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Gyrokinetic simulations of electrostatic driftwave instabilities in a tokamak edge have been carried

out to study the turbulent transport in the pedestal of an H-mode plasma. The simulations use

annulus geometry and focus on two radial regions of a DIII-D experiment: the pedestal top with a

mild pressure gradient and the middle of the pedestal with a steep pressure gradient. A reactive

trapped electron instability with a typical ballooning mode structure is excited by trapped electrons

in the pedestal top. In the middle of the pedestal, the electrostatic instability exhibits an unusual

mode structure, which peaks at the poloidal angle h ¼ 6p=2. The simulations find that this unusual

mode structure is due to the steep pressure gradients in the pedestal but not due to the particular

DIII-D magnetic geometry. Realistic DIII-D geometry appears to have a stabilizing effect on the

instability when compared to a simple circular tokamak geometry. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4871387]

I. INTRODUCTION

The edge region of a tokamak plasma provides boundary

conditions for the core and acts as a source of heat and par-

ticles to the scrape off layer (SOL), thus playing a crucial

role in tokamak magnetic confinement fusion. One confine-

ment regime, called the high-confinement mode or H-mode,1

is characterized by steep gradients in both temperature and

density in the edge region, with stiff core profiles. The area

of steep gradients within the edge region is called the pedes-
tal and provides a source of free energy which may drive a

number of instabilities. Despite these instabilities, increased

fusion gain and energy confinement make the H-mode a de-

sirable operating scenario, a primary candidate for the ITER

experiment,2 and of general interest to the magnetic confine-

ment community.

Manipulation of the pedestal and control of the H-mode

require a strong theoretical understanding of edge physics

and transport. Fine tuning H-mode confinement requires con-

trol of both pedestal temperature and density, which may be

characterized by pedestal height and width. Limits on the

pedestal height and width can be determined using empirical

models.3,4 Edge localized mode (ELM) cycles are observed

experimentally; these cycles consist of initial pedestal

growth, ELM build up, pedestal crash, and a return to pedes-

tal growth/recovery.5,6 Some research has been done to

explore ELM onset and mitigation,7–9 and one popular

model to predict the onset of ELMs is peeling-ballooning

theory.10–12 Additionally, a large number of numerical simu-

lations have been carried out and benchmarked against each

other to study the peeling-ballooning mode linear instabil-

ity.13 Since it is desirable to tune H-mode confinement and,

therefore, to tune pedestal parameters, the period of pedestal

growth/recovery is of particular theoretical interest.

There are a number of unanswered questions regarding

the pedestal recovery period in the ELMy cycle. The recov-

ery period is typically long, on the order of tens of millisec-

onds. During this time period, low frequency magnetic

fluctuations occur, called ELM precursors,5,6,14 but the

causal relationship between ELM precursors and ELMs is

not yet fully understood. Possible candidates for ELM pre-

cursors are the kinetic ballooning mode (KBM) and resistive

ballooning mode (RBM).10,12 The KBM is a variant form of

ideal ballooning mode (IBM) which includes kinetic effects:

commonly diamagnetic effects and sometimes wave-particle

interaction.15 Both meso-scale MHD modes and micro-scale

drift-Alfvènic modes should be included in a full picture of

the pedestal recovery period. It is also unknown whether

electrostatic or electromagnetic modes are primarily respon-

sible for transport during the pedestal recovery. Electrostatic

modes which may contribute significantly to the transport

include the collisionless trapped electron mode (CTEM), dis-

sipative trapped electron mode, and electrostatic interchange

mode.16

To understand transport processes in the pedestal, we

have initiated a series of gyrokinetic simulations for the

drift-Alfvènic instabilities and associated microturbulence in

a DIII-D H-mode pedestal. These simulations will proceed

from electrostatic to electromagnetic and from linear to non-

linear. In this paper, we use gyrokinetic simulation to explore

electrostatic instabilities driven by pressure gradients in the

pedestal. Simulations are carried out using the Gyrokinetic

Toroidal Code (GTC)17 and based on DIII-D shot 131997 at

time 3011 ms.18 This work was initiated as part of the US

Department of Energy Joint Research Target FY2011 to

understand physics processes controlling the structure of the

H-mode pedestal. To this end, a cross-code benchmark

between gyrokinetic turbulence codes examined KBM stabil-

ity in the pedestal. GTC annulus simulation finds a reactive

trapped electron mode to be dominant at the top of the

131997 pedestal, sharing features with simulations from
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other gyrokinetic codes, GYRO, GEM, and GS2.19,20 In the

