisconsin, Nihon Univ.* (Japan), Budker Institute* (Russia), ASIPP (China), Google*, industrial partners, and more

*Acknowledgement: co-author of this paper

Past progress From 2000 to 2016

- TAE has made substantial progress in technology and science
- Rapid pace with specific goal/milestone oriented

NORMAN (C-2W) – current device

Typical parameters:

Magnetic field – B_z: Plasma dimensions – r_s, L_s: 0.4, 2-3 m

up to 0.3 T

Density – n_e: 1-3×10¹⁹ m⁻³ Temperature – T_{tot}: ~3 keV

Presenter: Hiroshi Gota

IAEA FEC2020 (virtual) - May 12, 2021

Experimental setup and key approaches

Key approaches to Norman experiments:

- 1. FRC dynamic formation
- 2. Boundary control via edge biasing
- 3. Neutral-beam injection

- 4. Wall conditioning
- 5. Particle refueling
- 6. Plasma shape/position control

Gota, et al., Nucl. Fusion 59, 112009 (2019) Presenter: Hiroshi Gota

Sophisticated Norman diagnostic suite

Four main zones of Norman have 60+ types of diagnostics:

- Core plasma inside the FRC separatrix
- Open-field-line mirror-confined plasma in the scrape-off layer (SOL) and jet
- Rapidly expanding plasma in the inner divertors and/or end divertors

• FRC formation sections

Cross Section of C-2W Midplane

FRC sustainment up to 30+ ms achieved in Norman

Continuous optimization of FRC lifetime and ramping studies

- Compared to prior C-2U device
 - 3x longer plasma lifetime
 - 4-5x higher temperature
 - 4x higher plasma energy

• FRC performance well correlates with neutral-beam injection and edge biasing

Plasma energy trend in Norman

High temperature FRCs achieved in Norman $T_e > 0.5$ keV, $T_{tot} > 3$ keV

- Norman can produce a wide range of $T_e \& n_e$: $T_e > 0.5 \text{ keV}$ (measured by Thomson scattering)
- Plasma temperature T_{tot} >3 keV estimated by interpretive plasma reconstruction using experimental measurements

Electron temperature and density measurements by Thomson scattering (located at Norman midplane)

Advanced beam-driven FRC enabled by fast ions

- Fast ion confinement near classical limit
- Total pressure is maintained, while thermal pressure is replaced by fast ion pressure, P_{fast}/P_{th} > 1 (from plasma reconstruction)
- Global modes are further suppressed
- Plasma lifetime increases with NBI power

Pressure profiles from

Gupta, et al., APS DPP2019

Demonstration of extending operational boundary Exceeding historical limit S*/E ~3 with substantial NBI power

- Kinetic parameter $S^* = r_s/(c/\omega_{pi})$: the ratio of separatrix radius to ion skin depth
- Empirically, keeping S*/E < 3 (E: plasma elongation) prevents FRC from tilting
- Norman demonstrated FRCs can exist and remain in S*/E > 3 region

Sustained plasma is stable and robust

O⁴⁺ radiation indicates hot electron zone and consistently tracks FRC radius

Fast-framing camera (confinement vessel)

Reduced density fluctuation level at higher edge biasing is consistent with increased ExB shear

- Strong E×B shearing rate (ω_{ExB}) due to edge biasing from divertors
- Sheared E×B flow upshifts critical gradient and reduces turbulence via eddy shearing/decorrelation
- Radial transport barrier at/outside the separatrix
- Simulations confirmed ion-scale core stability and turbulence spreading (SOL to FRC core)

Lau, et al., Nucl. Fusion 59, 066018 (2019)

Doppler backscattering reflectometer measurements

Sophisticated plasma optimizations utilized

Google's Optometrist Algorithm and in-house active control systems

- Plasma optimization via Google's • Optometrist Algorithm routinely conducted
 - Produced breakthrough result by optimizing FRC formation parameters and other subsystems
 - Advanced algorithm with logistic regression
- In-house active plasma control systems routinely used as well

Schematics of active plasma control

Active control of FRC axial position

Presenter: Hiroshi Gota

DPP2019

Holistic data reconstruction through Bayesian inference

Offers unique insights into internal plasma perturbations

- FIR interferometry, Mirnov probes and Shine-Through diagnostics combined to enhance reconstructions
- Mode growth observed when NBI power reduced
- More diagnostics being integrated

Summary

- Demonstrated high-temperature FRC sustainment via neutralbeam injection and edge biasing up to 30 ms (limited by the energy storage on-site)
 - FRC performance well correlates with NBI and edge biasing
 - achieved "long enough" and "hot enough" (T_{tot} >3 keV) milestones
 - extended operational boundary, S*/E >3, without tilting
- Advanced plasma and machine optimizations, through:
 - Optometrist Algorithm utilization (human + Al)
 - sophisticated active plasma controls on magnets, edge biasing, beams, and gas fueling.

Thank You