Available online at www.sciencedirect.com

scneuce@nmeow Computer Physics
Communications

N

sl
ELSEVIER Computer Physics Communications 164 (2004) 456-458

www.elsevier.com/locate/cpc

Porting the 3D gyrokinetic particle-in-cell code GTC to the
NEC SX-6 vector architectur@erspectives and challenges

S. Ethie*, Z. Lin®

@ Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA
b Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA

Available online 27 October 2004

Abstract

Several years of optimization on the cache-based supersaaihitecture has made it more difficult to port the current
version of the 3D particle-in-cell code GTC to the NEC SX-6 vector architecture. This paper explains the initial work that has
been done to port this code to the SX-6 computer and to optimize the most time consuming parts. After a few modifications,
single-processor results show a performance increase abfpared to the IBM SP Power3qmessor, and 2.7 compared to
the Power4.

0 2004 Elsevier B.V. All rights reserved.

PACS 02.70.Ns; 07.05.Tp

Keywords: Vector processor; Particle-in-cell; Code optimization

1. Introduction (< 10%). When properly vectorized, the same codes
can, however, reach over 30 or even 40% of peak per-
The impressive performance achieved in 2002 by formance on a vector processor. Not all codes can
the Japanese Earth Simulator computer (26.58 Tflops, achieve such performance. The purpose of this study
64.9% of peak)1] has revived the interest in vec- s to evaluate the work/reward ratio involved in vec-
tor processors. Having been the flagship of high per- torizing our particle-in-cell code on the latest paral-
formance computing fomore than two decades, vec- |e| vector machines, such as the NEC SX-6, which is
tor computers were gradually replaced, at least in the building block of the very large Earth Simulator
the US, by much cheaper multi-processor super-scalarsystem in Japaf2]. This evaluation was carried out
machines, such as the IBM SP and the SGI Origin on a single node (8 CPUs) SX-6 located at the Arc-
series. Although the theoretical peak performance of tic Region Supercomputing Center (ARSC) in Alaska
the super-scalar processors rivals their vector counter-(the SX-6 is distributed in the United States by CRAY
parts, most codes cannot take advantage of this andinc. under a special agreement with NEC). Early per-
can run only at a few percent of peak performance formance results are compared to the same tests per-
formed on the IBM SP Pow8 and Power4 machines,
* Corresponding author. on which our particle-in-cell code, GTC, is normally
E-mail address: ethier@pppl.gov (S. Ethier). run.

0010-4655/$ — see front mattéi 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2004.06.060

http://www.elsevier.com/locate/cpc

S Ethier, Z. Lin/ Computer Physics Communications 164 (2004) 456458 457

2. The Gyrokinetic Toroidal Code is described by charged rings being tracked by their
guiding centef5]. This results in a larger number of
The Gyrokinetic Toroidal Code (GT(3] was de- operations, since several points are picked on the rings

veloped to study the dominant mechanism for energy and each of them has its own neighboring grid points.
transport in fusion devices, namely, plasma microtur-
bulence. Being highly nonlinear, plasma turbulence is
well described by particle codes for which all nonlin- 3. Porting to the SX-6
earities are naturally included. GTC solves the gyroav-
eraged Vlasov—Poisson system of equations (gyroki- Initial porting of the GTC code to the SX-6 was
netic equation§4]) using the particle-in-cell (PIC) ap- straightforward. Without any modifications to the
proach. This method makes use of particles to sam- code, the initial single processor test run was only
ple the distribution function of the plasma system un- 19% faster than on the Power3 processor, which has
der study. The particles interact with each other only a peak of 1.5 Gflops compared to the 8 Gflops SX-
through a self-consistent field described on a grid such 6 processor. The compiler on the SX-6 includes very
that no binary forces need to be calculated. This savesuseful analysis tools, allowing a quick identification
a great deal of computation, since it scaleshain- of the code’s bottlenecks. Also, a source listing clearly
stead ofN2, whereN is the number of particles. Also, indicates the loops that have not been vectorized and
the equations of motion to be solved for the parti- the reasons why. With these tools in hand, the scatter
cles are simple ordinary differential equations and are operation in the charge depositing routine was quickly
easily solved using a second order Runge—Kautta al- identified as the most time consuming part of the
gorithm. The main tasks of the PIC method at each code, and was not vectorized because of memory
time step are as follows: The charge of each particle dependencies.
is distributed among its nearest grid points according The challenge with the scatter operation in all PIC
to the current position of that particle; this is called codes, and on all types of processor, is the continuous
the scatter operation. The Poisson equation is thennon-sequential writes to memory. The particle array
solved on the grid to obtaithe electrostatic poten- is being accessed sequentially with a fixed stride, but
tial at each point. The force acting on each particle each of its elements, representing the position of a par-
is then calculated from the potential at the nearest grid ticle, corresponds to a random location in the simula-
points; this is the “gather” operation. Next, the parti- tion volume. This signifies that the grid array accumu-
cles are “moved” by using the equations of motion. lating the charges gets written to in a random fashion,
These steps are repeated until the end of the simula-resulting in a poor cache reuse on a cache-based super-
tion. scalar processor. This problem is well knof@h, and
GTC has been highly optimized for cache-based it gets amplified on a vector processor, since many par-
super-scalar machines such as the IBM SP. The dataticles will end up depositing some charge on the same
structure and loop ordering have been arranged for grid points, thus giving rise to a classic memory con-
maximum cache reuse, which is the most important flict that prevents vectorization. Fundamentally, the re-
method of achieving higher performance on this type quirement for vectorization is that all the individual
of processor. In GTC, the main bottleneck is the charge operations making up a single vector operation must
deposition, or scatter operation, mentioned above, be independent from each oth&he required number
and this is also true for most particle codes. The of independent individuabperations is equal to the
classic scatter algorithm consists of a loop over the number of elements in the vector registers, or “vec-
particles, finding the nearest grid points surrounding tor length”. The simplest method to avoid the intrinsic
each particle position. A fraction of the particle’s memory conflicts of the scatter operation, and achieve
charge is assigned to the grid points proportionally vectorization, is to have each elementin the vector reg-
to their distance from the particle’s position. The ister write to its own temporary copy of the charge
charge fractions are accumulated in a grid array. The accumulating array. One needs as many copies as the
scatter algorithmin GTC is more complex since one is number of elements in the vector register, which is 256
dealing with fast gyrating particles for which motion for the SX-6. When the loop is completed, the infor-

