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The compressional component of magnetic perturbation dBk can play an important role in drift-

Alfvenic instabilities in tokamaks, especially as the plasma b increases (b is the ratio of kinetic

pressure to magnetic pressure). In this work, we have formulated a gyrokinetic particle simulation

model incorporating dBk, and verified the model in kinetic Alfven wave simulations using the

Gyrokinetic Toroidal Code in slab geometry. Simulations of drift-Alfvenic instabilities in tokamak

geometry shows that the kinetic ballooning mode (KBM) growth rate decreases more than 20%

when dBk is neglected for be ¼ 0:02, and that dBk has stabilizing effects on the ion temperature

gradient instability, but negligible effects on the collisionless trapped electron mode. The KBM

growth rate decreases about 15% when equilibrium current is neglected. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4997788]

I. INTRODUCTION

In theoretical and computational studies of toroidal

plasmas using the kinetic approach, compressional mag-

netic perturbations dBk have generally been neglected for

plasma b� 1,1 where b is the ratio between plasma kinetic

pressure and magnetic pressure. However, even for small

values of b, the dBk effect can be important for plasma

instabilities2,3 such as the kinetic ballooning mode (KBM)4

since it cancels out the stabilizing “drift-reversal” effects of

the guiding center grad-B drifts associated with the perpen-

dicular diamagnetic current in finite-b plasmas.5 Local

gyrokinetic simulations using GS2 (Ref. 2) and GYRO6

show that the KBM growth rate can be reduced significantly

when dBk is neglected for electron b values as small as 2%

(be ¼ 0:02).

In this work, we have formulated and verified a gyroki-

netic particle simulation model incorporating dBk. When

the finite b effects are considered, the second order terms in

the perturbed guiding center Hamiltonian contribute to

extra polarization terms in the field equations.7–9 At equi-

librium and isotropic temperature, the conventional form of

the component of Ampere’s law parallel to the equilibrium

magnetic field (hereafter, simply referred to as the parallel

Ampere’s law) is valid for arbitrary b. The perpendicular

Ampere’s law and gyrokinetic Poisson’s equation become

coupled for finite b. We have implemented this complete

gyrokinetic simulation model incorporating dBk in the

Gyrokinetic Toroidal Code (GTC),10 including the effects

of the parallel equilibrium current density.11 We have veri-

fied the implementation by showing that the effects of dBk
on the kinetic Alfven wave (KAW) from GTC simulations

agree with the analytic dispersion relation in slab geometry.

The GTC simulation of drift-Alfvenic instabilities in toka-

mak shows that the KBM growth rate decreases more than

20% when dBk is neglected for be ¼ 0:02, but that dBk has

negligible effects on the collisionless trapped electron mode

(CTEM). Near the instability threshold of the ion temperature

gradient (ITG) instability at be ¼ 0:01; dBk has stabilizing

effects on the ITG mode. We also find that the KBM growth

rate decreases about 15% when equilibrium current is

neglected. We note that the equilibrium current in tokamak,

which is mostly a parallel current and much larger than the

perpendicular diamagnetic current, is neglected in most gyro-

kinetic simulations.

The outline of this paper is as follows; the formulation

of the gyrokinetic Vlasov-Maxwell equations including dBk
terms is presented in Sec. II, followed by verification of

KAW simulations in Sec. III. In Sec. IV, we present tokamak

KBM simulation results illustrating the effects of dBk and

equilibrium current. In Sec. V, we summarize the main

results and discuss future studies.

II. FORMULATION OF GYROKINETIC SIMULATIONS
WITH dBk

A. Gyrokinetic Vlasov equations

The gyrokinetic equation for low frequency waves in

magnetized plasmas7 with a distribution function for the s
species Fgyro

s ¼ fsðR; vk; l; tÞ in five-dimensional phase

space is

d

dt
fs R; vk; l; t
� �

¼ @

@t
þ _R � r þ _vk

@

@vk
� Cs

 !
fs ¼ 0: (1)

Here, the gyrocenter position R, the magnetic moment

l and the parallel velocity vk are the set of independenta)Author to whom correspondence should be addressed: zhihongl@uci.edu
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variables, and Cs denotes the collision operator, which

is neglected in the following formulation for simplicity.

The gyrocenter velocity _R and the parallel acceleration

_vk are

_R ¼ vk
B�0 þ dB?

