
c

ent
hat has
cations,
to
Computer Physics Communications 164 (2004) 456–458

www.elsevier.com/locate/cp

Porting the 3D gyrokinetic particle-in-cell code GTC to the
NEC SX-6 vector architecture:perspectives and challenges

S. Ethiera,∗, Z. Lin b

a Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA
b Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA

Available online 27 October 2004

Abstract

Several years of optimization on the cache-based super-scalar architecture has made it more difficult to port the curr
version of the 3D particle-in-cell code GTC to the NEC SX-6 vector architecture. This paper explains the initial work t
been done to port this code to the SX-6 computer and to optimize the most time consuming parts. After a few modifi
single-processor results show a performance increase of 5.2compared to the IBM SP Power3 processor, and 2.7 compared
the Power4.
 2004 Elsevier B.V. All rights reserved.

PACS: 02.70.Ns; 07.05.Tp

Keywords: Vector processor; Particle-in-cell; Code optimization
by
ops,
c-
er-

c-
t in
alar
gin

of
ter-
and
ce

des
per-
can
udy
c-
al-

is
or
ut
rc-
ka
Y
er-
per-

s,
lly
1. Introduction

The impressive performance achieved in 2002
the Japanese Earth Simulator computer (26.58 Tfl
64.9% of peak)[1] has revived the interest in ve
tor processors. Having been the flagship of high p
formance computing formore than two decades, ve
tor computers were gradually replaced, at leas
the US, by much cheaper multi-processor super-sc
machines, such as the IBM SP and the SGI Ori
series. Although the theoretical peak performance
the super-scalar processors rivals their vector coun
parts, most codes cannot take advantage of this
can run only at a few percent of peak performan

* Corresponding author.
E-mail address: ethier@pppl.gov (S. Ethier).
0010-4655/$ – see front matter 2004 Elsevier B.V. All rights reserved
doi:10.1016/j.cpc.2004.06.060
(< 10%). When properly vectorized, the same co
can, however, reach over 30 or even 40% of peak
formance on a vector processor. Not all codes
achieve such performance. The purpose of this st
is to evaluate the work/reward ratio involved in ve
torizing our particle-in-cell code on the latest par
lel vector machines, such as the NEC SX-6, which
the building block of the very large Earth Simulat
system in Japan[2]. This evaluation was carried o
on a single node (8 CPUs) SX-6 located at the A
tic Region Supercomputing Center (ARSC) in Alas
(the SX-6 is distributed in the United States by CRA
Inc. under a special agreement with NEC). Early p
formance results are compared to the same tests
formed on the IBM SP Power3 and Power4 machine
on which our particle-in-cell code, GTC, is norma
run.
.

http://www.elsevier.com/locate/cpc


S. Ethier, Z. Lin / Computer Physics Communications 164 (2004) 456–458 457

rgy
tur-
e is
n-
av-
oki-
-
am-
n-

nly
uch
ves

,
rti-
are
al-
ch

icle
ing
ed
hen
-
cle
grid
rti-
n.
ula-

ed
data
for

ant
pe
rge
ve,
he
the
ing
’s

ally
he
The
e is
n

eir
f

ings
ts.