steep gradient region, these drift instabilities are unusual in

that they peak off the horizontal midplane at the poloidal

angle h ¼ 6p=2, consistent with an earlier theory of a bal-

looning mode structure minimizing magnetic shear damp-

ing.21,22 We demonstrate that this unusual mode structure is

due to the steep pressure gradients in this region but not due

to the specific magnetic geometry. In both the top of the ped-

estal and the steep gradient, we find that finite boundary con-

ditions significantly affect instability growth rate and

frequency. These findings motivate global simulations in

future work.

The remainder of this paper is organized as follows:

Section II details the simulation model. In Secs. III and IV,

results are presented for the pedestal top and the steep gradi-

ent regions respectively. Discussion and interpretation of

results occurs in Sec. V.

II. SIMULATION MODEL

For simulations presented in the current work, we use

GTC’s d f particle-in-cell implementation, with gyrokinetic

ions and drift kinetic electrons.23 GTC has been extensively

applied to study turbulent transport in fusion plasmas includ-

ing ion and electron temperature gradient modes,24,25 colli-

sionless trapped electron mode,26 energetic particle

transport,27,28 and Alfvèn eigenmodes.29,30 All of the simula-

tions presented in this paper are electrostatic. The electro-

static version of the fluid-kinetic hybrid electron model31 is

used to efficiently treat electron dynamics.

Traditional gyrokinetic ordering32,33 is well justified in

the tokamak core region but not in the edge. In the edge,

strong spatial inhomogeneities characterize the pedestal. A

new ordering parameter, Lp, suitable for pedestal parameters,

is considered in a recent gyrokinetic theory.34 The resulting

equations using this new ordering parameter are the same as

when traditional gyrokinetic ordering is applied.33 In this

new ordering,

VE

vth

� k?qi

qid/
T
� x

Xi

� qi

Lp
� Lp

R
� e� 1; (1)

where vth is the thermal velocity, k? is the wavenumber per-

pendicular to the equilibrium magnetic field, qi is the ion

gyroradius, qi is the charge of the main ion species, d/ is the

perturbed electrostatic potential, T is the temperature, x is

the instability frequency, Xi is the ion cyclotron frequency,

and R is the major radius. In Eq. (1), VE ¼ ðc=BÞb�rd/ is

a characteristic drift velocity due to the turbulence, c is the

sound speed, B is the magnitude of the magnetic field, and b

is the unit vector in the direction of the magnetic field. The

length scale Lp characterizes the strength of the gradients in

the pedestal. For a radial function f(r), the corresponding

length scale is defined

1

Lf
¼ 1

f ðrÞ
d

dr
f ðrÞ: (2)

At the steep gradient in DIII-D shot 131997, relevant pedes-

tal quantities are the density (n) and ion and electron

temperature (Ti and Te respectively). In Table I, we compare

the length scales of these three quantities to qi and to the

major radius on the magnetic axis (R0).

The equilibrium used in this paper is based on DIII-D

discharge 131997 at time 3011 ms. This discharge and others

were originally part of an experiment to benchmark EPED, a

predictive model of pedestal height and width constraints.18

The intent in producing this equilibrium was to provide a

good case for a gyrokinetic cross-code benchmark of KBM

onset.19,20 The equilibrium was generated from experimental

measurements using varyped analysis and the EFIT equilib-

rium solver.35 Time 3011 ms represents the discharge imme-

diately prior to an ELM crash, when the peeling-ballooning

mode would normally be expected to be near its stability

threshold, however the peeling-ballooning drive was artifi-

cially reduced in this equilibrium in order to stabilize the

peeling-ballooning mode and provide a good case for the

KBM benchmark.