B�0
þ vE þ vd þ vbk; (2)

_vk ¼ �
1

ms

B�0 þ dB?
B0

� lrB0 þ Zsrh/i � Zsr
hdA? � v?i

c

� �

� Zs

msc

@hdAki
@t

: (3)

In the above equations, B0 ¼ B0b0 is the equilibrium

magnetic field, B�0 ¼ B0 þ B0vkmsc

ZsB0� r � b0 is the modified

magnetic field for the equation of motion to conserve the

phase space volume, B�0 ¼ B0 þ vkmsc

Zs
b0 � r � b0; v? is the

perpendicular component of particle velocity, dAk and dA?
denote the parallel and perpendicular components of the vec-

tor potential, respectively, dB? ¼ r� ðAkb0Þ, and dBk ¼ b0

�r � dA?. The E�B velocity, the magnetic drift velocity,

and the gradient drift caused by the perturbed parallel mag-

netic field are

vE ¼
cb0 �rhd/i

B�0
;

vd ¼
msv2

k
ZsB�0

b0 � b0 � rb0ð Þ þ l
ZsB�0

b0 �rB0;

vbk ¼ �
b0 �rhdA? � v?i

B�0
;

(4)

where h…i ¼ 1
2p

Þ
:::df represents gyrophase averaging, with

f as the gyrophase. Applying Stokes theorem, we have12

hdA? � v?i ¼ �
c

Zs
lhhdBkii: (5)

Here hhdBkii ¼ 1
pq2

Ð q
0

rdr
Ð 2p

0
dBkdf is the gyro-surface

averaging of the perturbed parallel magnetic field, where q is

the gyroradius and r denotes the radial direction in local

cylindrical coordinates. In Fourier space, we have hhdBkii ¼
dBk

2
k?q J1ðk?qÞ. In the above equations, hdAki and h/i are

gyroaveraged for the ions,13 and taken at the gyrocenter posi-

tion for the electrons.

Although GTC has been verified for full-f simulation,

here, we implement dBk in the perturbative (df) simula-

tion14–16 for higher computational efficiency. In the df
simulations, the distribution function can be decomposed

into an equilibrium and a perturbed parts as: fs ¼ fs0 þ dfs
for each species. The equilibrium part is just the solution

to the neoclassical problem, satisfying the gyrokinetic

equation

L̂0 fs0 ¼ 0; (6)

where we define d
dt ¼ L̂ ¼ L̂0 þ d̂L, and

L̂0 ¼
@

@t
þ vkb0 þ vd

� �
� r � lB�0

B0

� rB0

@

@vk
;

d̂L ¼ vE þ vbk þ
vkdB?

B�0

 !
� r �

�
ldB? � rB0

msB0

þ Zs
B�0 þ dB?

msB0

� r/�rhdA? � v?i
c

� �

þ Zs

msc

@hdAki
@t

�
@

@vk
:

With the equilibrium solution from Eq. (6), we obtain

L̂
dfs

fs
¼ � fs0

fs

d̂Lfs0

fs0

¼ 1� dfs

fs

� �

�
�
� vk

dB?
B�0
þ vE þ vbk

� �
� rfs0

fs0

þ
�

ldB? � rB0

B0

þ Zs
B�0 þ dB?

B0

� r/�rhdA? � v?i
c

� �
þ Zs

c

@hdAki
@t

�
1

msfs0

@fs0

@vk

�
:

(7)

B. Gyrokinetic Maxwell equations

In order to derive the gyrokinetic Maxwell equations, it

is convenient to use the transformation from the guiding cen-

ter to the particle distribution. In isotropic plasmas, we have

the expression for guiding center phase-space transformation

as in Ref. 8, Eq. (41)

dfs x; vk; l; tð Þ ¼
ð

dR

�
dFgyro

s R; vk; l; t
� �

þ qs

Ts
�hdA? � v?i

c
þ hd/i � d/ Rð Þ

� �

� FM R; vk; l; t
� ��

d x� R� qð Þ; (8)

where x denotes coordinates of the particle position, R

denotes coordinates of the guiding center position, FM is the

local Maxwellian distribution, and

hd/i ¼ 1

2p

ð2p

0

df
ð

dx0d/ x0ð Þd x0 � R� qð Þ:

The quasi-neutrality condition in the particle coordinates

is in the form of Eq. (44) in Ref. 8

Z2
i ni

Ti
d/� ~d/
� �

� 1

B0

Zini0fdBkgi � ene0fdBkge

� �
¼ Zini � ene; (9)

where ~d/ denotes double gyroaveraging

~d/ ¼
ð

dv

ð
dRhd/iðRÞFMðR; vk; l; tÞdðx� R� qÞ;

dns is the gyroaveraged particle density,

dns ¼
ð

dv

ð
dRdFgyro

s ðR; vk; l; tÞdðx� R� qÞ;
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and fdBkgs is defined as

fdBkgs ¼
mX2

s

2pTs

ð
dv

ð
dR

ðq

0

r0dr0
ð2p

0

df0
ð

dx0dBk x0ð Þ

� d x0 � R� qð ÞFMd x� R� qð Þ:

The velocity-space integral in the above equations is

defined as ð
dv ¼ B0

ms

ð1
0

dl
ð1
�1

dvk

ð2p

0

df:

For a single k? mode, the gyroaveraging and integrations

over phase space can be represented using Bessel functions

~d/ ¼ d/I0ðk2
?q

2
s Þ exp ð�k2

?q
2
s Þ;

fdBkga ¼ dBk I0ðk2
?q

2
s Þ � I1ðk2

?q2
s Þ

� 	
exp ð�k2

?q
2
s Þ:

The parallel Ampere’s law for dAk is not modified by

dBk, and is in the form of

r2
?Ak ¼

4p
c

eneduke � qiniduki
� �

; (10)

where the perturbed current is

naduak ¼
ð

dvvk

ð
dRdFgyro

a ðRÞdðx� R� qÞ:

Equation (10) is valid only for isotropic plasmas. With aniso-

tropic temperature, the parallel Ampere’s law would include

extra terms proportional to T? � Tk, which might be signifi-

cant when bk � b? is of the order unity.9

Assuming that the perpendicular wave vector of the per-

turbed fields is much larger than the curvature of the equilib-

rium magnetic fields, the perpendicular Ampere’s law for

dBk is

r?dBk � b0 ¼
4p
c

Zi

ð
dvv?dfi � e

ð
dvv?dfe

� �
: (11)

Using Stokes’ theorem

�
þ

f
v?
X

df ¼
þ

fdl ¼
ð

s

dS�rf ¼ �
ð

rdr

ð
dfb�rf ;

and assuming 1=k?L� 1, the b�r operator can be taken

out of the integral and removed from the perpendicular

Ampere’s law. After transformation from guiding center

coordinates to particle coordinates [Eq. (8)], we get

dBkB0

4p
þ 2pX2

e

ð
dldvk

�
B0


ðqe

0

Fgyro
e rdr

�

þ fM

q2
e


ðqe

0


ðqe

0

dBkr
0dr0
�

rdr

��

¼�2pX2
i

ð
dldvk

�
B0


ðqi

0

Fgyro
i þ ehd/i� ed/

Ti
FM

� �
rdr

�

þFM

q2
i


ðqi

0


ðqi

0

dBkr
0dr0
�

rdr

��
: (12)

For a single k? mode and k?qe � 1 we obtain

dBkB0f1þ be þ bi I0 k2
?q

2
i

� �
� I1 k2

?q
2
i

� �� 	
exp �k2

?q
2
i

� �
g

8p

þ biB
2
0ed/

16pTi
I0 k2

?q
2
i

� �
� I1 k2

?q
2
i

� �� 	
exp �k2

?q
2
i

� �
� 1

� 

¼ �pX2

e

ð
dldvkB0

ðqe

0

Fgyro
e rdr � pX2

i

�
ð

dldvkB0


ðqi

0

Fgyro
i rdr

�
: (13)

When k?qi � 1, Eq. (13) reduces to

dBkB0 1þ be þ bið Þ
4p

¼ �dPe? � dPi?; (14)

where dPs? ¼ 2pB0

ms

Ð
dldvkdfslB0; bs ¼ 8pns0Ts0=B2

0 for

each species. Equations (2) and (3), (7), (9), (10), and (12)

form the closed system of equations for the nonlinear gyroki-

netic simulations.

C. Fluid kinetic hybrid electron model with dBk

The formulation of dBk for the gyrokinetic simulation is

first implemented and verified in the framework of the fluid-

kinetic hybrid electron model. The fluid-kinetic hybrid

electron model is useful in circumventing the numerical

challenges associated with the electron Courant condition

and tearing modes.16–19 For the purpose of verifying the

implementation of dBk in the gyrokinetic simulation, here,

we use the fluid-kinetic hybrid electron model with dBk for

simulations of non-tearing modes including kinetic shear

Alfven wave (KAW) and kinetic ballooning mode (KBM) as

shown in Secs. III and IV, respectively. However, the imple-

mentation of dBk in the fluid-kinetic hybrid electron model

can be readily utilized for the GTC simulation of kink insta-

bility,20 resistive21 and collisionless tearing modes.22

Integrating the kinetic equation (1), we can get the elec-

tron continuity equation in the conservative form as

@dne

@t
þr � C ¼ 0; (15)

where C ¼ 2p
me

Ð
dvk
Ð

dlB�0Fgyro
e

_R is the particle flux

and dne ¼ 2p
me

Ð
dvk
Ð

dlB�0dFgyro
e is the perturbed electron

density. With the guiding center drift velocity _R, the particle

flux is

C ¼ n0 uk0 þ duk
� �B0 þ dB?