458 S Ethier, Z. Lin/ Computer Physics Communications 164 (2004) 456458

mation in the 256 temporary arrays must be merged modifications that have been performed on GTC, so
into the real charge array. The increase in memory far, are just the beginning. A deeper analysis of the
generated by this method is of at least VLEN, charge accumulating loop shows that even though
where VLEN is the processor’s vector length axgd the vector operation ratio is 99.89% with a perfect
is the number of grid points in the domain. This can be vector length of 256, the loop runs only at 7% of
a very large number considering that GTC uses tens peak speed. However, the analysis also shows that a
of million of grid points for an average simulation. large number of scalar operations are performed in that
However, the increased speed gained by the vectoriza-same loop, most likely arising from the indirect array
tion of the scatter operation compensates for the useindexing characteristic of the random writes done in
of the extra memory. This algorithm was included in this algorithm. By simplifying the array indexing and
the GTC code, leading to the vectorization of the two sorting the particles according to their position, one
most compute-intensive loops. Further modifications, might expect to achieve a much better performance on
mainly adding compiler direistes, helped achieve the the SX-6. The goal is to reduce, as much as possible,
vectorization of the second most compute intensive the number of scalar operations, while maximizing the
routine in the code. vector operations.
Thus far, the work/reward ratio of porting the GTC
code to the SX-6 computer is good. We showed
4. Resultsand discussion that a few small changes plus a more involved but
straightforward method involving temporary arrays
Table 1summarizes the results of the single proces- already increases the performance by a factor of 5.
sor test that compares the overall performance on However, more code modifications need to be made
the Power3, Power4, and SX-6 processors. One notesin order to achieve the high efficiency obtained by
from the results that the Power3 processor gives the other codes on the SX-6 computer. One also needs to
highest efficiency at 12% of the maximum theoretical study the parallel scaling of the code, which is a very
speed. The fact that the Power4 runs GTC only at half importantaspect since GTC usually runs on up to 1024
the efficiency of the Pow8ragrees with the extensive Processors.
benchmarks done by the CSM group at the Oak Ridge
National Laboratonf7], and which showed that the
memory bandwidth of the Power4 was not sufficient Acknowledgements
to keep up with its high-clocked CPU. With the code
modifications made so far, the SX-6 runs the test case This work was supported by US DOE Contract
at 715.7 Mflops with 96.7% of vector operation ratio no. DE-AC020-76-CH03073 and in part by the DOE
and an average vector length of 180.3 (the ideal be- SCIDAC Plasma Microturbulence Project.
ing 256). Although this is only 9% of the maximum
8 Gflops that the vector processor can deliver, the SX-6
already runs 5.2 times faster than the Power3 proces-References
sor and 2.7 times faster then the Power4.
More can be done to further improve the efficiency [1] Shingu, et al., A 26.58 Tflops global atmospheric simula-

tion with the spectral transform method on the Earth sim-
of the PIC method on the vector processor. The ulator, in: SC'02 Conference, Baltimore, MD, Nov. 2002;

http://sc-2002.org/paperpdfs/pap.pap331.pdf
Table 1 [2] http://www.es.jamstec.go.jp/esc/eng/
Single processor performance of GTC test run on the IBM SP [3] Z. Lin, S. Ethier, T.S. Hahm, W.M. Tang, Phys. Rev. Lett. 88

Power3 and Power4, and on the NEC SX-6 vector processor (2002) 195004. .
[4] W.W. Lee, Phys. Fluids 26 (1983) 556.

Processor Max speed GTCtest Efficiency Relative speed [5] W.W. Lee, J. Comp. Phys. 72 (1987) 243.

(Gflops) ~ (Mflops) (real/max) (user time) [6] V.K. Decyk, S.R. Karmesin, A. de Boer, P.C. Liewer, Optimiza-
Power3 1.5 173.6 12% 1 tion of particle-in-cell codes on reduced instruction set computer
Power4 5.2 304.5 6% 1.9 processors, Comput. Phys. 3 (1996) 290.

SX-6 8.0 715.7 9% 5.2 [7] http://www.csm.ornl.gov/evaluation/CHEETAH/index.html

http://sc-2002.org/paperpdfs/pap.pap331.pdf
http://www.es.jamstec.go.jp/esc/eng/
http://www.csm.ornl.gov/evaluation/CHEETAH/index.html

	Porting the 3D gyrokinetic particle-in-cell code GTC to the NEC SX-6 vector architecture: perspectives and challenges
	Introduction
	The Gyrokinetic Toroidal Code
	Porting to the SX-6
	Results and discussion
	Acknowledgements
	References