In Fig. 1, plasma profiles from the EFIT equilibrium are

shown in a range wn ¼ ½0:8; 1:0�, where wn is normalized

poloidal flux. Throughout this paper, normalized poloidal

flux is chosen to have a value wn ¼ 0 at the magnetic axis,

and normalized such that wn ¼ 1 at the separatrix. The mag-

netic geometry is shown in Fig. 2. GTC simulations were

done using this full DIII-D geometry, which is non-circular

and up-down asymmetric. The simulations use the real elec-

tron-to-deuterium mass ratio which is 2.72309� 10�4. For

simplicity, collisional effects are ignored in this work.

Collisional effects may be relevant for the edge plasma, and

will be reported in a future publication.

GTC is a global code with no implementation of local

simulation or flux-tube boundary conditions. In the interest

of benchmarking with local simulations, GTC non-local sim-

ulation treats only a narrow annulus in the poloidal plane in

this work. For these annulus simulations, the full plasma pro-

files are replaced by constant-valued profiles taken from a

local point of interest. Specifically, density and temperature

values and their gradients are taken from the full equilibrium

profiles at a single reference flux surface. These values are

applied across the entire simulation domain. At radial boun-

daries, gradients are reduced to be zero. In this paper, simu-

lations are run using parameters from two radial locations: at

wn ¼ 0:95, the top of the pedestal, and at wn ¼ 0:98, the

steep gradient region. These two locations are shown by the

black dashed lines in Fig. 1. The full q profile and full mag-

netic geometry from EFIT are used. We emphasize that the

difference between fixed radial boundary conditions in GTC

annulus simulation and the typical periodic radial boundary

condition of flux-tube simulations has a crucial effect on the

simulation results.

TABLE I. Ordering parameters from DIII-D shot 131997 ðwn ¼ 0:98Þ sat-

isfy gyrokinetic ordering (Eq. (1)).

qi=Ln qi=LTe
qi=LTi

6.47� 10�2 1.37� 10�1 4.48� 10�2

Ln/R0 LTe
=R0 LTi

=R0

7.69� 10�3 3.64� 10�3 1.11� 10�2
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III. PEDESTAL TOP

Initial GTC simulations used input parameters from the

radial location wn ¼ 0:95, the pedestal top, where gradients

are significantly less steep than in the middle of the pedestal.

The ion and electron temperature gradients are strong here,

while the density gradients are one to two orders of magnitude

weaker. Fig. 3 shows instability frequency ðxrÞ and growth

rate (c) over a scan of khqi. As khqi increases, the magnitudes

of both c and xr also increase. The ratio of the instability fre-

quency to growth rate is jxrj=jcj � 0:65 for khqi � 0:7. A

value of jxrj=jcj less than one is characteristic of the reactive

class of instabilities. The mode structure is broad in the poloi-

dal coordinate, spanning the entire bad curvature region of the

geometry. This mode structure is consistent with an inter-

change driven instability and in contrast to the more localized

mode structure of a typical ballooning mode.36 In order to

understand how electron kinetic effects contribute to the insta-

bility, the simulation was repeated using a simpler adiabatic

electron model. No instability was found when using only adi-

abatic electrons, indicating that trapped electrons provide the

primary drive for the instability. This information leads us to

more specifically identify the instability as a reactive trapped

electron mode.37 The simulation results shown in Figs. 3–5,

include the kinetic electron model.

We can identify relevant wave-particle resonances which

may excite the instability by examining various orbital fre-

quencies. For a toroidal mode number n¼ 42 ðkhqi � 0:5Þ,
the ratio of the electron diamagnetic drift frequency to the

instability frequency, x�e=xr is 33, and the ratio between the

electron precession frequency and the instability frequency,

xpre;e=xr is approximately 1.4. Here, these frequencies

are calculated, respectively, by x�e ¼ khqeðvt;e=LnÞ and

xpre;e ¼ ðnqTe=eB0rR0Þ where vt,e is the thermal electron ve-

locity, e is the electron charge, and r is the minor radius.

Primary energy exchange occurs through the electron toroidal

precessional resonance.