B0

þ vE n0 þ dneð Þ

�
cPkb0 � b0 � rb0ð Þ

eB0

� cP?b0 �rB0

eB2
0

�
cP?b0 �rdBk

eB2
0

; (16)

where uk0 is the equilibrium flow, P? ¼
Ð

dvlB0Fgyro
e and

Pk ¼
Ð

dvmv2
kF

gyro
e are perpendicular and parallel pressures

respectively. With the equilibrium solution Eq. (6) and some

algebra, the continuity equation becomes
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@dne

@t
þ B0 � r

n0duke
B0

� �
þ B0vE � r

n0

B0

� �
� n0 v� þ vEð Þ � rB0

B0

þ dB? � r
n0ujj0

B0

� �

� cr� B0

eB2
0

� rdPjj þ
dP? � dPk
� �

rB0

B0

� n0erd/

 !
þr �

cdPkb0r� b0 � b0

eB0

� �

þdB? � r
n0eduke

B0

� �
þ B0vE � r

dne

B0

� �
þ cdne

B2
0

b0 �rB0 � rd/þ cdne

B2
0

r� B0 � rd/

�
cb0 �rdBk

e
� r dP? þ P?0

B2
0

� �
�

cr� b0 � rdBk

eB2
0

dP? þ P?0ð Þ ¼ 0; (17)

where the diamagnetic drift velocity is v� ¼ 1
n0meXe

b0

�rðdPk þ dP?Þ.
The parallel electron fluid velocity duek can be calcu-

lated by inverting the parallel Ampere’s law, Eq. (10), where

duik is from the ion gyrokinetic equation and dAk is from the

time integration of

@dAk
@t
¼ �cdEk � cb0 � rd/; (18)

where d/ can be solved from Poisson’s equation, and the

parallel electric field dEk can be solved by the iterative

method as follows.

The effective potential is defined as: �b0 � r/eff ¼ dEk.
The perturbed electron distribution function is separated into

adiabatic and non-adiabatic responses

d

dt
fe ¼ L̂fe ¼ L̂0 þ dL̂

� �
FM þ df 0ð Þ

e þ dhe

� �
¼ 0; (19)

where

L0 ¼
@

@t
þ vkb0 þ vd

� �
� r � lB�0

B0

� rB0

@

@vk
;

dL ¼ vk
dB?
B0

þ vE þ vbk

� �
� r �

�
l

me

dB?
B0

� rB0 þ
e

me
Ek

� l
me

b0 � rdBk �
e

me

vc

vk
� r/þ l

me

vc

vk
� rdBk

�
@

@vk
:

(20)

We define the electron adiabatic response df ð0Þe by the

dominant vk terms in the electron kinetic equation

vkB0 � rdf 0ð Þ
e

B0

¼ �vk
dB?
B0

� rFM �
lvk

B0Te
dB? � rB0FM

þ
evk
Te

b0 � r/eff FM �
lvk
Te

b0 � rdBkFM:

(21)

Since we have

dB? ¼ rw�ra�rw0 �ra0;

and

rjv?FM ¼ rjlFM þ
lrB0

Te
FM;

we can solve for the adiabatic electron response df ð0Þe as

df 0ð Þ
e ¼

e/eff

Te
FM �

l
Te

dBkFM þ
@FM

@w0

����
v?

dwþ @FM

@a0

����
v?

da:

(22)

Then, the lowest order effective potential d/ð0Þeff can be found

by integrating the above equation in velocity space

e/ 0ð Þ
eff

Te
¼ dne

n0

þ
dBk
B0

� @lnn0

@w0

dw� @lnn0

@a0

da: (23)

Using Eqs. (7), (9), (10), (12), (17), (18), and (23) along with

the electron and ion orbit equations, we have a closed system

for simulations with adiabatic electrons.

To incorporate electron kinetic effects, from Eqs.