s
e

nly
has
X-

ery
on
rly
and
tter
kly

the
ory

IC
ous
ray
but
par-
la-
u-

ion,
uper-

par-
me
n-
re-
al
ust
r
e
ec-
sic
eve
reg-
ge
s the
56

or-
2. The Gyrokinetic Toroidal Code

The Gyrokinetic Toroidal Code (GTC)[3] was de-
veloped to study the dominant mechanism for ene
transport in fusion devices, namely, plasma micro
bulence. Being highly nonlinear, plasma turbulenc
well described by particle codes for which all nonli
earities are naturally included. GTC solves the gyro
eraged Vlasov–Poisson system of equations (gyr
netic equations[4]) using the particle-in-cell (PIC) ap
proach. This method makes use of particles to s
ple the distribution function of the plasma system u
der study. The particles interact with each other o
through a self-consistent field described on a grid s
that no binary forces need to be calculated. This sa
a great deal of computation, since it scales asN in-
stead ofN2, whereN is the number of particles. Also
the equations of motion to be solved for the pa
cles are simple ordinary differential equations and
easily solved using a second order Runge–Kutta
gorithm. The main tasks of the PIC method at ea
time step are as follows: The charge of each part
is distributed among its nearest grid points accord
to the current position of that particle; this is call
the scatter operation. The Poisson equation is t
solved on the grid to obtain the electrostatic poten
tial at each point. The force acting on each parti
is then calculated from the potential at the nearest
points; this is the “gather” operation. Next, the pa
cles are “moved” by using the equations of motio
These steps are repeated until the end of the sim
tion.

GTC has been highly optimized for cache-bas
super-scalar machines such as the IBM SP. The
structure and loop ordering have been arranged
maximum cache reuse, which is the most import
method of achieving higher performance on this ty
of processor. In GTC, the main bottleneck is the cha
deposition, or scatter operation, mentioned abo
and this is also true for most particle codes. T
classic scatter algorithm consists of a loop over
particles, finding the nearest grid points surround
each particle position. A fraction of the particle
charge is assigned to the grid points proportion
to their distance from the particle’s position. T
charge fractions are accumulated in a grid array.
scatter algorithm in GTC is more complex since on
dealing with fast gyrating particles for which motio
is described by charged rings being tracked by th
guiding center[5]. This results in a larger number o
operations, since several points are picked on the r
and each of them has its own neighboring grid poin

3. Porting to the SX-6

Initial porting of the GTC code to the SX-6 wa
straightforward. Without any modifications to th
code, the initial single processor test run was o
19% faster than on the Power3 processor, which
a peak of 1.5 Gflops compared to the 8 Gflops S
6 processor. The compiler on the SX-6 includes v
useful analysis tools, allowing a quick identificati
of the code’s bottlenecks. Also, a source listing clea
indicates the loops that have not been vectorized
the reasons why. With these tools in hand, the sca
operation in the charge depositing routine was quic
identified as the most time consuming part of
code, and was not vectorized because of mem
dependencies.

The challenge with the scatter operation in all P
codes, and on all types of processor, is the continu
non-sequential writes to memory. The particle ar
is being accessed sequentially with a fixed stride,
each of its elements, representing the position of a
ticle, corresponds to a random location in the simu
tion volume. This signifies that the grid array accum
lating the charges gets written to in a random fash
resulting in a poor cache reuse on a cache-based s
scalar processor. This problem is well known[6], and
it gets amplified on a vector processor, since many
ticles will end up depositing some charge on the sa
grid points, thus giving rise to a classic memory co
flict that prevents vectorization. Fundamentally, the
quirement for vectorization is that all the individu
operations making up a single vector operation m
be independent from each other. The required numbe
of independent individualoperations is equal to th
number of elements in the vector registers, or “v
tor length”. The simplest method to avoid the intrin
memory conflicts of the scatter operation, and achi
vectorization, is to have each element in the vector
ister write to its own temporary copy of the char
accumulating array. One needs as many copies a
number of elements in the vector register, which is 2
for the SX-6. When the loop is completed, the inf



458 S. Ethier, Z. Lin / Computer Physics Communications 164 (2004) 456–458

ged
ory

be
ens
n.
riza-
use
in

wo
ns,
e
ive

es-
on

otes
the

cal
half
e
dge
e
nt

de
ase
tio
be-
m
X-6
ces-

cy
he

SP

so
the
ugh
ect
of
at a
that
ay
in
d
ne
on

ible,
the

C
ed
but
ys
f 5.
ade
by
s to

ery
024

ct
E

la-
im-
2;

88

a-
uter
mation in the 256 temporary arrays must be mer
into the real charge array. The increase in mem
generated by this method is of at least VLEN*NG,
where VLEN is the processor’s vector length andNG

is the number of grid points in the domain. This can
a very large number considering that GTC uses t
of million of grid points for an average simulatio
However, the increased speed gained by the vecto
tion of the scatter operation compensates for the
of the extra memory. This algorithm was included
the GTC code, leading to the vectorization of the t
most compute-intensive loops. Further modificatio
mainly adding compiler directives, helped achieve th
vectorization of the second most compute intens
routine in the code.