As part of the cross-code benchmark effort, GEM and

GYRO simulations also observe an electrostatic instability at

the pedestal top.19 GTC predicts a growth rate of only �20%

of the value predicted by GYRO and GEM flux-tube simula-

tions. This difference is not surprising when considering that

both the equilibrium and simulation model used by GTC are

different than those used by GEM and GYRO during the

benchmark. Two primary differences should be highlighted;

First, as mentioned in Sec. II, GTC annulus simulations use a

finite radial domain with fixed radial boundaries, while GEM

and GYRO flux-tube simulations use a periodic radial

boundary. Second, while the GTC simulations use a numeri-

cal representation of the real DIII-D geometry, GEM and

FIG. 1. Plasma profiles of DIII-D shot 131997, shown between normalized poloidal flux ðwnÞ values of 0.8 and 1.0. The top row, from left to right, shows den-

sity (n), ion and electron temperatures (Ti and Te), and pressure (P), normalized to their magnetic axis values, denoted by subscript 0. The bottom row, from

left to right, shows the inverse density length scale (R0/Ln), the inverse ion and electron temperature length scales (R0=LTi
and R0=LTe

), and the safety factor

(q). Red lines show ion quantities while blue show those of electrons. The vertical black dashed lines indicate the radial positions from which parameters were

taken for the narrow annulus simulations.
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GYRO use a parameterized Miller equilibrium fit to the real-

istic geometry. Miller parameterization is a good approxima-

tion of realistic geometry near the plasma core, but is unable

to capture up-down asymmetry.38 Because the equilibrium

geometry for DIII-D shot 131997 is strongly up-down asym-

metric in the pedestal, there is significant discrepancy

between Miller geometry and realistic geometry in this case.

In order to test the boundary condition effects associ-

ated with the small radial domain size, GTC simulations

were executed with three different-sized annuli, from [0.7,

1.0], [0.8, 1.0], and [0.9, 1.0] in wn. Physically, this changes

the geometry, since the global realistic geometry is used in

all cases. The free energy available to drive the mode is also

increased as the extent of the strong pressure gradient is

increased. All three cases were run for khqi � 0:5, or toroi-

dal mode number, n¼ 42. Fig. 4 shows a reduction of the

growth rate by approximately 30% as the annulus size is

reduced, indicating that boundary condition effects are sig-

nificant. The electrostatic potential in the poloidal plane,

shown in Fig. 5, in all three cases exhibits typical ballooning

structure that peaks on the outboard midplane at h¼ 0,

where h is the poloidal angle. As the radial domain is

reduced across the three cases in Fig. 5, the mode structure

becomes visibly narrowed.

IV. STEEP GRADIENT REGION

For this case, we chose a location in the center of the

plasma pedestal at wn ¼ 0:98. Electrostatic GTC annulus

simulation captures a driftwave instability. The mode struc-

ture has the unusual characteristic of being peaked away

from the outboard midplane.

Using the steep gradient parameters, both a scan of to-

roidal mode number and a boundary condition domain-size

test were carried out using GTC. Shown in Fig. 6, both c and

xr at wn ¼ 0:98 increase with khqi. Poloidal mode structure

across the scan is qualitatively consistent (Fig. 8). In contrast

to the top of pedestal case, the real frequency is now positive

in the electron diamagnetic direction. As in the top of pedes-

tal case, the mode has the characteristic of a reactive type

instability; The magnitude of the real frequency is small

compared to that of the growth rate. For toroidal mode num-

ber n¼ 25 ðkhqi � 0:25Þ, the ratio of the electron diamag-

netic drift frequency to the instability frequency, x�e=xr is

approximately 7.8, and the ratio of the electron precession

frequency to the instability frequency is xpre;e=xr � 0:20.

FIG. 2. DIII-D shot 131997 equlibrium geometry implemented in GTC

annulus simulation for normalized poloidal flux wn ¼ ½0:7; 1:0�. The color

bar shows magnetic field strength (B) normalized to the value on the mag-

netic axis B0.

FIG. 3. Scan in khqi of growth rate (c) and real frequency ðxrÞ for “top of

pedestal” wn ¼ 0:95 parameters.

FIG. 4. Change of growth rate (c) and real frequency ðxrÞ versus inner

boundary ðw0Þ of simulation domain for the top of pedestal ðwn ¼ 0:95Þ
simulation. All three cases have toroidal mode number n¼ 42 ðkhqi � 0:5Þ.
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Fig. 7 shows the instability frequency and growth rate

for the four cases used in the domain-size scan with steep

gradient parameters. The four different sized annuli used in

this scan span [0.7, 1.0], [0.8, 1.0], [0.9, 1.0], and [0.95, 1.0]

in wn. The real frequency changes significantly as the radial

domain is varied, while the growth rate remains approxi-

mately constant (Fig. 7). As before, by extending the simula-

tion box size, we are affecting both the geometry and the

drive of instability. Fig. 8 shows the mode structure of the

electrostatic potential in the poloidal plane, for the three nar-

rowest annulus cases.