(19)–(21), we can get the dhe equation for the non-adiabatic

electron response as

L
dhe

fe
¼ 1

fe
�L0df 0ð Þ

e � dLFM

� �
¼ 1� df 0ð Þ

e

FM
�w

 !�
� @
@t

df 0ð Þ
e

FM
� vd � r

df 0ð Þ
e

FM
� vE � rlnFM �

mevk
Te

e

me

vg

vk
� rd/FM

�vbk � rlnFM þ
mevk

Te

l
me

vg

vk
� rdBkFM þ

mevk
Te

e

me

vd

vk
� r/FM �

mevk
Te

l
me

vd

vk
� rdBkFM

�

¼ 1� df 0ð Þ
e

FM
�w

 !
� @
@t

df 0ð Þ
e

FM
� vE � rlnFMjv? þ

cl
eB0

b0�rdBk � rlnFMjv?�vd � r
df 0ð Þ

e

FM
þ e

Te
vd � rd/� l

Te
vd � rdBk

" #

¼ 1� df 0ð Þ
e

FM
�w

 !
� @
@t

df 0ð Þ
e

FM
� vE � rlnFMjv? þ

cl
eB0

b0�rdBk � rlnFMjv?�vd � r
ed/ 0ð Þ

ind

Te
þ dw

fe0

@fe0

@w0

jv?

 !" #
; (24)
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where the lowest order inductive potential is: d/ð0Þind ¼ /ð0Þeff

�d/. We have ignored the nonlinear terms involving

dLdf ð0Þe .

Now, we have the first order correction in dnð1Þe

¼
Ð

dvdhe, which can be used for the first order correction

for /eff [since dBk is determined by Eq. (12)]

e/ 1ð Þ
eff

Te
¼ � dn 1ð Þ

e

n0

: (25)

Equations (24) and (25) can be iterated to get higher-order cor-

rections to the electron non-adiabatic distribution function.

This formulation keeps the equilibrium current11 terms,

i.e., uk0 and terms proportional to r� B0. The equilibrium

current will have coupled terms with dBk in the last term in

electron continuity equation (17), as well as the ion weight

equation through the curvature drive

d

dt

dfi
fi
¼ 1� dfi

fi

� ��
� cb0

B0

�r d/� vkkB0 þ
l
Zi
hhdBkii

� �

� rlnfMjv?þ
Zi

T
vkEk �

lvkb0 � rhhdBkii
T

� Zi

T
vd � r /þ l

Zi
hhdBkii

� ��
; (26)

where vd ¼ vg þ vc ¼ cl
ZiB2

0

B0 �rB0 þ
micv2

k
ZiB

3
0

B0 �rB0 þ
micv2

k
ZiB2

0r� B0.

D. Simulation flow chart

The GTC flow chart of advancing the fluid-kinetic hybrid

electron model from the nth to the ðnþ 1Þth time step is illus-

trated in Fig. 1. It includes 8 equations, corresponding to Eqs.

(7), (9), (10), (12), (17), (18), (24), and (25). Similar procedures

based on this flow chart without dBk have already been exten-

sively applied for GTC simulations of microturbulence,23,24

energetic particle transport25 and Alfven eigenmodes.26,27

In the first blue box are the main particle and field

quantities at the nth time step. In the second pink box, we

first time-advance the ion kinetic equation for dfi. Each par-

ticle has a weight defined as wi ¼ dfi=fi to represent its con-

tribution to the perturbed distribution function. The

evolution equation for this weight can be solved using the

dfi equation, Eq. (26). The gyro-averaging and gyro-surface

averaging for the field quantities are performed using the

gyrocenter position R and the perpendicular energy

lB0ðRÞ. Numerically, the gyro-surface averaging is approx-

imated as gyro-averaging over an effective orbit with radius

q=
ffiffiffi
2
p

.12 The electron continuity equation for dne and the

equation for dAk are also advanced in this step. Using the

parallel Ampere’s law, along with the ion distribution and

dAk; duek at the ðnþ 1Þth time step can now be calculated.

To incorporate the effects of non-adiabatic electron

responses, the electron kinetic equation (24) is iterated with

the time derivative of the lower order response, as shown in

the third magenta box. This step also includes the correc-

tion of the effective potential d/eff by the non-adiabatic

response, Eq. (25). Since we now have the complete elec-

tron and ion information at the ðnþ 1Þth time step, field

equations can be solved as in the fourth orange box. The

perpendicular Ampere’s law and Poisson’s equation are

coupled. After solving for d/ and dBk, we have a set of new

particle and field quantities to proceed to the ðnþ 2Þth time

step.