4. Results and discussion

Table 1summarizes the results of the single proc
sor test that compares the overall performance
the Power3, Power4, and SX-6 processors. One n
from the results that the Power3 processor gives
highest efficiency at 12% of the maximum theoreti
speed. The fact that the Power4 runs GTC only at
the efficiency of the Power3 agrees with the extensiv
benchmarks done by the CSM group at the Oak Ri
National Laboratory[7], and which showed that th
memory bandwidth of the Power4 was not sufficie
to keep up with its high-clocked CPU. With the co
modifications made so far, the SX-6 runs the test c
at 715.7 Mflops with 96.7% of vector operation ra
and an average vector length of 180.3 (the ideal
ing 256). Although this is only 9% of the maximu
8 Gflops that the vector processor can deliver, the S
already runs 5.2 times faster than the Power3 pro
sor and 2.7 times faster then the Power4.

More can be done to further improve the efficien
of the PIC method on the vector processor. T

Table 1
Single processor performance of GTC test run on the IBM
Power3 and Power4, and on the NEC SX-6 vector processor

Processor Max speed
(Gflops)

GTC test
(Mflops)

Efficiency
(real/max)

Relative speed
(user time)

Power3 1.5 173.6 12% 1
Power4 5.2 304.5 6% 1.9
SX-6 8.0 715.7 9% 5.2
modifications that have been performed on GTC,
far, are just the beginning. A deeper analysis of
charge accumulating loop shows that even tho
the vector operation ratio is 99.89% with a perf
vector length of 256, the loop runs only at 7%
peak speed. However, the analysis also shows th
large number of scalar operations are performed in
same loop, most likely arising from the indirect arr
indexing characteristic of the random writes done
this algorithm. By simplifying the array indexing an
sorting the particles according to their position, o
might expect to achieve a much better performance
the SX-6. The goal is to reduce, as much as poss
the number of scalar operations, while maximizing
vector operations.

Thus far, the work/reward ratio of porting the GT
code to the SX-6 computer is good. We show
that a few small changes plus a more involved
straightforward method involving temporary arra
already increases the performance by a factor o
However, more code modifications need to be m
in order to achieve the high efficiency obtained
other codes on the SX-6 computer. One also need
study the parallel scaling of the code, which is a v
important aspect since GTC usually runs on up to 1
processors.

Acknowledgements

This work was supported by US DOE Contra
no. DE-AC020-76-CH03073 and in part by the DO
SciDAC Plasma Microturbulence Project.

References

[1] Shingu, et al., A 26.58 Tflops global atmospheric simu
tion with the spectral transform method on the Earth s
ulator, in: SC’02 Conference, Baltimore, MD, Nov. 200
http://sc-2002.org/paperpdfs/pap.pap331.pdf.

[2] http://www.es.jamstec.go.jp/esc/eng/.
[3] Z. Lin, S. Ethier, T.S. Hahm, W.M. Tang, Phys. Rev. Lett.

(2002) 195004.
[4] W.W. Lee, Phys. Fluids 26 (1983) 556.
[5] W.W. Lee, J. Comp. Phys. 72 (1987) 243.
[6] V.K. Decyk, S.R. Karmesin, A. de Boer, P.C. Liewer, Optimiz

tion of particle-in-cell codes on reduced instruction set comp
processors, Comput. Phys. 3 (1996) 290.

[7] http://www.csm.ornl.gov/evaluation/CHEETAH/index.html.

http://sc-2002.org/paperpdfs/pap.pap331.pdf
http://www.es.jamstec.go.jp/esc/eng/
http://www.csm.ornl.gov/evaluation/CHEETAH/index.html

	Porting the 3D gyrokinetic particle-in-cell code GTC to the NEC SX-6 vector architecture: perspectives and challenges
	Introduction
	The Gyrokinetic Toroidal Code
	Porting to the SX-6
	Results and discussion
	Acknowledgements
	References