A simulation using only an adiabatic electron model

was also carried out for n¼ 25, yielding no instability. This

result indicates that trapped electrons provide the primary

instability drive for the steep gradient case. The figures in

this section all show results from simulations using the ki-

netic electron model.

In the narrowest annulus case with wn ¼ ½0:95; 1:0�, the

radial simulation domain is only �9qi, which may contribute

to numerical inaccuracy. To assess this possibility, we artifi-

cially reduce the ion mass by a factor of four, effectively

increasing the simulation domain size relative to qi.

Reducing the ion mass by a factor of four reduces qi by a

FIG. 5. Poloidal mode structure of electrostatic potential ð/Þ for simulations with three different annulus sizes using profile parameters from the top of pedestal

ðwn ¼ 0:95Þ in the DIII-D experiment. All three cases have toroidal mode number n¼ 42 ðkhqi � 0:5Þ.

FIG. 6. Scan in khqi of growth rate (c) and real frequency ðxrÞ for “steep

gradient” wn ¼ 0:98 parameters.

FIG. 7. Change of growth rate (c) and real frequency ðxrÞ versus inside

boundary ðw0Þ of simulation domain, for steep gradient ðwn ¼ 0:98Þ simula-

tion. The points indicated by “x” show simulation results for identical geom-

etry and plasma profiles, but with ion mass reduced by a factor of four. This

mass reduction halves the Larmor radius, effectively increasing the simula-

tion domain size. All cases have toroidal mode number n¼ 25 (regular mass

khqi � 0:25; reduced mass khqi � 0:125).
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factor of two, and the simulation domain becomes approxi-

mately 18qi in size. The results from the reduced mass simu-

lation are shown in Fig. 7 by the “x” markers. The real

frequency of the reduced mass case is approximately 80% of

the real frequency of [0.7, 1.0] normal mass case, while the

[0.95, 1.0] normal mass case is approximately 55%.

The drop in real frequency with narrowing of simulation

domain is alleviated in the reduced mass simulations. This

reduction indicates that the small ratio between the simula-

tion domain size and qi is primarily responsible for the drop

in real frequency across the non-local scan. The growth rate

is reduced by approximately 5% in the reduced mass

simulation.

Unlike a typical ballooning mode structure, which

peaks at the outboard midplane ðh � 0Þ, the electrostatic

potential in the poloidal plane in Fig. 8 has a peak near the

top and bottom of the plane ðh � 6p=2Þ. This feature

appears in both simulations with the original deuterium

mass as well as with the scaled down mass. Existing theory

demonstrates that mode peaking at h ¼ 6p=2 may occur

along with up-down symmetry breaking in the poloidal

plane. Analytic theory using simplified geometry and equili-

bria has demonstrated this effect by using an alternate form

of the ballooning transformation.22 GYRO flux-tube simula-

tions in benchmark efforts also produced off-midplane

mode peaking using local parameters from the steep gradi-

ent location and demonstrated that this feature may be pro-

duced by scaling the gradient scale lengths of density and

temperature from the top of pedestal values to the steep gra-

dient values.19 Recent GEM simulations of a DIII-D

H-mode pedestal also find turbulence concentrated at the

bottom of the poloidal plane.39

Multiple GTC simulations using reduced density and

temperature gradients demonstrate that off midplane mode

peaking is a result of strong pressure gradients and not the

unique geometry of DIII-D shot 131997. In order to sepa-

rate the gradient and geometry effects, both gradient

strength and geometry are varied in GTC simulations. The

gradient values of density, ion temperature, and electron

temperature are taken from the full equilibrium profiles at

wn ¼ 0:98. These three gradient values are then multiplied

by the same constant factor to produce a scaled gradient

case. Four cases were tested, using constant factors 0.1, 0.2,

0.5, and 1.0, corresponding to 10%, 20%, 50%, and 100%

of experimental gradient values. These four cases are car-

ried out for two distinct geometries: a realistic, numerical

DIII-D geometry (Fig. 2), and a simplified circular tokamak

geometry.