III. VERIFICATION OF dBk EFFECTS ON KINETIC
ALFVEN WAVE

A. Analytic KAW dispersion relation

We first verify the implementation of dBk by comparing

GTC linear simulations of kinetic Alfven wave (KAW) with

the analytic dispersion relation in the slab geometry. In the

spectrum space, the set of linearized gyrokinetic equations in

a uniform background with Zi¼ e, Ti¼Te become

dfi ¼
kkvk

x� kkvk

eFM

T
J0 k?qið Þd/þ 2J1 k?qið Þ

k?qi

ldBk
e
� J0 k?qið Þ x

ckk
dAk

" #
;

dfe ¼
�kkvk

x� kkvk

eFM

T
d/�

ldBk
e
� x

ckk
dAk

" #
;

e2n0

T
1� I0 k2

?q
2
i

� �
exp �k2

?q
2
i

� �� 	
d/� en0

B0

I0 k2
?q

2
i

� �
� I1 k2

?q
2
i

� �� �
exp �k2

?q
2
i

� �
� 1

� 	
dBk

¼ 2peB0

mi

ð
dldvkdfiJ0 k?qið Þ � 2peB0

me

ð
dldvkdfe;

�k2
?dAk ¼

8p2B0n0e

c

1

me

ð
dldvkvkdfe �

1

mi

ð
dldvkvkdfi

� �
;

dBkf1þ be þ bi I0 k2
?q

2
i

� �
� I1 k2

?q
2
i

� �� 	
exp �k2

?q
2
i

� �
g

B0

þ bi

2

ed/
T

I0 k2
?q

2
i

� �
� I1 k2

?q
2
i

� �� 	
exp �k2

?q
2
i

� �
� 1

� 

¼ �be

pB2
0

n0T0m2
e

ð
dldvkldfe � bi

pB2
0

n0T0m2
i

ð
dldvkldfi

2J1 k?qið Þ
k?qi

:

081205-5 Dong et al. Phys. Plasmas 24, 081205 (2017)



Combining the above equations, we get the dispersion

relation

k2
?q

2
s k2
kv

2
A

x2
A� ABþ B2

 !
2A

bi

� ADþ C2

� �

¼ AEþ BCð Þ2; (27)

where

A ¼ 1þ I0ðk2
?q

2
s Þ exp ð�k2

?q
2
s ÞfiZðfiÞ þ 1þ feZðfeÞ;

B ¼ 1� I0ðk2
?q

2
s Þ exp ð�k2

?q
2
s Þ;

C ¼ I0ðk2
?q

2
s Þ � I1ðk2

?q
2
s Þ

� 	
exp ð�k2

?q
2
s ÞfiZðfiÞ � feZðfeÞ;

D ¼ 2 I0ðk2
?q

2
s Þ � I1ðk2

?q
2
s Þ

� 	
exp ð�k2

?q
2
s ÞfiZðfiÞ þ 2feZðfeÞ;

E ¼ I0ðk2
?q

2
s Þ � I1ðk2

?q
2
s Þ

� 	
exp ð�k2

?q
2
s Þ � 1:

This result agrees with the KAW dispersion relation

derived in Ref. 28, in the limit of k?qe � 1. The dispersion

relation Eq. (27) is plotted as the green solid line in Fig. 2,

where k?qs ¼ 0:69, be is scanned from 0.06 to 1.76.

B. Simulation results

In the simulations, the coupled equations for d/ and dBk
as shown in the orange box in the flow chart can be solved

by a linear solver package such as PETSc.29 For simplicity,

in the KAW simulations, we first neglect the contribution of

dBk in Poisson’s equation and the contribution of d/ in the

perpendicular Ampere’s law. The two equations become

decoupled and can be solved by the PETSc package using

electron and ion information at the ðnþ 1Þth time step. In

that case, the dispersion relation becomes

x2

k2
kv

2
A

� k2
?q

2
s

B

 !�
1þ Z feð Þfeð Þ þ 1þ Z fið Þfið Þ

� exp �k2
?q

2
s

� �
1� Bð Þ þ be

2
dk

�
¼ k2

?q
2
s ; (28)

where

dk ¼
1þZ deð Þfe� 1þZ fið Þfið Þ Eþ1ð Þ
� 	2

1þbeþbi Eþ1ð Þ� 1þZ feð Þfeþ 1þZ fið Þfið Þ Eþ1ð Þ
� 	 :

When the compressional magnetic perturbation is

neglected (i.e., setting dBk ¼ 0), the dk term is gone, and the

dispersion relation becomes

x2

k2
kv

2
A

� k2
?q

2
s

B

 !
1þ Z feð Þfeð Þ þ 1þ Z fið Þfið Þ

�
� exp �k2

?q
2
s

� �
1� Bð Þ� ¼ k2

?q
2
s : (29)

FIG. 2. KAW damping rate �c (triangle for simulations without dBk, dia-

mond for simulations with dBk, without coupling terms, and square for

simulations with dBk and with coupling terms) and real frequency x (plus

sign for simulations without dBk, cross for simulations with dBk, without

coupling terms, and star for simulations with dBk and with coupling terms)

vs be. The solid green lines represent the solution from the dispersion rela-

tion, Eq. (27). Dashed red lines represent the solution from Eq. (28), and

long dashed blue lines represent the solution from Eq. (29).

FIG. 1. GTC flow chart.
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The approximated dispersion relation Eqs. (28) and (29)

are plotted as the dashed red line and the long dashed blue

line, respectively, in Fig. 2. dBk has a significant effect on

the KAW damping rate for be > 0:3, and the coupling terms

in Poisson’s equation and perpendicular Ampere’s law

become important for the KAW damping rate, for be > 1.

In the GTC simulations, we use the fluid-kinetic hybrid

electron model as introduced in Sec. II for a slab geometry,

and k?qs ¼ 0:69. Alfven frequency is defined as xA ¼ kkvA.

The be is scanned from 0.06 to 1.76. The time history of

jdBkj in the case of be ¼ 1:76 is shown in Fig. 3. In this case,

be ¼ 1:76; k?qs ¼ 0:69; xr ¼ 1:30xA; c ¼ �0:034kkvA.

Simulation results with dBk using this model are plotted

as red data points, and agree with the analytical results of

Eq. (28), with an error within 1% for the real frequency and

5% for the damping rate. Simulation results without dBk are

plotted as blue data points and agree well with the analytical

results of Eq. (29). In single k? simulations, the gyro-

averaging and gyro-surface averaging in the field equations

can be calculated analytically, and thus the perpendicular

Ampere’s law and Poisson’s equation with coupling terms

can be solved easily as algebraic equations. The simulation

results of dBk with the coupling terms using this method are

plotted as green data points in Fig. 2, and agree well with the

analytical results of Eq. (27).

IV. EFFECTS OF dBk on DRIFT-ALFVENIC
INSTABILITIES IN TOKAMAK

We now apply the complete gyrokinetic formulation to

study the effects of dBk on drift-Alfvenic instabilities in

tokamak. Since the spectral method is not applicable in the

toroidal geometry, we need to solve the Poisson equation

and Ampere’s law in the real space. The Pade approximation

is used to solve Poisson’s equation first. Then, the perpendic-

ular Ampere’s law is solved using d/ and an approximation

for C1 ¼ ½I0ðx2Þ � I1ðx2Þ� exp ð�x2Þ ’ 1

ð1þx2Þ2. The properties

of the Pade approximation and the C1 approximation are

shown in Fig. 4. The maximum error in the C1 approxima-

tion: maxðjC1 � 1

ð1þx2Þ2 jÞ is 5%. After these approximations,

the coupled equations are in the form of

FIG. 3. Time history of dBkðy; tÞ, left

panel. The y axis is in the unit of

0:091qs. The right panel is a cut at the

wave peak (dBkðr ¼ 75; tÞ). The blue

dashed line is a linear fit for the wave

peaks.

FIG. 4. Pade approximation (left) for

C0 and the approximation for C1

(right). Solid lines are the exact expres-

sions and dashed lines are the

approximations.

FIG. 5. KBM growth rate c (left) and

real frequency x (right) vs poloidal

mode number k? for be ¼ 0:02.
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q2
sr2
? � q4

sr4
?

� � ed/
T
þ 2q2

sr2
? � q4

sr4
?

� � dBk
B0

¼ � 1� 2q2
sr2
? þ q4

sr4
?

� � dni � dne

n0

� �
;

b
2

2q2
sr2
? � q4

sr4
?

� � ed/
T
þ 1þ 2b� 1þ bð Þ½

� �2q2
sr2
? þ q4

sr4
?

� �
�
dBk
B0

¼ �b
2

1� 2q2
sr2
? þ q4

sr4
?

� � ~dPi? þ dPe?
P0

 !
;

where ~dPi ¼ 2pX2
i

Ð
dldvkB0h

Ð qi

0
Fgyro

i rdri; b ¼ bi ¼ be.

In the following simulations of tokamak plasmas, the

terms on the order of b are neglected in the coupled equa-

tions, which become:

ed/
T
¼ 1� q�2

s r�2
?

� � dni � dne

n0

;

dBk
B0

¼ b
2

�
� dPe þ ~dPi

P0

þ dni � dne

n0

þ 1� q2
sr2
?