In Fig. 9, mode structures of the electrostatic potential

are shown for the three strongest drive cases using the

DIII-D geometry. Fig. 10 shows the mode amplitudes, radi-

ally and toroidally averaged and normalized to their outboard

midplane value, versus the poloidal angle (h). These two fig-

ures show the mode structures for the 10% and 20% gradient

cases peaking at h¼ 0, as is characteristic of typical balloon-

ing modes. The 50% and 100% gradient mode structures dis-

play the off-midplane mode-peaking at h ¼ 6p=2.

The same four simulations are carried out using a simple

tokamak with concentric flux surfaces. For this circular ge-

ometry case, plasma profiles and gradients as a function of

wn are identical to the experimental geometry case. The

results of the circular tokamak simulation are shown in

Figs. 11 and 12. Again, typical ballooning structure is seen

for 10% and 20% gradient cases, while off-midplane mode

FIG. 8. Poloidal mode structure of electrostatic potential ð/Þ for simulations with three different radial domains. Profiles and gradients use values from the

steep gradient region ðwn ¼ 0:98Þ of the DIII-D experiment. All three cases have toroidal mode number n¼ 25 ðkhqi � 0:25Þ.
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peaking is seen for the stronger 50% and 100% gradient

cases.

The feature of off-midplane mode-peaking appears in

both DIII-D geometry and circular tokamak cases, thus

appearing to be independent of geometry. Real frequencies

and growth rates for gradient scans in each geometry are

shown in Fig. 13 and demonstrate that the DIII-D geometry

has a stabilizing effect when compared to the circular toka-

mak geometry. As expected for pressure gradient driven

modes, Fig. 13 shows increased growth rate as the pressure

gradient is increased. The geometry appears to have negligi-

ble effect on the real frequency of the instability.

V. DISCUSSION

In this study, gyrokinetic simulation with local parame-

ters in a narrow annulus domain is used to explore electro-

static instabilities in the pedestal of DIII-D discharge

131997. A reactive trapped electron mode with typical bal-

looning characteristics (peaking at the outer midplane) is

found using parameters from the top of pedestal location.

This is in qualitative agreement with results from GEM and

GYRO simulations carried out as part of benchmark efforts.

In the steep gradient region of the pedestal, a qualita-

tively different mode structure, characterized by off-

midplane mode peaking, was observed in simulation. By

artificially reducing gradient strength from experimental val-

ues for both realistic DIII-D and simplified circular tokamak

geometry, we verify that this effect is due to the strength of

the pedestal pressure gradients, but not an effect of DIII-D’s

particular experimental geometry. Realistic DIII-D geometry

appears to have a stabilizing effect on the instability when

compared to the simple circular tokamak. In all cases, vary-

ing the extent of the simulation domain, well outside the

extent of the pedestal, affects either the growth rate or the

real frequency, motivating global GTC simulations.

The ultimate goal of pedestal simulations is to under-

stand the transport in the edge plasma. To this end, nonlinear

simulation is critical. Possible contributors to turbulence reg-

ulation in nonlinear simulation are zonal flow, zonal field,

and the geodesic acoustic mode (GAM).36,40 In correspon-

dence to the finding that boundary condition effects are

FIG. 9. Poloidal mode structure of electrostatic potential ð/Þ is shown for varying values of density and temperature gradients for DIII-D geometry simula-

tions. From left to right the 20%, 50%, and 100% gradient cases are shown. All cases use a radial domain wn ¼ ½0:8; 1:0�.

FIG. 10. Mode amplitude of electrostatic potential ð/Þ, averaged over radial

and toroidal coordinates and normalized to h¼ 0 value, versus poloidal

angle (h) for DIII-D geometry simulation at steep gradient (wn ¼ 0:98).
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important in this region, more realistic global simulations

using full plasma profiles and gradients will be included in

future work. To determine whether electrostatic or electro-

magnetic modes are dominant in the edge, electromagnetic

simulations will also be necessary in the future. All simula-

tions up to this point have assumed a collisionless plasma,

but we would like to understand the importance of collision-

ality in the pedestal in future studies.
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