� ��1 dni � dne

n0

�
:

A. Simulation parameters

To study the dBk effects on low frequency instabilities

driven by pressure gradients, linear KBM is simulated using

GTC30 with the cyclone parameters for the background plasmas:

the major radius is R0 ¼ 167 cm and the inverse aspect ratio is

a=R0 ¼ 0:357. At r ¼ 0:5a; B0 ¼ 2:01T; Te ¼ 8892eV; R0=
LT ¼ 6:9; R0=Ln ¼ 2:2, q¼ 1.4. Simulations in this study use

the lowest order s� a model with a circular cross-section as

described in Ref. 11.

B. Simulation results

In the simulations, the toroidal mode number n is filtered

and only a single n mode is kept in each simulation. The real

frequency and the growth rate are calculated for the most

unstable poloidal mode at the q¼ 1.4 flux surface. A mode

number scan with be ¼ 0:02 is shown in Fig. 5. Without dBk,
the KBM growth rate decreases 23% at k?qs ¼ 0:22, and the

real frequency increases slightly. Thus, dBk has a destabiliz-

ing effect on KBM. At k?qs ¼ 0:25, with dBk the mode lin-

ear growth rate agrees well with GS2 and GYRO results

using the same parameters.6 The results without dBk is closer

to the GYRO result in Ref. 6. The GS2 results in Ref. 2 show

that the KBM growth rate decreases by a factor of 3 to 4

when neglecting only dBk (but not the drift reversal term).

The dBk does not change the linear mode structures of the

electrostatic and parallel vector potentials in these studies.

The dBk poloidal structure has similar features as the per-

turbed electrostatic potential d/ as shown in Fig. 6.

A be scan is shown in Fig. 7. As be becomes smaller, the

KBM approaches the stability threshold, and the effects of

dBk on the mode real frequency become more significant.

The mode evolves to the collisionless trapped electron mode

(CTEM), followed by the ion temperature gradient (ITG)

mode at be < 1%. The simulations include the equilibrium

current, which gives a positive drive to the KBM. At be ¼
0:02 and the poloidal mode number k?qs ¼ 0:22, the KBM

FIG. 7. KBM growth rate c (left) and

real frequency x (right) vs be for

poloidal mode number k?qs ¼ 0:22.

Green diamond data points represent

simulation results with dBk and with-

out equilibrium current.

FIG. 6. KBM d/ (left), dAk (middle), and dBk (right) poloidal mode structure for be ¼ 0:02; k?qs ¼ 0:22.
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growth rate decreases 17% if equilibrium current terms are

dropped, as shown by the green diamond data point in Fig. 7.

At be ¼ 1:5%, the KBM growth rate with dBk agrees with

the GYRO result from Fig. 3 in Ref. 6. As be further

decreases to 1.3%, both the KBM frequency and a positive

frequency corresponding to CTEM are observed in the simu-

lation with dBk. Whereas in the simulation without dBk,
CTEM is the only unstable mode. At be ¼ 1:1%, the positive

frequency corresponding to CTEM is observed in the case

with dBk, and both frequencies corresponding to CTEM and

ITG are observed in the case without dBk, showing that dBk
has a stabilizing effect on ITG near the stability threshold.

As be becomes smaller than 1%, ITG becomes unstable with

a negative frequency. At be ¼ 0:5%, the ITG growth rate

agrees with the GYRO result from Fig. 2 in Ref. 6. The

effect of dBk becomes almost negligible for be < 0:7%.

V. CONCLUSIONS AND FUTURE WORK

In this work, we have developed a simulation scheme

for fluid kinetic hybrid electrons and gyrokinetic ions in

toroidal geometry with parallel magnetic perturbation dBk,
which was generally neglected in particle-in-cell simulations

of fusion plasmas. A scan in be from 0.06 to 1.76 in the

kinetic Alfven wave (KAW) simulations verifies the imple-

mentation of dBk for a uniform isotropic background in slab

geometry. Simulations of drift-Alfvenic instabilities in toka-

mak geometry show that dBk has a destabilizing effect on

the kinetic ballooning mode (KBM), consistent with theoreti-

cal predictions and other numerical studies.2,6 dBk does not

have a significant effect on the linear properties of the colli-

sionless trapped electron mode (CTEM), and has a stabiliz-

ing effect on ion temperature gradient (ITG) instability.

Equilibrium current is included in the simulations, and it pro-

vides a positive linear drive for the KBM.

In future work, we will extend the formulation to aniso-

tropic equilibrium, where the parallel Ampere’s law might

be modified by finite b effects.9 dBk can play an important

role in the nonlinear dynamics of KBM,31 therefore, incorpo-

rating dBk in nonlinear simulations is an important next step.
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